
Processing Dangerous Paths
– On Security and Privacy of the Portable Document Format

Jens Müller
Ruhr University Bochum

jens.a.mueller@rub.de

Dominik Noss
Ruhr University Bochum

dominik.noss@rub.de

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Vladislav Mladenov
Ruhr University Bochum

vladislav.mladenov@rub.de

Jörg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

Abstract—PDF is the de-facto standard for document ex-
change. It is common to open PDF files from potentially untrusted
sources such as email attachments or downloaded from the
Internet. In this work, we perform an in-depth analysis of the
capabilities of malicious PDF documents. Instead of focusing on
implementation bugs, we abuse legitimate features of the PDF
standard itself by systematically identifying dangerous paths in
the PDF file structure. These dangerous paths lead to attacks
that we categorize into four generic classes: (1) Denial-of-
Service attacks affecting the host that processes the document.
(2) Information disclosure attacks leaking personal data out of the
victim’s computer. (3) Data manipulation on the victim’s system.
(4) Code execution on the victim’s machine. An evaluation of 28
popular PDF processing applications shows that 26 of them are
vulnerable at least one attack. Finally, we propose a methodology
to protect against attacks based on PDF features systematically.

I. INTRODUCTION

The Portable Document Format (PDF) is arguably the most
widely used data format for office document exchange. While
the total number of PDF files is impossible to guess, Adobe
announced that 250 billion documents have been opened
by Adobe products in 2018 [59]. Being true or not, PDF
documents are heavily used in business to business as well
as consumer use cases. Exchanging, creating, and archiving
invoices and contracts, submitting scientific papers, or collab-
orating and reviewing texts, are only some scenarios which are
hardly imaginable without PDF.

The advantage of using PDF over other document formats,
such as Microsoft Word, is its availability on all platforms,
including mobile and web. PDF processors are even used on
the server-side. For example, uploaded PDF files are converted
into images to preview them in forums, wikis, or cloud storage.
Modern printers also directly support native PDF processing
without the requirement for printer drivers to convert input
files to a special data format understood by the printer.

A. Powerful Document Features

Introduced in 1993 by Adobe, PDF was designed to provide
a consistent representation of documents, independent of the
platform. It supports numerous advanced features, ranging
from cryptography to calculation logic [44], 3D animations [5],

JavaScript [2], up to form fields [6]. A PDF document can be
updated or annotated without losing previous revisions [7] and
define specific actions [4], for example, to display a specific
page once the viewer opens the document. On top of this,
PDF is enriched with different data formats which can be
embedded into documents, such as XML [8], or Flash [3]. Each
of the formats has its strengths, but allowing their inclusion
also enables their weaknesses and concerns. In this work, we
analyze the security of native PDF functions.

B. Security and Privacy Threats

We present a systematic and structured analysis of standard
PDF features relevant for the security and privacy of users.
Even though PDF is a relatively old and well-established data
format, our study reveals novel insights regarding the abuse of
dangerous features, which are induced by opening a malicious
PDF document. We categorize our attacks into four classes:

1) Denial-of-Service (DoS) attacks affecting the processing
application and the host on which the PDF file is opened.

2) Information disclosure attacks leak personal data from the
victim’s computer to the attacker, such as PDF document
form data, local files on disk, or NTLM user credentials.

3) Data manipulation attacks modify PDF form values, write
local files on the host system, or mask the displayed
content of a document based on the opening application.

4) Execution of code on the victim’s machine, by silently
launching an executable, embedded within the document.

C. Responsible Disclosure

We reported our attacks and findings to the affected vendors
and proposed appropriate countermeasures, resulting in CVE-
2020-28352, CVE-2020-28353, CVE-2020-28354, CVE-2020-28355,
CVE-2020-28356, CVE-2020-28357, CVE-2020-28358, CVE-2020-
28359, CVE-2020-28410, CVE-2020-28411, and CVE-2020-28412.
While it is possible to mitigate most of the attacks on the
implementation-level, all of them are based on legitimate
features defined in the PDF standard. To sustainably eliminate
the root cause of these vulnerabilities in future implementation,
the authors recommend to remove dangerous functionality
from the PDF specification or add proper implementation
advice to its security considerations.

D. Contributions

Our contributions can be summarized as follows:

• We present a systematic analysis on the security of native
PDF features. Therefore, we distillate dangerous paths
from the 1300-page PDF specification. (section V)

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23109
www.ndss-symposium.org

• Based on this methodology, we craft our attack vectors,
resulting in an overall of 209 different attack variants that
can be generalized into four attack classes. (section VI)

• We evaluate 28 popular PDF viewers and show that 26 of
them are vulnerable to at least one attack. (section VII)

• We present techniques for JavaScript-based fingerprinting
of PDF viewers and bypassing Digital Rights Management,
and discuss the consequences of hidden data added by
legitimate PDF editors to every document. (section VIII)

• We discuss countermeasures for PDF implementations as
well as the specification, and propose a methodology to
systematically protect against attack variants. (section IX)

• We release our comprehensive suite of malicious PDF files
which can be used by developers to test their software.1

II. PDF BASICS

This section briefly introduces the PDF document structure.
For reasons of clarity, we only describe the building blocks
relevant for understanding the attacks of this paper.

A. Basic Blocks

A PDF document consists of four basic sections:

1) A header defining the PDF document version (1.1 to 2.0).
2) A body containing the content, a bundle of PDF objects.
3) An index table with references to each object in the body.
4) A trailer defining the root element of the document and

a reference to the index table.

The most important section is the body which contains the
PDF objects – the actual content of the document. An object
can, for example, define a headline, a text block, or an image.

1 10 0 obj
2 << /Length 10 >> % stream length
3 stream % start of the stream
4 Content % content (e.g., text, image, font, file)
5 endstream % end of the stream
6 endobj

Listing 1. PDF object 10, including a 10-byte content stream.

Every object is enclosed by the delimiters obj and
endobj and has has an identifier. In Listing 1, the object’s
identifier is 10 with generation number 0. Content can be
provided as a string, or – as shown in Listing 1 – as a
stream enclosed by stream and endstream. It can be pref-
aced with additional information, such as encoding or length.
Streams can optionally be compressed. Many documents use
FlatDecode for this purpose, meaning that the zlib Deflate
algorithm is used.

B. PDF Forms

With PDF version 1.2, Adobe introduced AcroForms in
1996. Similarly to HTML forms, AcroForms allow to define
input fields, checkboxes, and buttons. The user-input can
either be stored directly into the document (using incremental
updates) or be submitted to a dedicated server. In the latter
case, AcroForms use the Forms Data Format (FDF), which is
based on raw PDF objects, for transmitting the data.

1Our test suite of PDF documents can be found at https://pdf-insecurity.
org/download/pdf-dangerous-paths/exploits-and-helper-scripts.zip.

C. Actions & JavaScript

The PDF specification defines multiple Actions for various
purposes. These actions can be used, for example, to navigate
to a certain page in the document (GoTo action). Actions are
often combined with form elements or Annotations (e.g., click-
able hyperlinks referencing a website are technically realized
by combining a Link annotation with a URI action). However,
actions can also be set to trigger automatically based on various
events such as opening, printing, or closing the document.

A special action in PDF is the execution of JavaScript code.
Adobe defined a basic set of functions [2], but PDF applica-
tions often choose to implement a subset of Adobe’s standard
as well as to extend their feature set with proprietary functions
(see section VIII). JavaScript provides a huge flexibility for
documents, for example, complex input validation of forms or
changing their values depending on specific conditions.

11 0 obj
2<< /Type /Catalog % the first processed PDF object
3/OpenAction << % action executed after opening file
4/Type /Action % definition of the action
5/S /JavaScript % this is a Javascript action
6/JS (JavaScript code) >> % JavaScript code
7>>
8endobj

Listing 2. PDF document executing JavaScript after opening (excerpt).

In Listing 2, an example of a PDF action containing JavaScript
is shown. The document Catalog, which is the first processed
object in a PDF document, contains the entry OpenAction. The
OpenAction event defines an action which is executed directly
after the document is being opened. In the given example, the
JavaScript code defined in Line 6 will be executed.

D. PDF File Handles

A file handle (or PDF File Specification) is a multi-purpose
object that can be either an embedded file (i.e., a data stream
within the document), a local file on disk, a remote URL, or
a network share, depending on given parameters and context.
File handles define the targets of many PDF actions such as
where to submit form data to (via SubmitForm action) or which
hyperlinks to follow in a document (via URI or GoToR action).

III. RELATED WORK

PDF documents have been considered as relatively secure
against malware and other security threats until 2001 [56],
when the Peachy virus misused PDF features to run malicious
VBScript [57]. In the following years, PDF malware grew to
an importance, mostly based on implementation bugs in viewer
applications [58, 52]. During this period, PDF malware focused
mainly on abusing JavaScript. To estimate the importance of
JavaScript-based vulnerabilities in PDF documents we filtered
the CVE database for entries relating to 28 PDF processing
applications. Since 2003, there are 1325 relevant CVE IDs, of
which 73 lead to code execution – the rest being DoS, data
leakage, or other vulnerabilities. Of all PDF-related CVE IDs,
138 entries are due to JavaScript.2 Laskov et al. [34] outline
two classes of JavaScript PDF exploits: either the JavaScript

2The total number of JavaScript related issues may be higher because
JavaScript engine bugs usually do not get separate CVE IDs for integrators.

2

https://pdf-insecurity.org/download/pdf-dangerous-paths/exploits-and-helper-scripts.zip
https://pdf-insecurity.org/download/pdf-dangerous-paths/exploits-and-helper-scripts.zip

API is targeted directly or the API is abused to target other
software components.

In 2008, Filiol et al. analyzed for the first time malicious
PDF features beyond JavaScript. Their work was extended in
the following years by multiple researches which found new
methods to carry out DoS, URI invocation, code execution,
and information leakage using PDF files [48, 16, 49, 63, 51,
31, 32]. Even though, the security impact of specific attack
variants based on insecure PDF features was understood and
fixed in many implementations, new variants were reported in
2018 [24, 30, 50]. In contrast to our work, previous research on
insecure features of PDF documents focused on single features,
and mainly on single applications such as Acrobat Reader and
Foxit Reader, and was not driven by a systematic approach.

To prevent harm, different security tools were proposed, in
order to identify maliciously crafted documents [34, 37, 53, 18,
38, 55, 15]. Such tools rely on the detection of known attack
patterns and on a structural analysis of PDF files. In 2017,
Tong et al. introduced a concept for PDF malware detection
based on machine learning and its implementation [62, 61].
Maiorca et al. provided an overview of current PDF malware
techniques and compared existing security tools [36]. In our
research, we focus on the security of the PDF viewers and
not on additional protection tools. Thus, we do not evaluate
whether third party tools are able to detect our attacks.

While studying the related work on PDF security, we
determined two gaps which we address in this paper. First,
there is no systematic approach on how to find attacks based
on insecure PDF features since all relevant work, which is
widespread in multiple scientific papers, technical reports, and
blogposts, focuses on single features or attack variants. Second,
there is no comprehensive evaluation of a large set of popular
PDF viewers, beyond Acrobat Reader and Foxit Reader.

IV. ATTACKER MODEL

In this section, we describe the attacker model, including
the attacker’s capabilities and the winning condition.

