
ar
X

iv
:2

00
3.

12
00

6v
3

 [
cs

.I
T

]
 6

 A
pr

 2
02

1

Linearly Self-Equivalent APN Permutations in Small

Dimension

Christof Beierle, Marcus Brinkmann, Gregor Leander

Ruhr University Bochum, Bochum, Germany

Abstract

All almost perfect nonlinear (APN) permutations that we know to date admit
a special kind of linear self-equivalence, i.e., there exists a permutation G in their
CCZ-equivalence class and two linear permutationsA and B, such that G◦A = B◦G.
After providing a survey on the known APN functions with a focus on the existence
of self-equivalences, we search for APN permutations in dimension 6, 7, and 8 that
admit such a linear self-equivalence. In dimension six, we were able to conduct an
exhaustive search and obtain that there is only one such APN permutation up to
CCZ-equivalence. In dimensions 7 and 8, we performed an exhaustive search for
all but a few classes of linear self-equivalences and we did not find any new APN
permutation. As one interesting result in dimension 7, we obtain that all APN
permutation polynomials with coefficients in F2 must be (up to CCZ-equivalence)
monomial functions.

Keywords: APN permutations, differential cryptanalysis, self-equivalence, au-
tomorphism, CCZ-equivalence, exhaustive search.

1 Introduction

Differential cryptanalysis [4] certainly belongs to the most important attack vectors to
consider when designing a new symmetric cryptographic primitive. The basic idea of this
attack is that the adversary chooses an input difference a in the plaintext space and eval-
uates the encryption of pairs of values (x, x+a) for a plaintext x. The goal is to predict
the output difference of the two ciphertexts with a high probability. Vectorial Boolean
functions (also known as S-boxes) that offer the best resistance against differential at-
tacks are called almost perfect nonlinear (APN). More precisely, a function F : Fn

2 → F
m
2

This work was funded by Deutsche Forschungsgemeinschaft (DFG); project number 411879806 and
by DFG under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

This is the version accepted to IEEE Transactions on Information Theory. DOI of the final published
version: 10.1109/TIT.2021.3071533.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

1

http://arxiv.org/abs/2003.12006v3
https://dx.doi.org/10.1109/TIT.2021.3071533

is called APN if, for every b ∈ F
m
2 and non-zero a ∈ F

n
2 , the equation F (x)+F (x+a) = b

has at most two solutions. We know some instances and constructions of APN functions.
However, much less is known if we require F to be a permutation.

For odd values of n, we know infinite families of APN permutations and in particular,
APN permutations exist for every odd value of n. For even values of n we only know
one sporadic example up to CCZ-equivalence, which is defined for n = 6 (see [11]).
We refer to this permutation as “Dillon’s permutation” henceforth. Exhaustive search
for APN permutations is only possible as long as n is small because the size of the
search space increases rapidly. So far, an exhaustive search for APN permutations has
only been conducted up to n = 5 (see [9]). Since already for n = 6, the number of
permutations in F

n
2 is orders of magnitude higher than for n = 5 (i.e., 64! ≈ 2296 for

n = 6 compared to 32! ≈ 2117.7 for n = 5), the search space has to be restricted.
Although restricting the search space is a natural idea, the question remains how to do
so. Our idea is to only consider the class of permutations that we conjecture to contain all
possible cases. Namely, we restrict to the class of permutations that admit a non-trivial
linear self-equivalence, i.e., those permutations F for which there exist non-trivial linear
permutations A and B such that F ◦A = B ◦F . Indeed, we observe that all known APN
permutations admit, up to CCZ-equivalence, such a non-trivial linear self-equivalence.

1.1 Our Contribution

In the first part of this work, we provide a survey on all APN functions known from the
literature and observe that they all admit a non-trivial automorphism. An automorphism
of a vectorial Boolean function F : Fn

2 → F
m
2 is an affine permutation in F

n
2 × F

m
2 that

leaves the set {(x, F (x)) | x ∈ F
n
2} invariant. For all the known APN permutations

F : Fn
2 → F

n
2 , we show that there exists an automorphism of a special kind, i.e., there

exists a permutation G which is CCZ-equivalent to F that admits a non-trivial linear
self-equivalence. Since a linear self-equivalence is a special kind of automorphism, we also
call it an LE-automorphism. We conjecture that the CCZ-equivalence class of any APN
permutation contains a permutation with a non-trivial LE-automorphism (Conjecture 1).

Based on this conjecture, our goal is to conduct an exhaustive search for all such
APN permutations in small dimension. As a first step, we classify all possible LE-
automorphisms that need to be considered in such a search. Since an LE-automorphism
can be represented by a tuple (A,B), where A and B are invertible matrices with co-
efficients in F2, we need to reduce the number of such tuples in order to conduct an
efficient search. The most important observation here is that we only need to consider
matrices up to similarity and identical cycle type. Surprisingly, our reductions lead to
a very small number of tuples, i.e., 17 for n = 6, 27 for n = 7, and 32 for n = 8. We
stress that this reduction is valid for any kind of search among the permutations with
non-trivial LE-automorphisms; it is not restricted to APN permutations.