A. Actions of the Victim

The victim is an individual who retrieves and opens a mali-
cious PDF document from an attacker controlled source. This
is a realistic attack scenario, because even sophisticated users
download and open PDF files from untrusted sources such
as email attachments or the Internet. For example, invoices
or academic papers are usually shared as PDF documents.
PDF is often considered as relatively “safe” by end-users [14],
compared to other file formats such as Word documents, which
are well-known to contain potentially dangerous macros [25].

To open the PDF document, the victim uses a pre-installed
application which processes the file in order to display its
content. Different applications may process the file, or interpret
features of the PDF standard, differently, thereby enabling or
disabling the various attack vectors described in this paper.

B. Attacker’s Capabilities

The attacker can create a new PDF file or modify an
existing document which we denote as the malicious document.
We do not require the malicious document to be compliant

to the PDF specification, although the attacker targets basic
functionality and features of the PDF standard. The attacker
has full control over the document structure and its content.
While the attacker can easily craft a malicious document
which looks benign once opened and interpreted by the PDF
application (i.e., similar to a document that the victim would
expect), this is not assumed to be necessary, because all attacks
are automatically triggered once the file is opened. The only
interaction of the victim is to open the malicious document on
their computer.

C. Winning Condition

An attack is classified as successful if its winning condition
is fulfilled. The winning condition – the goal of the attacker
– is dependent on the attack class and documented in the cor-
responding section. For example, in the DoS attack class, the
winning condition is reached if the PDF processing application
can be forced to consume all available resources (i.e., memory
or CPU time). In the information disclosure class of attacks, the
winning condition is fulfilled if the attacker manages to obtain
sensitive data, such as local files from the victim’s disk.

V. METHODOLOGY

To identify attack vectors, we systematically surveyed which
potentially dangerous features exist in the PDF specification.
We started by creating a comprehensive survey with all PDF
Actions that can be called. As a base, we used the list provided
in the PDF specification, see [60, section 8.5.3]. This list
contains 18 different actions which we carefully studied. We
selected eight actions (see Call Action in Figure 1) – the ones
that directly or indirectly allow access to a file handle (see
File in Figure 1) and may therefore be abused for dangerous
features such URL invocation or writing to files.

Having a list of security sensitive actions, we proceeded by
investigating all objects and related events which can trigger
these actions. This process was the most time-consuming part
of our investigation since the entire specification was analyzed.

We identified four PDF objects which allow to call arbitrary
actions (Page, Annotation, Field, and Catalog), as shown in
the upper part of Figure 1. For calling them, most objects
offer multiple alternatives. The Catalog object, for example,
defines the OpenAction or additional actions (AA) as events.
Each event can launch any sequence of PDF actions, which are
depicted in the middle part in Figure 1 (Launch, Thread, etc.).
In addition, JavaScript actions can be embedded within doc-
uments, opening a new area for attacks. By using JavaScript,
for example, new annotations can be created, which can have
actions that once again lead to accessing file handles.

If a path from an event over an action to file handle3

exists and is not explicitly blocked by the application opening
the document, we denote it as a “dangerous path”, resulting,
for example, in file system access or URL invocation. Our
approach is comprehensive in the sense that all attacks based
on such dangerous paths are covered, because all existing paths
in the PDF specification down to a file handle are mapped.
Another kind of dangerous path arises, when the specification
enables objects to create reference circles, resulting in infinite

3File handles can be embedded files, local files, URLs, or network shares.

3

Call Action

Launch Thread GotoE GotoR ImportData SubmitForm URI JavaScript

CatalogPage Annotation Field

/Print

/Open

/Base

/URI

/Names

/AA

/OpenAction

/A

/AA

/Link

/AA

/Contents

/AA

File

Embedded File Local File URL Network Share

Fig. 1. Dangerous paths identified by studying the PDF specification (simplified). There are different special PDF objects (Catalog, Page, ...) defined that
allow to call various actions (Launch, Thread, ...) which can read from or write to a PDF File Specification.

loops. Further discovered attacks – deflate bombs and content
masking – are based on flaws on the document structure level,
which we observed during our study of the specification.

Finally, we systematized our results, created a list of all
possible attacks, and classified them accordingly. To generate
our test suite of malicious PDF documents, we chose a semi-
automated approach: we hand-crafted the payloads to test for a
particular weakness and wrote a set of helper tools in Python,
to generate a broad set of attack variants as well as a valid
PDF structure for each test case. To improve the impact of the
attacks, we also build exploits by chaining multiple actions.
For example, an attacker can craft a document that first reads
data from a local file using the Import action and then sends the
content to the attacker’s server using the SubmitForm action.

Our efforts resulted in 209 unique PDF files4, which we
manually opened in 28 PDF applications to observe the result.
This process can be automated by launching each test for each
PDF viewer in a batch script and logging the program’s behavior,
depending on the attack class (e.g., CPU or memory exhaustion
for DoS, file exists checks for file write access attacks, etc.).

VI. ATTACKS

Out this section, we introduce the attacks that we elab-
orated during our security analysis. The “dangerous path” is
given at the end of each attach description.

Clarification of Novelty: Of course, this work is not the
first research on PDF security (see section III). However, we
are the first covering the entire specification for attacks based
on the dangerous path. While variants of some attacks have
been presented before, our work goes far beyond systematizing
existing results. It provides many new insights as well as novel
attacks. The novelty level for each attack is given below.

• Well known attacks: code execution via Launch action5

4Note that we combined multiple triggering events into single PDF files,
thereby testing various paths in parallel and reducing the overall number of
required test documents.

5Note that even though the danger of the PDF Launch action is well known
in the sense that it has been publicly documented, security gaps still exist in
multiple implementations, as confirmed by our evaluation (see section VII).

• Novel attack variants:6 infinite loop, deflate bomb, URL
invocation, credential theft, content masking.

• Previously unknown attacks: form data leakage, local file
leakage, form modification, file write access

Previous work relevant to a specific attack is provided in
each corresponding attack section.

A. Denial-of-Service

The goal of this class of attacks is to build a specially
crafted PDF document which enforces processing applications
to consume all available resources (i.e., computing time or
memory) or causes them to crash7. Note that while the impact
of DoS is limited for end-users, it can lead to severe business
impairment if the document is processed on a server, for
example, by a library that generates preview thumbnails of
PDF files uploaded to cloud storage.

1) Infinite Loop: Inducing an endless loop causes the
program execution to get stuck. The PDF standard allows
various elements of the document structure to reference to
themselves, or to other elements of the same type. This can
lead to cycles, if not explicitly handled by the implementation.
For example, a Pages object may reference to other pages,
which is a known problem of the specification, discovered in
CVE-2007-0104. We systematically studied the PDF standard
for further constructs that allow for reference cycles, recursion,
or other kinds of loops, and found the following novel variants:

• Action loop. PDF actions allow to specify a Next action
to be performed, thereby resulting in “action cycles”.

• ObjStm loop. Object streams may extend other object
streams allows the crafting of a document with cycles.

• Outline loop. PDF documents may contain an outline. Its
entries, however, can refer to themselves or each other.

6Only a small number of variants was known because previous research did
not systematically investigate the PDF specification or test all possible paths.

7Crashes are classified as a winning condition, because they affect the user
experience, especially if further, legitimate documents are already opened by
the same PDF application (in multiple tabs/windows) and if there are unsaved
changes, resulting in data loss. Furthermore, crashes have lead to code overflow
vulnerabilities in the past, which have been classified as critical by Adobe [19].

4

• Calculations. PDF defines “Type 4” calculator functions,
for example, to transform colors. Processing hard-to-solve
mathematical formulas may lead to high demands of CPU.

• JavaScript. Finally, in case the PDF application processes
scripts within documents, infinite loops can be induced.

Action ⇒ /Next ⇒ Action
ObjStm ⇒ /Extends ⇒ ObjStm

Dangerous paths (examples)

2) Deflate Bomb: Data amplification attacks based on
malicious zip archives are well-known (see [12, 22, 45]). The
first publicly documented DoS attack using a “zip bomb” was
conducted in 1996 against a Fidonet BBS administrator [1].
However, not only zip files but also stream objects within PDF
documents can be compressed using various algorithms such as
Deflate [20] to reduce the overall file size. The question arises
if compression bombs based on malicious PDF documents can
be built, in order to cause processing applications to allocate all
available memory. We intend to achieve this goal by a chaining
a compressed stream to one or multiple FlateDecode filters.

Filter ⇒ /FlateDecode ⇒ [...] ⇒ /FlateDecode
Dangerous path

B. Information Disclosure

The goal of this class of attacks is to track the usage of a
document by silently invoking a connection to the attacker’s
server once the file is opened, or to leak PDF document form
data, local files, or NTLM credentials to the attacker.

1) URL Invocation: Tracking pixels in HTML emails are
well documented,8 but the existence of similar technologies for
PDF files is largely unknown to the general public. However,
PDF documents that silently “phone home” should be con-
sidered as privacy-invasive. They can be used, for example, to
deanonymize reviewers, journalists, or activists behind a shared
mailbox. The goal of this attack is to open a backchannel
to an attacker controlled server once the PDF file is opened
by the victim. Besides learning when the file was opened
and by whom (i.e., by which IP address), the attacker may
learn additional (limited) information such as the victim’s PDF
viewer application and operating system, derived from the
User-Agent HTTP header. The possibility of malicious URI
resolving in PDF documents has been introduced by Hamon
[27] who gave an evaluation for URI and SubmitForm actions
in Acrobat Reader. We extend their analysis to all standard
PDF features that allow to open a URL, such as ImportData,
Launch, GoToR, JavaScript, and to a to a broad set of viewers.

[All events] ⇒ [All actions] ⇒ URL
Dangerous path

2) Form Data Leakage: Documents can contain forms
to be filled out by the user – a feature introduced with
PDF version 1.2 in 1996 and used on a daily basis for
routine offices tasks, such as travel authorization or vacation
requests. Depending on the nature of the form, user input

8A recent study of Poddebniak et al. [47] revealed backchannels in 40 out
of 48 tested email clients.

can certainly contain sensitive information (e.g., financial or
medical records). Therefore, the question arises if an attacker
can access and leak such information. The idea of this attack
is as follows: the victim downloads a form – a PDF document
which contains form fields – from an attacker controlled source
and fills it out on screen, for example, in order to print it. Note
that there are legitimate cases where a form is obtained from
a third party, while the user input should not be revealed to
this party. For example, European SEPA remittance slips can
be downloaded from all over the web9 – even though they
have to be manually signed to be accepted by a local bank.
The form is manipulated by the attacker in such a way that
it silently, without the user noticing, sends input data to the
attacker’s server. To the best of our knowledge, we are the first
to demonstrate such attacks, which can be carried out using
the PDF SubmitForm action, or by reading and exfiltrating the
form values using standard JavaScript functions.

Page ⇒ (on close) ⇒ SubmitForm ⇒ URL
Dangerous path

3) Local File Leakage: The PDF standard defines various
methods to embed external files into a document or otherwise
access files on the host’s file system, as documented below.

• External streams. Documents can contain stream objects
(e.g., images) to be included from external files on disk.

• Reference XObjects. This features allows a document to
import content from another (external) PDF document.

• Open Prepress Interface. Before printing a document,
local files can be defined as low-resolution placeholders.

• Forms Data Format (FDF). Interactive form data can be
stored in, and auto-imported from, external FDF files.

• JavaScript functions. The Adobe JavaScript reference
enables documents to read data from or import local files.

If a malicious document managed to firstly read files
from the victim’s disk and secondly, send them back to the
attacker,10 such behavior would arguably be critical. However,
standard PDF functions can be chained together to achieve
exactly this. For example, form values can be references to
stream objects and every stream, on its part, can reference to
an external file. Moreover, forms can be crafted to auto-submit
themselves using various events as documented in Figure 1 in
section IX. Furthermore, standard JavaScript functions can be
used to access local files and leak their content. We give a
systematic overview on this new chaining technique in terms
of a directed graph containing all chains detected during our
evaluation, and are the first to demonstrate these attacks.

[All events] ⇒ ImportData ⇒ local file
⇒ /Next ⇒ SubmitForm ⇒ URL

Dangerous path

4) Credential Theft: In 1997, Aaron Spangler posted a
vulnerability in Windows NT on the Bugtraq mailing list [54]:
any client program can trigger a connection to a rogue

9E.g., https://www.ibancalculator.com/fileadmin/EU-Ueberweisung.pdf.
10Note that exfiltration does not necessarily have to occur via the network:

For example, if a cloud storage service generates thumbnail images from
uploaded PDF documents, the backchannel can be the rendered image itself.
If a reviewer adds comments to a malicious PDF document, local files may
unintentionally be included when saving, exporting or printing the document.

5

https://www.ibancalculator.com/fileadmin/EU-Ueberweisung.pdf

SMB server. If the server requests authentication, Windows
will automatically try to log in with a hash of the user’s
credentials. Such captured NTLM hashes allow for efficient
offline cracking11 and can be re-used by applying pass-the-
hash or relay attacks [29, 43] to authenticate under the user’s
identity. This design flaw in the Windows operating system
is not solved until today.12 Back in 1997, Spangler used a
remote image to trick web browsers into making a connection
to and thereby authenticate to the attacker’s host. In April
2018, Check Point Research [50] showed that a similar attacks
can be performed with malicious PDF files. They found
that the target of GoToR and GoToE actions can be set
to \\\\attacker.com\\dummyfile,13 thereby leaking
credentials in the form of NTLM hashes. The issue was fixed
quickly by Adobe and Foxit. We describe novel variants of
this attack, for example, by using various other techniques to
access a network share such as by including it as external
content stream or by testing different PDF actions, thereby
bypassing existing protection mechanisms.

[All events] ⇒ [All actions] ⇒ network share
Dangerous path

C. Data Manipulation

This attack class deals with the capabilities of malicious
documents to silently modify form data, to write to local files
on the host’s file system, or to show a different content based
on the application that is used to open the document.

1) Form Modification: The idea of this attack is as follows:
similar to “form data leakage” as described above, the victim
obtains a harmlessly looking PDF document from an attacker
controlled source, for example, a remittance slip or a tax
form. The goal of the attacker is to dynamically, and without
knowledge of the victim, manipulate form field data. This can
be achieved by crafting the malicious document in such a
way that it “modifies itself”, and changes certain form fields
immediately before it is printed or saved. Interesting form
fields to manipulate could be, for example, the recipient of
a wire transfer or the declarations regarding taxable income.
Technically, form field values can be set using an ImportData
action which imports form data from an external source or an
embedded file, or with JavaScript included in the document.
This novel attack technique can be used by an attacker to either
get the victim into trouble (e.g., tax fraud suspicion) or to gain
financial advantages (e.g., by adding herself as recipient of a
tax refund).

Catalog ⇒ (on print) ⇒ ImportData ⇒ embedded file
Dangerous path

2) File Write Access: As previously described, the PDF
standard enables documents to submit form data to external
webservers. However, technically the webserver’s URL is

11For NTLMv2, it is estimated that cracking eight character passwords of
any complexity takes around 2,5 hrs on a modern GPU [17]. Previous versions
(NTLMv1, LM) are trivial to crack and can be considered as broken [40].

12Microsoft introduced the possibility to define “NTLM blocking” in the
Windows security policy, but is has to be actively enabled by administrators.
Furthermore, some ISPs block port 445, however this cannot be relied on.

13Note that the \ character must be escaped in PDF strings, leading to \\.

defined using a PDF File Specification. This ambiguity in the
standard may be interpreted by implementations in such a way
that they enable documents to submit PDF form data to a
local file, thereby writing to this file. Furthermore, there are
various JavaScript functions which allow to write to local files
on disk. If successful, this feature can be used to overwrite
arbitrary files on the victim’s file system and thereby purge
their content. Furthermore, write access to local files may even
be escalated to code execution if the attacker has write access
to certain startup scripts (e.g., autoexec.bat on Windows,
.bashrc on macOS and Linux). JavaScript based attacks to
write to local files have previously been shown, for example,
in CVE-2018-14280 and CVE-2018-14281 for Foxit Reader.
We evaluate write access for a broad range of standard PDF
and JavaScript functions. To the best of our knowledge, we
are the first to propose the attack variant based on PDF forms
that automatically submit data to a local file.

[All events] ⇒ SubmitForm ⇒ local file
Dangerous path

3) Content Masking: The goal of this attack is to craft a
document that renders differently, depending on the applied
PDF interpreter. This can be used, for example, to show
different content to different reviewers, to trick content filters
(AI-based machines as well as human content moderators),
plagiarism detection software, or search engines, which index
a different text than the one shown to users when opening the
document. Content masking attacks using polyglot files have
been shown in the past by [35, 10]; for example, PDF files that
are also a valid JPEG images, if opened by image processing
software. Recently, [39] presented “PDF mirage”, which ap-
plies font encoding to present a different displayed content to
humans than to text exfiltration software. We propose a new
approach which targets edge cases in the PDF specification,
leading to different parts of the document actually being
processed by different implementations. To achieve this, we
systematically studied the PDF standard for ambiguities at the
syntax and structural level, as documented below.

• Stream confusion. It is unclear how content streams are
parsed if their Length value does not match the offset of
the endstream marker, or if syntax errors are introduced.

• Object confusion. An object can overlay another object.
The second object may not be processed if it has a
duplicate object number, if it is not listed in the XRef
table, or if other structural syntax errors are introduced.

• Document confusion. A PDF file can contain yet another
document (e.g., as embedded file), multiple XRef tables,
etc., which results in ambiguities on the structural level.

• PDF confusion. Objects before the PDF header or after
an EOF marker may be processed by implementations,
introducing ambiguities in the outer document structure.

There are numerous variants of the four test classes men-
tioned above, resulting in a total of 94 different edge cases.

None (document structure level flaws)
Dangerous path

6

D. Code Execution: Launch Action

The goal of this attack is to execute attacker controlled code.
This can be achieved by silently launching an executable file,
embedded within the document, to infect the host with malware.14

The PDF specification defines the Launch action, which
allows documents to launch arbitrary applications. The file
to be launched can either be specified by a local path, a
network share, a URL, or a file embedded within the PDF
document itself. The standard does not provide any security
considerations regarding this obviously dangerous feature; it
even specifies how to pass command line parameters to the
launched application. Therefore, it can be said that PDF
offers “command execution by design” – if the standard is
implemented in a straightforward manner. An example of a
malicious document which contains an embedded executable
file (evil.exe) that is launched once the document is opened
(OpenAction) is depicted in Listing 3.

1 1 0 obj
2 << /Type /Catalog /Names <<
3 /EmbeddedFiles << /Names [(evil.exe) 2 0 R] >> >>
4 /OpenAction << /S /Launch /F (evil.exe) >>
5 >>
6 endobj
7

8 2 0 obj
9 << /Type /EmbeddedFile /Length 1337 >>

10 stream
11 [executable code]
12 endstream

Listing 3. PDF document to launch an embedded executable.

The danger of Launch actions is well-known and has first
been discussed in 2008 by Blonce et al. [13] for Acrobat
Reader. Modern PDF viewers should warn the user before
executing potentially malicious files – or stop supporting this
insecure feature at all. We extend the analysis of Blonce et
al. to a broad set of 28 modern PDF implementations and to
all potentially dangerous paths and thereby show that attack
variants leading to code execution are possible until today.

[All events] ⇒ Launch ⇒ embedded/local file or URL
Dangerous path

VII. EVALUATION

A. Denial-of-Service

In the following section, we discuss the results for DoS
attacks. Due to the large number of test cases, a fully detailed
evaluation is given in Table VI in the appendix. We classify
an application as vulnerable if it either hangs (e.g., consuming
unusually large amounts of CPU or memory) or if the program
crashes. A controlled program termination (i.e., raising an
exception before closing) is not considered as a vulnerability.

To evaluate the attacks introduced in section VI, we tested
them on 28 popular PDF processing applications that were
assembled from public software directories for the major
platforms (Windows, Linux, macOS, and Web).15 In addition

14Note that there are other methods to gain code execution (e.g., based on
memory corruption); however, they are out of scope in this paper. Our focus
is on abusing of legitimate features, not bugs in PDF viewer implementations.

15Note that some PDF applications are available for multiple platforms. In
such cases we limited our tests to the platform with the highest market share.

to native PDF viewers, we evaluated the most popular web
browsers because modern browsers have the ability to directly
render PDF files (e.g., from a website). If a “viewer” and
an “editor” version was available we tested both. All appli-
cations were tested in the default settings, neither relaxing nor
hardening their security policies. We only classified attacks as
successful, if they did not require any kind of user interac-
tion besides opening the malicious document. For example,
PDF applications which present a confirmation dialog before
performing a certain attack were labeled as not vulnerable.
Evaluation results are depicted in Table I.

Obviously, the criticalness of each attack differs. For example,
the impact of code execution based on a malicious document
is much higher than DoS. As one can see, PDF applications
for macOS and Linux, which implement only a subset of
PDF standard features, can be considered as relatively secure.
This also holds for web browsers, which apply additional
sandboxing mechanisms (e.g., to prevent file system access).

B. Denial-of-Service

In the following section, we discuss the results for DoS
attacks. Due to the large number of test cases, a fully detailed
evaluation is given in Table VI in the appendix. We classify
an application as vulnerable if it either hangs (e.g., consuming
unusually large amounts of CPU or memory) or if the program
crashes. A controlled program termination (i.e., raising an
exception before closing) is not considered as a vulnerability.

1) Infinite Loop: Each of the tested applications running
natively on Windows, macOS, or Linux, except PDF Studio
Viewer/Pro and Evince, was vulnerable to at least one attack
variant and could be tricked into an endless loop. It is notewor-
thy that CVE-2007-0104 still works in six applications until
today. Our novel attack variants, such as GoTo loops (9 vulner-
able), Action loops (9 vulnerable), Outline loops (9 vulnerable)
and JavaScript (13 vulnerable) cause endless loops in various
PDF interpreters. The impact is either a crash of the program,
or the application becoming completely unresponsive, often
combined with a high consumption of CPU time. Browser
based PDF viewers instead perform much better. We observed
that for Chrome, Firefox, and Opera only the current tab gets
stuck in an endless loop and becomes unresponsive, which
is why we classified the vulnerability as “limited” here. We
assume this is because modern browsers sandbox each tab and
enforce resource limits, thereby restricting the impact of, for
example, a malicious or runaway website.