We then use this classification of LE-automorphisms to search for APN permutations
in dimension n ∈ {6, 7, 8}. By using the APN property, we can exclude some of the
LE-automorphisms immediately (Propositions 4 and 5). We handled the rest using a
recursive tree search (Algorithm 1). For n = 6, we were able to conduct an exhaustive

2

search for the APN permutations with non-trivial LE-automorphisms and conclude that
only Dillon’s permutation remains. In other words, if Conjecture 1 is true, this would
be the only APN permutation in dimension 6 up to CCZ-equivalence. For n = 7, we
found all the APN monomial permutations, but no more CCZ-equivalence classes. For
n = 8, we did not find APN permutations. Since we computationally handled all but
a few missing cases of possible LE-automorphisms for n ∈ {7, 8}, we conclude that if
new CCZ-equivalence classes of APN permutations with non-trivial LE-automorphisms
exist, those automorphisms have to be of a special form (Theorem 3 and 4). Our
search for n = 7 completely covers the special case of shift-invariant permutations,
which correspond to all permutation polynomials in F27 with coefficients in F2 (there
are 20,851,424,802,623,573,443,244,703,744,000 of those, see [28] and OEIS sequence
A326932 [42]). We obtain that the only shift-invariant APN permutations in dimension
7 are monomial functions.

Our results can be useful for future searches for APN permutations. In particular,
Theorem 3 and Theorem 4 provide significantly reduced search spaces for new APN
permutations in dimension n = 7 and n = 8. If Conjecture 1 holds, taking the known
APN monomial permutations and conducting an exhaustive search over those remaining
search spaces would be sufficient in order to classify all APN permutations in dimension
n ∈ {7, 8} up to CCZ-equivalence.

2 Preliminaries

We denote by N = {1, 2, 3, . . . } the set of natural numbers and by Z the set of integers.
Let F2 = {0, 1} be the field with two elements and, for n ∈ N, let Fn

2 be the n-dimensional
vector space over F2. Let GL(n,F2) denote the group of invertible n × n matrices over
F2 and let AGL(n,F2) denote the group of affine permutations on F

n
2 , i.e., the set of

functions of the form x 7→ Lx + b for L ∈ GL(n,F2) and b ∈ F
n
2 . Throughout this

paper, we will use matrices and the linear functions that they represent interchangeably.
In other words, for an n × n matrix L over F2, we simply use the symbol L for the
function x 7→ Lx. We denote by In the identity matrix in GL(n,F2). We denote a block-
diagonal matrix consisting of blocks M1,M2, . . . ,Mk by M1⊕M2⊕ · · · ⊕Mk, where M1

corresponds to the block in the upper left corner of the block-diagonal matrix. For a
matrix M ∈ GL(n,F2), we denote by ord(M) the multiplicative order of M , i.e., the
smallest positive integer i such that M i = In. Similarly, for a vector x ∈ F

n
2 , we denote

by ordM (x) the smallest positive integer i for which M i(x) = x. It is well known that
ordM (x) | ord(M). Indeed, suppose that ord(M) = r + k · ordM (x) for a non-negative
integer r < ordM (x). We then have x = Mord(M)(x) = M r+k·ordM (x)(x) = M r(x),
implying that r = 0. Recall also that the minimal polynomial of a matrix M over F2 is
the polynomial p ∈ F2[X] of least degree such that p(M) = 0.

For a polynomial q = Xn+qn−1X
n−1+ · · ·+q1X+q0 ∈ F2[X], the companion matrix

3

of q is defined as the n× n matrix

Comp(q) :=

0 q0
1 0 q1

. . .
. . .

...
1 0 qn−2

1 qn−1

.

The matrix Comp(q) is invertible if and only if q0 = 1.
A vectorial Boolean function F : Fn

2 → F
n
2 can be uniquely expressed as a multivariate

polynomial in F
n
2 [X1, . . . ,Xn]/(X

2
1 +X1, . . . ,X

2
n +Xn) via the algebraic normal form:

F (x1, . . . , xn) =
∑

u∈Fn
2

au

∏

i∈{1,...,n}

xui

i

 , au ∈ F

n
2 .

The algebraic degree of F is defined as max{wt(u) | au 6= 0, u ∈ F
n
2} where wt(u) denotes

the Hamming weight of u. We recall that the Hamming weight of a vector u ∈ F
n
2 is

defined as the number of its non-zero coordinates. The function F is called affine if
it is of algebraic degree at most 1 and it is called quadratic if it is of algebraic degree
2. The finite field F2n with 2n elements is isomorphic to F

n
2 as a vector space and

any function F : Fn
2 → F

n
2 can also be uniquely represented as a univariate polynomial

f :=
∑2n−1

i=0 ωiX
i in F2n [X]/(X2n +X), which is called the univariate representation of

F . We then have
F : F2n → F2n , x 7→ f(x).