2) Deflate Bomb: To evaluate the impact of compression
bombs, we crafted a valid PDF file containing a long string
of 10 GB of repeated characters, “AAA...”, within a Deflate
compressed content stream. To display this string to the user,
a PDF processing application must first decompress it. The
maximum compression ratio that can be achieved with the
Deflate algorithm is 1023:1. However, the PDF file size can be
drastically reduced by applying multiple Deflate filters to the
same stream, resulting in an amplification factor of 18 470 265
(i.e., 578 bytes on disk are decompressed to 10 GB in memory).
The attack resulted in memory exhaustion in 20 applications,
of which three applications crashed after a short period of time.
In various cases, the operating system slowed down noticeably
or became completely unresponsive. In contrast to attacks

7

Attack Category DoS Information Disclosure Data Manipulation RCE

Application Version In
fin

ite
lo

op

D
efl

at
e

bo
m

b

U
R

L
in

vo
ca

tio
n

Fo
rm

da
ta

le
ak

ag
e

Lo
ca

l
fil

e
le

ak
ag

e

C
re

de
nt

ia
l

th
ef

t

Fo
rm

m
od

ifi
ca

tio
n

Fi
le

w
rit

e
ac

ce
ss

C
on

te
nt

m
as

ki
ng

C
od

e
ex

ec
ut

io
n

Acrobat Reader (2019.012.20035)

W
in

do
w

s

 # # # # # #
Foxit Reader (9.7.1) # # # # # # #
PDF-XChange Viewer (2.5.322.9) # #
Perfect PDF Reader (8.0.3.5) # # # #
PDF Studio Viewer (2018.4.3) # G# # # # #
Nitro Reader (5.5.9.2) # # #
Acrobat Pro (2019.012.20035) # # # # # #
Foxit PhantomPDF (9.7.1) # # # # # # #
PDF-XChange Editor 7.0.326.1 # #
Perfect PDF Premium (10.0.0.1) # # # #
PDF Studio Pro (2018.4.3) # G# # # # #
Nitro Pro (13.24.1.467) # # # #
Nuance Power PDF (3.0.0.17) # # #
iSkysoft PDF Editor (6.5.0.3929) # # # # # # # # #
Master PDF Editor (5.1.36) # G# # # #
Soda PDF Desktop (11.0.16.2797) # # # #
PDF Architect (7.0.30.3196) # # # # #
PDFelement (6.8.0.3523) # # # # # # # # G#

Preview (10.0.944.4)

M
ac # # # # # # # #

Skim (1.4.41) # # # # # # # #

Evince (3.34.1)

L
in

ux

G#
Okular (1.3.2) # # # # # # # G#
MuPDF (1.16.0) # # # # # # # # G#

Chrome (70.0.3538.77)

W
eb

G# # # # # # #
Firefox (72.0.2) G# # # # # # # #
Safari (13.1.2) # # # # # # # # # #
Opera (57.0.3098.106) G# G# # # # # # #
Edge (44.18362.1.0) # # # # # # # # # #

 Application vulnerable G# Vulnerability limited # Not vulnerable

TABLE I. EVALUATION RESULTS: OUT OF 28 TESTED PDF APPLICATIONS, 26 ARE VULNERABLE TO AT LEAST ONE ATTACK.

based on infinite loops, even browsers such as Chrome and
Firefox were fully affected, while in Opera only the current tab
became unresponsive. The remaining seven PDF applications
did refuse to decompress the whole stream, but instead aborted
decompression after a reasonable amount of time – probably
after a watchdog limit was reached.

It is noteworthy that we did not even have to actually
open the malicious document on Windows and Linux in order
to cause DoS to the operating system. Both Windows File
Explorer and Gnome Nautilus file manager try to preview the
document if the containing directory is opened, and thereby
process its content resulting in resource exhaustion. MacOS
(Finder) was not vulnerable, because it stopped thumbnail
generation, probably after a resource limit was hit.

Although DoS attacks against web servers were not tested
for ethical reasons, applications processing PDF files on the
server-side are likely to be affected too. For example, Evince
and Okular, which are both vulnerable, are based on Poppler,16

a popular PDF library used by various cloud storage providers

16See https://poppler.freedesktop.org/.

and file-hosting solutions such as Seafile17 in order to generate
preview images of uploaded PDF documents.

C. Information Disclosure

1) URL Invocation: To evaluate if malicious documents
can enforce PDF applications to trigger a connection to an
attacker controlled server, we combined various PDF features
with techniques to automatically call them once the document
was opened. The results for auto-triggered PDF actions re-
sulting in URL invocation are as follows: URI action (9 vul-
nerable), GoToR (1 vulnerable), Launch (6 vulnerable), and
SubmitForm (11 vulnerable). For seven applications, we could
use standard JavaScript functions to invoke a connection. In
one viewer, we could set a URL as the external content stream
of an image, which was loaded from the attacker’s server.
In two viewers, we were able to inject a subset of XHTML,
leading to XHTML tags being being processed which triggered
a remote connection. Altogether, 17 PDF applications could
be tricked into (silently) invoking a connection to our server,
once a malicious document was opened by the user. It can be

17See https://www.seafile.com/.

8

https://poppler.freedesktop.org/
https://www.seafile.com/

concluded that it is relatively easy to craft a PDF document
which reports back to the author (or a third party) when the
document is opened, in a majority of the tested applications.

Note that for vulnerable PDF interpreters in web browsers
this issue can lead to further, web-security weaknesses. For
example, a malicious document uploaded by the attacker to
a social media website can trigger same-site requests18 if
viewed by the victim. This would otherwise be forbidden by
the browser and may be exploited to perform actions in the
context of the user’s account, in case same-site cookies [64]
are used by the web application to protect against cross-site
request forgery (CSRF).

2) Form Data Leakage: To test if form data can be leaked
silently, without the user knowing, we modified the standard
U.S. individual tax return form 104019 to send all user input to
our webserver once the document is either printed or closed.
This can be done by combining the DP (“did print”) and PC
(“page closed”) events of the Catalog and Annotation objects
with a SubmitForm action or JavaScript. We classify the attack
as successful if a PDF application passes filled-in form data
without the user being made aware of it (i.e., no warning
message or confirmation dialog displayed). Nine applications
are vulnerable to this attack, using forms that auto-submit
themselves. For two additional applications, we were able to
use JavaScript to access form data and silently exfiltrate it to
our server. Nine applications did ask the user before sending
the data, which we consider as sane behavior. Another eight
PDF interpreters (e.g., on macOS and Linux) did not support
the feature of submitting PDF form data at all.

3) Local File Leakage: Although part of the standard,
only two applications (i.e., PDF-XChange Editor and Nuance
Power PDF) support the feature of external streams. For
both applications, we were able to craft a document which
embeds arbitrary files on disk into the document and silently
leaks them to an external server using both auto-submitting
forms and JavaScript. Exfiltration happens in the background
once the document is opened, without the user noticing and
without any visible changes to the document. For another three
applications, we were able to include and automatically leak
the contents of FDF files and XML-based XFDF files (using
the ImportData action or the ImportFDF JavaScript function).
We classify this vulnerability as limited, because it is restricted
by file type – yet it should be clear that such behavior is not
desired either. Note that this attack is different from “form
data leakage” as mentioned before, because although (X)FDF
files usually contain PDF form data, this attack results in the
contents of external (X)FDF files from disk being leaked,
which is may be completely unrelated to the form data of
the currently opened (malicious) document. For PDF-XChange
Viewer, we were additionally able to use standard JavaScript
functions to access arbitrary files and the leak them.

4) Credential Theft: We installed Responder20 as a rogue
authentication server to obtain the client’s NTLM hashes
when opening the malicious document. We were able to
leak the hashes of NTLM credentials to our server without
the user noticing or being asked for confirmation to open a

18HTTP POST requests in Chrome and Opera, GET requests in Firefox.
19Available for download from https://www.irs.gov/pub/irs-pdf/f1040.pdf.
20See https://github.com/SpiderLabs/Responder.

connection to the rogue network shared drive on 12 out of the
18 Windows based PDF viewers. Using hashcat,21 we could
perform successful brute force attacks on the hashes of simple
5-character passwords within within seconds.22 Note that, by
design, only applications running on Windows are affected. We
used a mixture of techniques to accomplish this goal: external
streams, standard PDF actions, as well as JavaScript. Various
readers were affected by multiple test cases. It is interesting
to note that, although Foxit fixed this issue in 2018 for
PhantomPDF/Reader, we could identity bypasses using four
different techniques. This is because – apparently – accessing
a share invocation via GoToR actions (as documented in the
original exploit) was prohibited, however, using other action
types, such as auto-printing a file on a network shared drive,
we were again able to enforce NTLM hashes being leaked.

D. Data Manipulation

1) Form Modification: To test the feasibility of crafting
PDF documents that silently manipulate their own form data,
we once again modified the U.S. tax return form 1040. We
added an ImportData action that changes the refund account
number to the attacker’s account number once the document
is printed.23 We used the WP (“will print”) event for this
purpose. Unfortunately, from an attacker’s point of view, none
of the tested applications supports importing form data from
an embedded file within the document itself – or from an
external URL. By using standard PDF JavaScript functions
(getAnnots()[i].contents), we were however able to
modify PDF form data in six applications. JavaScript also
allowed us to temporarily store the original user data and undo
our manipulation immediately after the document had been
printed, using the DP (“did print”) event, and to enforce that
these modifications are only performed until a certain date,
thereby making it more difficult to reproduce the manipulation.

2) File Write Access: Only three applications allowed to
submit form data to a local file. While Foxit PhantomPDF and
Foxit Reader explicitly ask the user before writing to disk,
Master PDF Editor silently writes to or overwrites arbitrary
files with attacker controlled content by auto-submitting the
form data to a PDF File Specification. We also tested six
standard PDF JavaScript functions to write to disk. The
extractPages() function allowed us to write data to
arbitrary locations on disk in PDF-XChange Editor. The other
applications did not support writing files with JavaScript at all,
asked the user for confirmation, or showed a “Save as” dialog,
instead of automatically writing the file to a given location.

3) Content Masking: We define an application as vulner-
able if we can create a document that displays certain text
in this, and only in this, application, while a completely
different text is displayed in all other tested PDF viewers
– with the exception of two applications utilizing the same
underlying PDF interpreter (e.g., Evince/Okular are both based
on Poppler). Furthermore, if a vendor produces a “viewer”
and an “editor” version of an application, both may also

21See https://hashcat.net/hashcat/.
22Of course, it is up to the configuration of the victim’s setup (e.g., password

strength and security policy) if efficient cracking attacks are actually feasible.
23It must be noted that, in practice, this attack does not only have a technical

component. It will only work if the attacker’s bank accepts the deposit, see
https://www.irs.gov/faqs/irs-procedures/refund-inquiries/refund-inquiries-18.

9

https://www.irs.gov/pub/irs-pdf/f1040.pdf
https://github.com/SpiderLabs/Responder
https://hashcat.net/hashcat/
https://www.irs.gov/faqs/irs-procedures/refund-inquiries/refund-inquiries-18

display the same text. Of our 94 hand-crafted edge cases, 63
rendered differently when opened in different applications. Full
details are given in Table VII in the appendix. For three PDF
interpreter engines (six applications), we found a case where
certain text was displayed only in this interpreter. For other
PDF interpreters, we could not find edge cases that resulted in
a unique appearance (i.e., no other interpreter displaying the
same text), therefore we did not classify them as vulnerable.
It must, however, be noted that test cases can potentially be
chained together, which may result in getting more applications
to render unique content. This challenge is considered as future
work. Another interesting use of this technique would be
fingerprinting PDF interpreters applied in web applications to
process or preview documents based on the rendered result of
PDF file uploads.

E. Code Execution: Launch Action

In theory, by chaining PDF standard features, an attacker
can easily get code execution “by design”. We combined a
LaunchAction with an OpenAction event to achieve this goal
and launch an executable file. Surprisingly, this worked out of
the box on six applications. The .exe file was launched without
any confirmation dialog being displayed. The other tested
applications asked the user for confirmation (5 viewers) before
executing the file, denied to launch executable files (Acrobat
Reader/Pro),24 or did not support the LaunchAction at all in
the default settings (11 viewers). Three Linux based viewers
(Evince, Okular, and MuPDF) use xdg-open25 to handle the
file to be launched, thereby delegating the security decision
to a third-party application. On our Debian GNU/Linux test
system, this resulted in code execution with minimal user
interaction; by referencing an .exe from a Link annotation,
the file was executed with /usr/bin/mono, an emulator
for .NET executables, if the user clicked somewhere into the
document.26 This was also a requirement for PDFelement.
We classify these vulnerabilities as “limited” because – even
though no confirmation dialog is presented to the user –
the exploit is not fully automated.27 PDF Architect 6, which
we initially tested, was also vulnerable to code execution.
However, version 7 had removed support for the Launch action.
Finally, it must be said that, even if a confirmation dialog is
presented, attackers may apply social engineering techniques
to trick the victim into launching the file.

Because the Launch action can be considered as a danger-
ous feature, we conducted a large-scale evaluation of 294 586
PDF documents downloaded from the Internet28, in order to
research if there are any legitimate use cases at all. Of those
documents, only 532 files (0.18%) contained a Launch action.
While none of the files was classified as malicious according to

24Note that Adobe products use a blacklist of potentially “dangerous” file
extensions. However, various bypasses have been identified in the past [49].

25See https://www.freedesktop.org/wiki/Software/xdg-utils/.
26Readers may ask themselves: How often did I click in this document to

jump to a certain section? Would I anticipate this can lead to code execution?
27Note that this is the only vulnerability described in this paper that requires

a bit of user interaction and is not automatically triggered once the document
is opened, because such events are not supported by Linux based readers.

28We obtained the dataset from the Cisco Umbrella 1 Million list of domains
(see https://s3-us-west-1.amazonaws.com/umbrella-static/index.html). Instead
of crawling each website directly for PDF documents, we searched the Internet
Archive (see https://web.archive.org) for links to PDF files in each each domain
and then retrieved all linked PDF documents from the original (live) website.

the VirusTotal database,29 we conclude that the Launch action
is rarely used in the wild and its support should be removed
by PDF implementations as well as the standard.

VIII. ADDITIONAL FINDINGS

In this section, we present additional insights related to
JavaScript, Digital Rights Management, and hidden data in
PDF documents.

A. JavaScript-based Fingerprinting

While the syntax of JavaScript code embedded in PDF
documents is based on the ECMA standards [21], there is
no specification of the Document Object Model (DOM) for
PDF documents. Furthermore, the API provided by Adobe [2]
is rather descriptive than prescriptive, i.e., lacking any form
of IDL definitions. Thus, the objects and properties visible to
JavaScript differ widely between different viewers. This results
in embedded JavaScript engines of PDF viewers being easily
fingerprinted via their provided functionality. As a simple proof
of concept, we show that one can distinguish every JavaScript
supporting PDF viewer already by recursively enumerating and
counting the properties of the execution environment.

We show that the surface of the JavaScript API differs
significantly between viewers. Using a crawler written in
JavaScript we automated the enumeration of the API. The
results, containing various details on all encountered prop-
erties, are extracted as JSON. Table II shows the number
of properties grouped by their type. The greatly varying
number of available functions highlights the disparity between
implementation; this ranges from viewers only being capable
of running loops and simple arithmetic without any further API
(e.g., Evince), to viewers with only a handful of functions (e.g.,
PDF XChange Viewer: 114), to an almost complete coverage
of the Adobe API (e.g., Acrobat Reader: 6742).
Additionally, many of the identified functions are not docu-
mented in the Adobe PDF JavaScript standard and do not
yield any result on public search engines. The absence of
public knowledge of these properties indicates that they are
not intended to be used by authors of PDF documents. It is
questionable whether these hidden APIs are well tested. We
used the extracted JSON results as input for JavaScript code
which simply calls every available function in the API with
zero to four empty-string parameters. This already was enough
to crash four PDF applications, thereby enabling DoS attacks.

Identifying the application is a useful preparation stage for
attacks. It allows an attacker to send a first PDF document
to the victim that replies back (e.g., using JavaScript APIs)
which PDF viewer is used by the victim, and then exploit
the vulnerabilities of this specific viewer by sending a second
specially crafted attack PDF file to the victim.

B. Digital Rights Management

PDF documents can be “protected” based on questionable
client-side security mechanisms. For example, the specifica-
tion allows to restrict certain document capabilities, such as
printing, copying text, or editing content. Technically, a special
permissions object is added to the document which, according

29See https://www.virustotal.com/.

10

https://www.freedesktop.org/wiki/Software/xdg-utils/
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://www.virustotal.com/

Application #
fu

nc
tio

ns

#
ob

je
ct

s

#
nu

m
be

rs

#
st

rin
gs

#
bo

ol
ea

ns

Acrobat Reader DC

W
in

do
w

s

6742 320 398 492 357
Foxit Reader 1900 130 79 146 30
PDF-XChange Viewer 114 58 68 183 1
Perfect PDF Reader¹ F F F F F
PDF Studio Viewer F F F F F
Nitro Reader 1067 159 55 84 10
Acrobat Pro DC 6851 714 388 482 358
Foxit PhantomPDF 1902 130 79 146 30
PDF-XChange Editor 3529 166 219 270 61
Perfect PDF Premium¹ F F F F F
PDF Studio Pro F F F F F
Nitro Pro F F F F F
Nuance Power PDF 206 88 109 730 0
iSkysoft PDF Editor – – – – –
Master PDF Editor 1134 75 57 94 10
Soda PDF Desktop 2559 117 156 214 141
PDF Architect 2317 112 146 194 135
PDFelement – – – – –

Preview

M
ac – – – – –

Skim – – – – –

Evince

L
in

ux

Okular

MuPDF – – – – –

Chrome

W
eb

1183 73 46 87 21
Firefox – – – – –
Safari

Opera 1182 73 46 87 21
Edge – – – – –

¹ JavaScript must be enabled in settings
 No feedback channel
– JavaScript support is not available F Application crashes

TABLE II. JAVASCRIPT EXECUTION ENVIRONMENT DIFFERENCES.

to the standard, should be respected by consumer applications.
As it is completely up to the client application (i.e., the
PDF viewer) to enforce PDF permissions, they cannot be
considered as effective security mechanisms. In reality, various
PDF applications, especially on Linux, do not interpret PDF
permissions at all. To evaluate which viewers “conform to
the standard” and enforce PDF access permissions, we saved
a document using Adobe Acrobat Reader, with “printing”,
“copying text”, and “editing” disabled. The results are given
in Table III.

Of the tested 28 applications, five viewers completely
ignore the user access permissions. For another two viewers,
we could observe inconsistent behavior. For example, Safari
allows to print the document but prohibits copying its text, in
a document where both actions are prohibited.

C. Hidden Data in PDF Documents

In this section we discuss two privacy-related PDF issues –
evitable metadata and revision recovery – which allow anyone
obtaining the file to reveal potentially sensitive information.

1) Evitable Metadata in PDF Documents: In 2005, the
former US President Bush gave a speech on the war in Iraq and
published a strategy document on the White House website.

Access Permissions

Application Print Copy Edit

Acrobat Reader DC

W
in

do
w

s

–
Foxit Reader # # –
PDF-XChange Viewer # # –
Perfect PDF Reader # # –
PDF Studio Viewer # # –
Nitro Reader # # –
Acrobat Pro DC # # #
Foxit PhantomPDF # # #
PDF-XChange Editor # # #
Perfect PDF Premium # # #
PDF Studio Pro # # #
Nitro Pro # # #
Nuance Power PDF # # #
iSkysoft PDF Editor # # #
Master PDF Editor # # #
Soda PDF Desktop # # #
PDF Architect # # #
PDFelement # # #

Preview

M
ac # # –

Skim # –

Evince

L
in

ux

 –
Okular –
MuPDF – –

Chrome

W
eb

–
Firefox –
Safari # –
Opera –
Edge # # –

 Permissions ignored # Permissions honored – Not available

TABLE III. ACCESS PERMISSION ENFORCEMENT IN PDF VIEWERS.

The metadata of the PDF document revealed a Duke University
political scientist as the original author of the document [33].
Afterwards, the NSA published best practices addressing risks
involved with hidden data and metadata in PDF files [9].
This example shows that there are valid use-cases where the
author of a document prefers to remain anonymous. The issue
of unwanted metadata in various file formats is well-known
and has been discussed in [11, 46]. Even though metadata
is a feature of the PDF standard, from a privacy perspective,
creator software should avoid to include excessive metadata
by default and instead let users opt-in. Although many PDF
documents are created with non-PDF software (e.g., LaTeX,
office suites, or system printers), all professional PDF editors
offer the creation of PDF files as well. They are especially used
when designing complex PDF documents that, for example,
include forms and JavaScript. During the creation process,
these editors generate special PDF metadata objects, which
can contain sensitive information (e.g., usernames or dates).

To identify which amount of information is included by
modern applications, we created a minimal document with
each PDF editor and identified the metadata in the saved
file, which can either be found in the Document Information
Dictionary or within a Metadata Stream. The results are given
in Table IV. All tested PDF editors store the date of creation
and modification, as well as the creator software, including its
version number. Eight editors store the author’s name, derived

11

from the name of the currently (at creation time) logged in
user. We classify the level of data exposure as “full”, if a PDF
editor silently stores the author’s name (i.e., the username) and
as “limited” if only dates or creator software strings are stored.

We also performed a large-scale evaluation, of 294 586
PDF files downloaded from the Internet of which 173 112
(58%) contained an author name. Of course, we cannot make
any statement if this information was included on purpose or
by accident. The single largest creator software of documents
containing an author was Microsoft Office with 64 167 files.

2) Revision Recovery: The PDF standard allows editing
applications to modify existing documents while only append-
ing to the file and leaving the original data intact. Whenever
new content is added to the document, it is not simply
inserted into the existing body section. Instead, a new body
section is appended at the end of the PDF file containing
new objects.30 This feature is called “incremental updates”.
It enables authors, for example, to undo changes. However, it
also enables third parties to restore previous versions of the
document, which may not be desired in the context of privacy
and document security. Especially when sensitive content is
explicitly redacted/blackened in a document to be published,
this can be dangerous. Instead of deleting the underlying text
object, PDF editors may simply overlay a black rectangle,
allowing for easy “unredaction”. Poorly redacted documents
revealing classified information have been published by the
Washington Post [23], the Pentagon [41], Facebook [42],
and many others. Although this is a well-known problem
and has been researched for PDF documents generated by
various office suites [26], modern PDF editors have an explicit
“redact” function, which has not yet been comprehensively
evaluated. Therefore, we systematically analyze how document
modification and text redaction is implemented in PDF editors.

To test if sensitive information can be recovered from a
document redacted by a PDF editor, we used two PDF files –
one containing selectable text, the other containing a scanned
document (i.e., an image).31 We applied the PDF editor’s
“redact” function to draw a black rectangle over parts of the
document as well as the “delete” function to remove the text
or image. In all tested PDF editors, the “redaction” feature
was found to be secure, because the actual content of the text
or image object was modified, thereby overwriting potentially
sensitive content in the file. However, we determined potential
security issues in Acrobat Pro and and four other PDF editors,
whereby we deleted the content (text or image). The removed
content is not displayed anymore, but it is still contained in
the file and can be extracted. We do classify the level of data
exposure as “limited” in our evaluation (see Table IV), because
the “delete” function is not explicitly promoted as a secure
feature, even though users may misinterpret it as such. To
conclude, redaction tools in PDF viewers can be considered as
well-developed these days. The only identified risk is caused
by removing sensitive information without explicitly using the
redact feature of the PDF editors. This approach does not
provide the same security level and should be avoided.

30A new XRef index table and a new trailer must also be appended.
31We used the scan of a document from WWI, describing cipher techniques,

which was recently declassified by the CIA and can be downloaded from:
https://www.cia.gov/library/readingroom/docs/Secret-writing-document-one.pdf.

Application Evitable
Metadata

Revision
Recovery

Acrobat Pro DC

W
in

do
w

s

G# G#
Foxit PhantomPDF #
PDF-XChange Editor G# #
Perfect PDF Premium #
PDF Studio Pro G# #
Nitro Pro G#
Nuance Power PDF G#
iSkysoft PDF Editor G#
Master PDF Editor G# #
Soda PDF Desktop #
PDF Architect #
PDFelement G#

 Full data exposure G# Limited data exposure # No exposure

TABLE IV. HIDDEN DATA IN PDF DOCUMENTS.

IX. COUNTERMEASURES

In this section, we discuss short-term mitigations as well
as more generic in-depth countermeasures to be considered by
implementations and future versions of the PDF standard.

A. Towards an Unambiguous Specification

To counter infinite loops, constructs that can lead to cycles
or recursion, such as self-referencing objects, must be prohib-
ited in implementations (e.g., by remembering their path) and
ambiguous formulations should be removed from the standard.
A clearly stated specification would also help to prevent
content masking attacks. In practice, this is not trivial as it
would require a formal model of the PDF standard, in order to
prove that the model is cycle free, and that a certain document
can only be processed in one single way. Furthermore, it must
be noted that an unambiguous PDF specification would only
protect the document structure, not embedded data formats
such as calculator functions, XML, JavaScript, Flash, etc.

B. Resource Limitation and Sandboxing

To counter compression bombs, [45] propose to halt de-
compression once the size of the decompressed data exceeds an
upper limit. This strategy should be applied by PDF processing
applications. It must, however, be noted that a single document
can contain thousands of streams to be processed in a row.
In general, the authors think that limiting the resources to be
consumed by a single document, by sandboxing it – similar
to a tab in a modern web browser – is a good approach,
thereby preventing a malicious document to affect the whole
application or even the whole operating system.

C. Identification of Dangerous Paths

Considering Figure 1, our attacks took a path from the
top to the file handle. If the path was neither blocked nor
required user consent, the attack was successful. Many viewer
applications blocked particular paths, but failed to block all
of them, thereby allowing us to bypass existing protection
mechanisms. This reveals the need for a systematic approach
to analyze insecure features in PDF documents. Two positive
examples for blocking dangerous paths are Safari and Edge.

12

https://www.cia.gov/library/readingroom/docs/Secret-writing-document-one.pdf

These application blocked all but one path: Annotation⇒(link)
⇒ URI Action ⇒ URL. In addition, this path required user
interaction by actively clicking on a Link Annotation. This
example illustrates how a secure PDF application should work.
We would like to see more applications that restrict the danger-
ous paths systematically (e.g., by removing them completely or
by asking the user for consent). This would reliably prevent
all possible variants of URL invocation, form data leakage,
local file leakage, credential theft, form modification, file write
access, and code execution attacks discussed in this paper.

Launch Thread GoToE GoToR SubmitForm ImportData URI

532 4416 0 693 64 0 46 612
(0.18%) (1.49%) (0.00%) (0.23%) (0.02%) (0.00%) (15.82%)

TABLE V. PDF ACTIONS IN 294 586 ANALYZED DOCUMENTS.

As part of this work, we conducted a large-scale evaluation
of 294 586 publicly available PDF documents. We analyzed
these files for the various PDF action types by first uncom-
pressing all contained streams and then searching for the
patterns which define a certain action (e.g., /SubmitForm).
Results on how many documents contain a certain action are
depicted in Table V. As one can see, the only action-based PDF
feature that is widely in practice is the URI action, which can
be restricted to a Link Annotation. Insecure features instead
are rarely used in real-world PDF documents. Therefore, it
can be concluded that PDF viewers should drop support for
potentially dangerous features such as the Launch action or at
least disable them in the default settings.

D. Removing or Restricting JavaScript

JavaScript support in PDF applications is extremely varied.
The absence of a sound test suite to accompany the standard
makes it difficult for developers to create compliant and robust
implementations. In addition, the great disparity between PDF
viewers regarding their feature support complicates the effec-
tive utilization of JavaScript by authors of PDF documents.
While we could observe some viewers to borrow a stable
JavaScript engine from other projects, such as SpiderMonkey
or V8, multiple viewers provide very unstable homebrewed
solutions which can be crashed with ease. Unrelated to the
used engine, many viewers implement obscure JavaScript API
functions without providing public documentation. Neither
their purpose nor resistance to exploitation is clear.

Given that PDF is supposed to be a format for portable
documents, the need to embed a full programming language
is debatable. Many legitimate use cases of JavaScript in
PDF, such as input validation of form fields, can be covered
without a programming language, as established and proven
in HTML5.32. Any scenario exceeding the declarative markup
features of PDF should be considered to be implemented as
a web application instead of a PDF document, given that
JavaScript support and the security of modern web browsers
is well researched and robustly implemented.

32See https://html.spec.whatwg.org/multipage/input.html#input-impl-notes.

E. Implementing Privacy by Default

PDF editors should not include excessive metadata such
as usernames in the default settings. Furthermore, all editing
functions (redaction, modification, and deletion of elements)
should be performed on the actual object to prevent a third
party from recovering previous versions of the document. Such
best practices regarding metadata and text redaction should not
only be applied by PDF editors, but by all applications that
allow to export content to PDF (e.g., office suites).

X. CONCLUSION

PDF is more than a simple document format. Each standard
compatible PDF viewer must support a large set of additional
features. While PDF exploitation caused by implementation
bugs, such as buffer overflow based code execution, has been
a long-standing research area with many important results, a
security evaluation of standard PDF features has just started.

A. Systematization of PDF Processing Model

The research presented in this paper can be seen as a first
step towards a systematization of research on PDF security
within the PDF data processing model. All of our test cases
fall within the PDF specification, and mitigations against the
described attacks often consist in omitting certain standard
PDF features (e.g., the Launch action). However, research
in this direction, until now, was limited to picking some
functionality, evaluating it and in case of successful attacks,
(partially) disabling this single functionality. This will close
single security holes, but will not result in a provably secure
PDF viewer specification. Instead, we have to fully understand
the data processing model behind the PDF standard to be able
to define what secure PDF rendering means.

B. Future Research Directions

1) Printers and PDF Libraries Used by Web Applications:
Modern printers are able to natively process PDF files and
print them to paper. Some of our attack classes are highly
relevant to these embedded interpreters. Examples are DoS,
local file leakage, content masking, or code execution. Sending
a PDF document to a company employee which does render
on a desktop PDF viewer, but causes a DoS attack on network
printers, may have a large attack potential. Web applications
which parse uploaded PDF files (e.g., to generate preview
images) also may show security weaknesses. While we did
not evaluate PDF parser libraries used in printers or in web
applications, our attack vectors may still be applicable here.

2) Automatic Test Vector Generation: Automatically gener-
ating test vectors from a human-readable specification remains
an open problem in software engineering. This especially
holds for compliance tests. Even if such generation tools were
available, it would be questionable whether the test suite of
PDF files used in our evaluation could be generated by them.
Although our test cases are valid PDF documents, they are
edge cases and are not necessarily reproduced by specification
coverage [28]. We conclude that an open question for the
research community is to generate such security test cases
automatically, not only relying on compliance test vectors.

13

https://html.spec.whatwg.org/multipage/input.html#input-impl-notes

REFERENCES

[1] Access Denied. DFS Issue 55. http://textfiles.com/magazines/DFS/
dfs055.txt. May 1996.

[2] Adobe Systems. Acrobat JavaScript Scripting Guide. 2005.
[3] Adobe Systems. Adobe Supplement to the ISO 32000, BaseVersion:

1.7, ExtensionLevel: 3. 2008.
[4] Adobe Systems. Applying Actions and Scripts to PDFs. https://helpx.

adobe.com/acrobat/using/applying-actions-scripts-pdfs.html. 2019.
[5] Adobe Systems. Displaying 3D Models in PDFs. https://helpx.adobe.

com/acrobat/using/displaying-3d-models-pdfs.html. 2017.
[6] Adobe Systems. How to fill in PDF forms. https://helpx.adobe.com/

en/acrobat/using/filling-pdf-forms.html. 2019.
[7] Adobe Systems. Starting a PDF review. https : / /helpx .adobe .com/

acrobat/using/starting-pdf-review.html. 2019.
[8] Adobe Systems. XMP Specification Part 1. 2012.
[9] National Security Agency. Hidden Data and Metadata in Adobe PDF

Files: Publication Risks and Countermeasures. 2008.
[10] A. Albertini. “This PDF is a JPEG; or, This Proof of Concept is a

Picture of Cats”. In: PoC 11 GTFO 0x03 (2014). URL: https://www.
alchemistowl.org/pocorgtfo/pocorgtfo03.pdf.

[11] C. Alonso et al. Disclosing Private Information from Metadata,
Hidden Info and Lost Data. 2008.

[12] P. Bieringer. Decompression Bomb Vulnerabilities. 2001.
[13] A. Blonce, E. Filiol, and L. Frayssignes. “Portable Document Format

Security Analysis and Malware Threats”. In: BlackHat Europe (2008).
[14] Boxcryptor. Malware in Email Attachments: Which File Extensions

are Dangerous? https://boxcryptor.com/blog/post/malware-in-email-
attachments/. 2019.

[15] C. Carmony et al. “Extract Me If You Can: Abusing PDF Parsers in
Malware Detectors.” In: NDSS. The Internet Society, 2016.

[16] A. Castiglione, A. De Santis, and C. Soriente. “Security and Privacy
Issues in the Portable Document Format”. In: Journal of Systems and
Software 83.10 (2010), pp. 1813–1822.

[17] T. Claburn. Use an 8-char Windows NTLM password? https://www.
theregister.co.uk/2019/02/14/password_length/. Feb. 2019.

[18] I. Corona et al. “Lux0r: Detection of Malicious PDF-Embedded
JavaScript Code through Discriminant Analysis of API References”.
In: Proceedings of the 2014 Workshop on Artificial Intelligent and
Security Workshop. ACM. 2014, pp. 47–57.

[19] CVE Details. Adobe Acrobat Reader: Security Vulnerabilities (DoS).
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_
id-497/opdos-1/Adobe-Acrobat-Reader.html. 2006.

[20] P. Deutsch. DEFLATE Compressed Data Format Specification. 1996.
[21] ECMA. ECMAScript Language Specification, 3rd Edition. 1999.
[22] E. Ellingsen. ZIP File Quine: Droste.zip. https://web.archive.org/web/

20160130230432/http://www.steike.com/code/useless/zip-file-quine/.
[23] K. Foss. Washington Post’s scanned-to-PDF Sniper Letter More Re-

vealing Than Intended. http://web.archive.org/web/20040204141449/
http://planetpdf.com/mainpage.asp?webpageid=2434. 2002.

[24] G. Franken, T. Van Goethem, and W. Joosen. “Who Left Open
the Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie
Policies”. In: 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018, pp. 151–168.

[25] J. Gajek. “Macro Malware: Dissecting a Malicious Word Document”.
In: Network Security 2017.5 (2017), pp. 8–13.

[26] S. Garfinkel. “Leaking Sensitive Information in Complex Document
Files – and How to Prevent It”. In: IEEE Security & Privacy 12.1
(2013), pp. 20–27.

[27] V. Hamon. “Malicious URI resolving in PDF documents”. In: Journal
of Computer Virology and Hacking Techniques 9.2 (2013), pp. 65–76.

[28] Michael Harder, Benjamin Morse, and Michael D Ernst. “Specifica-
tion Coverage as a Measure of Test Suite Quality”. In: (2001).

[29] Chris Hummel. “Why Crack When You Can Pass The Hash”. In:
SANS Institute InfoSec Reading Room 21 (2009).

[30] A. Inführ. Adobe Reader PDF - Client Side Request Injection. 2018.
[31] A. Inführ. Multiple PDF Vulnerabilities – Text and Pictures on

Steroids. 2014.
[32] A. Inführ. PDF – Mess with the Web. Sept. 2015.
[33] B. Krebs. Document Security 101. http://voices.washingtonpost.com/

securityfix/2005/12/document_security_101_1.html. 2005.
[34] P. Laskov and N. Šrndić. “Static Detection of Malicious JavaScript-

bearing PDF Documents”. In: Proceedings of the 27th Annual Com-
puter Security Applications Conference. ACM. 2011, pp. 373–382.

[35] J. Magazinius, B. Rios, and A. Sabelfeld. “Polyglots: Crossing Origins
by Crossing Formats”. In: Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security. ACM. 2013,
pp. 753–764.

[36] D. Maiorca and B. Biggio. “Digital Investigation of PDF Files:
Unveiling Traces of Embedded Malware”. In: IEEE Security and
Privacy: Special Issue on Digital Forensics (2017).

[37] D. Maiorca, G. Giacinto, and I. Corona. “A Pattern Recognition
System for Malicious PDF Files Detection”. In: International Work-
shop on Machine Learning and Data Mining in Pattern Recognition.
Springer. 2012, pp. 510–524.

[38] D. Maiorca et al. “A Structural and Content-Based Approach for
a Precise and Robust Detection of Malicious PDF Files”. In: 2015
International Conference on Information Systems Security and Privacy
(ICISSP). IEEE. 2015, pp. 27–36.

[39] I. Markwood et al. “PDF Mirage: Content Masking Attack Against
Information-Based Online Services”. In: 26th USENIX Security Sym-
posium (USENIX Security 17), (Vancouver, BC). 2017, pp. 833–847.

[40] M. Marlinspike. “Divide and Conquer: Cracking MS-CHAPv2 with a
100% success rate”. In: CloudCracker [online] 29 (2012).

[41] K. McCarthy. That classified US military report’s secrets in full. https:
//theregister.co.uk/2005/05/03/military_report_secrets/. 2005.

[42] A. Nusca. Facebook settlement revealed via poor PDF redaction.
https : / /www.zdnet .com/article / facebook- settlement - revealed- via-
poor-pdf-redaction/. 2009.

[43] N. Ochoa. Pass-The-Hash Toolkit-Docs & Info. 2008.
[44] Parker, T. How to do (not so simple) form calculations. https : / /

acrobatusers .com/ tutorials /print /how- to- do- not - so- simple- form-
calculations. July 2006.

[45] G. Pellegrino et al. “In the Compression Hornet’s Nest: A Security
Study of Data Compression in Network Services”. In: 24th USENIX
Security Symposium (USENIX Security 15). 2015, pp. 801–816.

[46] C. Pesce. Document Metadata, the Silent Killer...
[47] D. Poddebniak et al. “Efail: Breaking S/MIME and OpenPGP Email

Encryption using Exfiltration Channels”. In: 27th USENIX Security
Symposium (USENIX Security 18). 2018, pp. 549–566.

[48] S. Rautiainen. “A Look at Portable Document Format Vulnerabilities”.
In: Information Security Technical Report 14.1 (2009), pp. 30–33.

[49] F. Raynal, G. Delugré, and D. Aumaitre. “Malicious Origami in PDF”.
In: Journal in Computer Virology 6.4 (2010), pp. 289–315. URL: http:
//esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf.

[50] Check Point Research. NTLM Credentials Theft via PDF Files. https:
//research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/. 2018.

[51] B. Rios, F. Lanusse, and M. Gentile. Adobe Reader Same-Origin
Policy Bypass. http://www.sneaked.net/adobe- reader- same- origin-
policy-bypass. Jan. 18, 2013.

[52] K. Selvaraj and N. Gutierrez. The Rise of PDF Malware. Tech. rep.
Symantec, 2010. URL: https : / / www. symantec . com / content / dam /
symantec/docs/security- center/white-papers/security- response- rise-
of-pdf-malware-10-en.pdf.

[53] C. Smutz and A. Stavrou. “Malicious PDF Detection Using Metadata
and Structural Features”. In: Proceedings of the 28th Annual Computer
Security Applications Conference. ACM. 2012, pp. 239–248.

[54] Aaron Spangler. WinNT/Win95 Automatic Authentication Vulnerability
(IE Bug #4). https : / / insecure . org / sploits / winnt . automatic .
authentication.html. Mar. 1997.

[55] N. Šrndić and P. Laskov. “Hidost: A Static Machine-Learning-Based
Detector of Malicious Files”. In: EURASIP Journal on Information
Security 2016.1 (2016), p. 22.

[56] Sutherland, E. First Reported PDF Virus Is Not ’Peachy’. http://web.
archive.org/web/20030617154329/http://www.osopinion.com/perl/
story/12626.html. 2001.

[57] Symantec. VBS/PeachyPDF@MM. Aug. 2001. URL: https : / / www.
symantec.com/security-center/writeup/2001-080705-1926-99.

[58] Symantec. W32/.Yourde-A. Apr. 2003. URL: https://www.symantec.
com/security-center/writeup/2003-050108-4923-99.

[59] Adobe Systems. Fast Facts. 2018. URL: https : / / www. adobe . com /
content/dam/cc/en/fast-facts/pdfs/fast-facts.pdf.

[60] Adobe Systems. PDF Reference, version 1.7. sixth edition. Nov. 2006.
[61] L. Tong et al. A Framework for Validating Models of Evasion Attacks

on Machine Learning, with Application to PDF Malware Detection.
[62] L. Tong et al. “Feature Conservation in Adversarial Classifier Evasion:

A Case Study”. In: CoRR abs/1708.08327 (2017).
[63] H. Valentin. “Malicious URI Resolving in PDF Documents”. In:

BlackHat Abu Dhabi (2012).
[64] M. West and M. Goodwin. “Same-site Cookies”. In: Internet Engi-

neering Task Force Secretariat (2016), pp. 1–14.

14

http://textfiles.com/magazines/DFS/dfs055.txt
http://textfiles.com/magazines/DFS/dfs055.txt
https://helpx.adobe.com/acrobat/using/applying-actions-scripts-pdfs.html
https://helpx.adobe.com/acrobat/using/applying-actions-scripts-pdfs.html
https://helpx.adobe.com/acrobat/using/displaying-3d-models-pdfs.html
https://helpx.adobe.com/acrobat/using/displaying-3d-models-pdfs.html
https://helpx.adobe.com/en/acrobat/using/filling-pdf-forms.html
https://helpx.adobe.com/en/acrobat/using/filling-pdf-forms.html
https://helpx.adobe.com/acrobat/using/starting-pdf-review.html
https://helpx.adobe.com/acrobat/using/starting-pdf-review.html
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://boxcryptor.com/blog/post/malware-in-email-attachments/
https://boxcryptor.com/blog/post/malware-in-email-attachments/
https://www.theregister.co.uk/2019/02/14/password_length/
https://www.theregister.co.uk/2019/02/14/password_length/
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-497/opdos-1/Adobe-Acrobat-Reader.html
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-497/opdos-1/Adobe-Acrobat-Reader.html
https://web.archive.org/web/20160130230432/http://www.steike.com/code/useless/zip-file-quine/
https://web.archive.org/web/20160130230432/http://www.steike.com/code/useless/zip-file-quine/
http://web.archive.org/web/20040204141449/http://planetpdf.com/mainpage.asp?webpageid=2434
http://web.archive.org/web/20040204141449/http://planetpdf.com/mainpage.asp?webpageid=2434
http://voices.washingtonpost.com/securityfix/2005/12/document_security_101_1.html
http://voices.washingtonpost.com/securityfix/2005/12/document_security_101_1.html
https://theregister.co.uk/2005/05/03/military_report_secrets/
https://theregister.co.uk/2005/05/03/military_report_secrets/
https://www.zdnet.com/article/facebook-settlement-revealed-via-poor-pdf-redaction/
https://www.zdnet.com/article/facebook-settlement-revealed-via-poor-pdf-redaction/
https://acrobatusers.com/tutorials/print/how-to-do-not-so-simple-form-calculations
https://acrobatusers.com/tutorials/print/how-to-do-not-so-simple-form-calculations
https://acrobatusers.com/tutorials/print/how-to-do-not-so-simple-form-calculations
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-rise-of-pdf-malware-10-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-rise-of-pdf-malware-10-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/security-response-rise-of-pdf-malware-10-en.pdf
https://insecure.org/sploits/winnt.automatic.authentication.html
https://insecure.org/sploits/winnt.automatic.authentication.html
http://web.archive.org/web/20030617154329/http://www.osopinion.com/perl/story/12626.html
http://web.archive.org/web/20030617154329/http://www.osopinion.com/perl/story/12626.html
http://web.archive.org/web/20030617154329/http://www.osopinion.com/perl/story/12626.html
https://www.symantec.com/security-center/writeup/2001-080705-1926-99
https://www.symantec.com/security-center/writeup/2001-080705-1926-99
https://www.symantec.com/security-center/writeup/2003-050108-4923-99
https://www.symantec.com/security-center/writeup/2003-050108-4923-99
https://www.adobe.com/content/dam/cc/en/fast-facts/pdfs/fast-facts.pdf
https://www.adobe.com/content/dam/cc/en/fast-facts/pdfs/fast-facts.pdf

Pages
loop

GoTo
loop

Action
loop

Calculator
functions

Outline
loop

ObjStm
loop

JavaScript
loop

Deflate
bomb

Application A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 D1 D3 E2 E3 F1 G1 G2 G3 –

Acrobat Reader DC

W
in

do
w

s

F # # / # # # # / / F / /
Foxit Reader # # / # # F F F # F F # # # # # / # / /
PDF-XChange Viewer F F F F # # # # # # # # # # # # # # # /
Perfect PDF Reader # # F F # # # # # # # # # # / # # # # /
PDF Studio Viewer # # # # # # # # # # # # # # # # # # # /
Nitro Reader # # # # F # # # # # # # # F F # / / / #
Acrobat Pro DC # # # # # # # F # # # # # # # / / F / /
Foxit PhantomPDF # # / # F F F F # F F # # # # # / # / /
PDF-XChange Editor # # # # # / / # # F F # # # # # / # / /
Perfect PDF Premium # # F F # # # # # # # # / # / # # # # /
PDF Studio Pro # # # # # # # # # # # # # # # # # # # /
Nitro Pro # # # # F # # # # # # # # F F # / / / #
Nuance Power PDF # # F F F # # F F F F F # F F # / # / F
iSkysoft PDF Editor # # # # # # # # # # # # # / / # # # # #
Master PDF Editor # # # # F # # # # # # # # # # # / # / #
Soda PDF Desktop # # # # # # # # # F F # # F F # / F F /
PDF Architect # # # # # # # # # F F # # F F # / F F /
PDFelement # # # # # # # # # # # # # F / # # # # #

Preview

M
ac # # # # # # # # F F F # # # # # # # # /

Skim # # # # # # # # F F F # # # # # # # # /

Evince

L
in

ux

F
Okular # # # # # # # # # # # # # # # # / # / F
MuPDF # # # # # # # # # # # # # # # # / / / #

Chrome

W
eb

(/) # # # # # (/) # # # # # (/) # # /
Firefox # # # (/) # # # # # # # # # # # # # # # /
Safari #
Opera # # # # (/) # # # # # (/) # # # # # (/) # # (/)
Edge #

F Application crashes / Applications hangs (/) Only current tab hangs # Not vulnerable

TABLE VI. DETAILED RESULTS FOR THE DENIAL-OF-SERVICE CLASS OF ATTACKS.

APPENDIX

A. Availability of Artifacts

We released a comprehensive test suite of malicious PDF
files which can be used by developers to test their software.
All proof of concept exploit files are available for download
from https://pdf-insecurity.org/download/pdf-dangerous-paths/
exploits-and-helper-scripts.zip, to allow for easy reproduction.

B. Evaluation Details: Denial of Service

In Table VI, full evaluation details for the DoS class of
attacks are given. Test cases (e.g., A1) follow the same naming
convention as the proof-of-concept files provided as artifacts,
which are available online.

C. Evaluation Details: Content Masking

Table VII shows detailed evaluation results for content
masking attacks. Each column corresponds to a test case
in the artifacts. Columns which did not produce ambiguous
results (i.e., render similar in all tested applications) have been
stripped for reasons of clarity.

Acknowledgements

Jens Müller was supported by the research training group
“Human Centered System Security”, sponsored by the state
of North Rhine-Westfalia. Dominik Noss was supported by
the research project “MITSicherheit.NRW” funded by the Eu-
ropean Regional Development Fund North Rhine-Westphalia
(EFRE.NRW). Funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

15

https://pdf-insecurity.org/download/pdf-dangerous-paths/exploits-and-helper-scripts.zip
https://pdf-insecurity.org/download/pdf-dangerous-paths/exploits-and-helper-scripts.zip

A
pp

lic
at

io
n

A
1

A
3

A
4

A
5

B
1

C
1

C
2

C
3

C
4

C
6

C
7

C
8

C
X

D
1

D
2

D
4

E
3

E
4

F1
F3

G
1

G
3

H
2

H
3

H
5

H
6

I3
J1

K
1

K
4

K
5

K
6

K
7

K
8

M
3

M
4

N
1

N
2

N
3

N
4

N
5

P1
P3

P4
P6

P7
P8

P9
PX

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
X

A
cr

ob
at

R
ea

de
r/

Pr
o

2
2

1
1

1
–

1
1

–
1

1
–

1
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

–
1

–
2

2
2

1
2

2
2

1
1

1
–

–
–

2
2

2
–

–
–

–
–

–
2

2
–

–
–

–
Fo

xi
t

R
ea

de
r

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
Fo

xi
t

Ph
an

to
m

PD
F

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
2

1
1

1
1

1
1

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
PD

F-
X

C
ha

ng
e

V
ie

w
er

2
2

2
2

2
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

1
1

2
1

2
1

2
1

1
2

1
2

2
2

2
2

2
1

2
2

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
PD

F-
X

C
ha

ng
e

E
di

to
r

2
2

2
1

2
2

1
1

2
1

1
2

1
2

2
2

2
–

2
2

2
2

2
1

2
1

2
1

2
2

1
2

2
2

1
2

2
1

2
2

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
N

itr
o

R
ea

de
r/

Pr
o

2
2

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
1

2
2

1
1

–
1

–
1

2
1

2
1

1
2

2
2

1
1

2
1

2
2

2
1

2
2

2
2

2
–

–
–

–
2

2
2

2
2

2
2

2
N

ua
nc

e
Po

w
er

PD
F

2
2

1
1

1
1

1
1

1
1

1
1

1
2

2
2

1
1

1
2

1
1

–
2

–
2

2
2

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
So

da
PD

F
D

es
kt

op
2

2
2

1
2

2
1

1
2

1
1

2
1

2
2

2
2

–
1

1
1

1
1

1
1

1
2

1
1

1
1

1
1

1
2

2
1

1
2

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

PD
F

A
rc

hi
te

ct
2

2
2

1
2

2
1

1
2

1
1

2
1

2
2

2
2

–
1

1
1

1
1

1
1

1
2

1
1

1
1

1
1

1
2

2
1

1
2

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Po
pp

le
r

(E
vi

nc
e/

O
ku

la
r)

2
2

2
1

2
1

–
–

1
–

–
1

–
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

2
1

2
2

2
2

2
2

2
1

2
2

2
2

–
–

2
2

2
2

2
2

2
–

–
2

2
–

–
–

–
C

hr
om

e
2

2
2

1
2

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

Fi
re

fo
x

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

1
2

–
–

1
–

1
–

–
–

–
1

–
2

2
2

–
–

1
1

2
2

2
–

–
–

–
2

2
2

2
2

2
–

–
2

2
–

–
–

–
O

pe
ra

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
1

1
2

2
1

1
1

2
2

2
2

2
2

2
2

2
2

2
–

–
–

–
Pe

rf
ec

t
PD

F
R

ea
de

r
1

1
2

–
1

1
1

2
1

1
2

1
1

1
1

1
1

1
2

2
1

2
1

1
1

1
2

1
1

1
1

2
2

2
–

–
2

1
2

2
2

1
2

–
–

2
–

2
–

2
–

2
–

–
–

2
–

–
–

Pe
rf

ec
t

PD
F

Pr
em

iu
m

1
1

2
1

2
1

1
2

1
1

2
1

1
1

1
1

2
1

2
2

1
2

1
1

1
1

2
1

1
1

1
2

2
2

–
–

2
1

2
2

2
1

–
–

–
2

–
2

–
2

–
–

–
2

2
–

–
–

–
PD

F
St

ud
io

V
ie

w
er

/P
ro

1
2

2
1

2
2

–
–

2
–

–
2

–
2

2
2

2
–

2
2

1
1

1
1

1
1

–
1

1
1

1
1

1
1

2
2

2
1

2
2

2
1

1
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
iS

ky
so

ft
PD

F
E

di
to

r
1

1
2

1
2

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

M
as

te
r

PD
F

E
di

to
r

1
1

2
1

2
1

1
1

1
1

1
1

1
1

1
1

2
2

2
2

1
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
1

1
2

2
1

1
1

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
PD

Fe
le

m
en

t
1

1
2

1
2

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

Pr
ev

ie
w

1
2

2
1

2
1

–
–

1
–

–
1

–
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

–
1

–
2

2
2

2
2

2
1

2
2

2
–

–
–

2
2

2
2

2
2

2
–

–
2

2
–

–
–

–
Sk

im
1

2
2

1
2

1
–

–
1

–
–

1
–

2
2

2
2

1
2

2
–

–
–

–
–

–
2

–
–

1
–

2
2

2
2

2
2

1
2

2
2

–
–

–
2

2
2

2
2

2
2

–
–

2
2

–
–

–
–

M
uP

D
F

1
2

2
1

2
2

1
1

2
1

1
2

1
2

2
2

2
2

2
2

1
1

2
1

2
1

2
1

2
1

1
2

2
2

1
1

2
1

2
2

2
1

1
1

2
2

2
2

2
1

1
1

1
2

2
1

1
1

1
Sa

fa
ri

1
2

2
1

2
1

–
–

1
–

–
1

–
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

–
1

–
2

2
2

2
2

2
1

2
2

2
–

–
–

2
2

2
2

2
2

2
–

–
2

2
–

–
–

–
E

dg
e

1
1

2
–

2
–

–
–

–
–

–
–

–
2

2
2

2
2

2
2

2
2

–
–

–
–

–
–

2
2

2
2

2
2

1
1

2
1

2
2

2
2

2
–

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
Fi

rs
t

te
xt

is
di

sp
la

ye
d

2
Se

co
nd

te
xt

is
di

sp
la

ye
d

–
N

o
te

xt
is

di
sp

la
ye

d

TA
B

L
E

V
II

.
D

E
TA

IL
E

D
R

E
S

U
LT

S
F

O
R

T
H

E
C

O
N

T
E

N
T

M
A

S
K

IN
G

C
L

A
S

S
O

F
A

T
TA

C
K

S
.

16

	Introduction
	Powerful Document Features
	Security and Privacy Threats
	Responsible Disclosure
	Contributions

	PDF Basics
	Basic Blocks
	PDF Forms
	Actions & JavaScript
	PDF File Handles

	Related Work
	Attacker Model
	Actions of the Victim
	Attacker's Capabilities
	Winning Condition

	Methodology
	Attacks
	Denial-of-Service
	Infinite Loop
	Deflate Bomb

	Information Disclosure
	URL Invocation
	Form Data Leakage
	Local File Leakage
	Credential Theft

	Data Manipulation
	Form Modification
	File Write Access
	Content Masking

	Code Execution: Launch Action

	Evaluation
	Denial-of-Service
	Denial-of-Service
	Infinite Loop
	Deflate Bomb

	Information Disclosure
	URL Invocation
	Form Data Leakage
	Local File Leakage
	Credential Theft

	Data Manipulation
	Form Modification
	File Write Access
	Content Masking

	Code Execution: Launch Action

	Additional Findings
	JavaScript-based Fingerprinting
	Digital Rights Management
	Hidden Data in PDF Documents
	Evitable Metadata in PDF Documents
	Revision Recovery

	Countermeasures
	Towards an Unambiguous Specification
	Resource Limitation and Sandboxing
	Identification of Dangerous Paths
	Removing or Restricting JavaScript
	Implementing Privacy by Default

	Conclusion
	Systematization of PDF Processing Model
	Future Research Directions
	Printers and PDF Libraries Used by Web Applications
	Automatic Test Vector Generation

	Appendix
	Availability of Artifacts
	Evaluation Details: Denial of Service
	Evaluation Details: Content Masking