Since this paper focuses on APN functions, we first recall the definition.

Definition 1. [38] A vectorial Boolean function F : Fn
2 → F

n
2 is called almost perfect

nonlinear (APN) if, for every a ∈ F
n
2 \ {0}, b ∈ F

n
2 , the equation F (x) + F (x + a) = b

has at most 2 solutions for x ∈ F
n
2 .

Let F,G : Fn
2 → F

n
2 be vectorial Boolean functions in dimension n. There are several

well-known equivalence relations on vectorial Boolean functions that preserve the APN
property and are therefore quite useful for classifying vectorial Boolean functions. We say
that G is linear equivalent to F if there exist A,B ∈ GL(n,F2) such that F ◦A = B ◦G.
In the more general case when A and B are in AGL(n,F2), G and F are called affine
equivalent. We say that G is extended-affine equivalent (or EA-equivalent for short) to
F if there exist A,B ∈ AGL(n,F2) and an affine, not necessarily invertible, function
C : Fn

2 7→ F
n
2 such that F ◦ A = B ◦ G + C. Finally, we consider the notion of CCZ-

equivalence [20, 27]. Let ΓF := {(x, F (x))⊤ | x ∈ F
n
2} be the graph of F , where (x, F (x))⊤

denotes the transposition of (x, F (x)) to a column vector of length 2n. The functions F
and G are called CCZ-equivalent if there exists σ ∈ AGL(2n,F2) such that ΓG = σ(ΓF).
The above notions of equivalence are ordered by generality with CCZ-equivalence being
the most general. In other words, two linear-equivalent functions are also (extended-)

4

affine equivalent and two (extended-) affine-equivalent functions are also CCZ-equivalent.
The latter can be seen by taking

σ =

[
A−1 0

B−1CA−1 B−1

]
∈ AGL(2n,F2).

Note that CCZ-equivalence is strictly more general than EA-equivalence (combined with
taking inverses in the case of permutations) [20].

The automorphism group (see [23, Definition 13]) of a function F : Fn
2 → F

n
2 is defined

as
Aut(F) := {σ ∈ AGL(2n,F2) | ΓF = σ(ΓF)}.

Analogously, we define the subgroups AutAE and AutLE as follows:

AutAE(F) :=

{
σ ∈ Aut(F) | σ =

[
A 0
0 B

]
for A,B ∈ AGL(n,F2)

}
,

AutLE(F) :=

{
σ ∈ Aut(F) | σ =

[
A 0
0 B

]
for A,B ∈ GL(n,F2)

}
.

We have {id} ⊆ AutLE(F) ⊆ AutAE(F) ⊆ Aut(F) ⊆ AGL(2n,F2), where id de-
notes the identity mapping in AGL(2n,F2). The automorphism group of F , resp., the
subgroups AutAE(F) and AutLE(F) contain non-trivial elements if and only if F is self-
equivalent with respect to the corresponding equivalence relation. For instance,

[
A 0
0 B

]
∈ Aut(F) ⇔ F ◦A = B ◦ F.

Self-equivalences of vectorial Boolean functions in small dimension have already been
considered in the PhD thesis [29]. Note that if F : Fn

2 → F
n
2 and G : Fn

2 → F
n
2 are CCZ-

equivalent, resp., affine equivalent, resp., linear equivalent, we have Aut(F) ∼= Aut(G),
resp., AutAE(F) ∼= AutAE(G), resp., AutLE(F) ∼= AutLE(G), where ∼= denotes that the
corresponding groups are isomorphic. Therefore, it is enough to consider only one single
representative in each equivalence class when determining the automorphism groups.
Throughout this paper, we are especially interested in APN permutations F with a
non-trivial subgroup AutLE(F). If |AutLE(F)| > 1, we say that F has a non-trivial
LE-automorphism (or a non-trivial linear self-equivalence).

3 Automorphisms of Some (APN) Functions

It is well known (see [10]) that the automorphism group of a function F : F2n → F2n

can be computed by considering the associated linear code CF for F with parity-check
matrix

1 1 1 . . . 1
0 a0 a1 . . . a2

n−2

F (0) F (a0) F (a1) . . . F (a2
n−2)

 ,

5

where a is a primitive element of F∗
2n , and computing its automorphism group, e.g., with

the algorithm presented in [34]. However, in this part of the paper we are only interested
in determining whether Aut(F), resp., AutLE(F) contains a non-trivial element, especially
for the case of an APN function F . In the following, we study some interesting classes
of functions and sporadic APN instances.

3.1 Quadratic Functions

A lot of families of functions studied in the literature are CCZ-quadratic, i.e., they
are CCZ-equivalent to a quadratic function. If quadratic functions are represented as
mappings from the finite field F2n to itself, their polynomial representation only contains
(besides a constant monomial in case that 0 is not mapped to 0) monomials of the
form x2

i

or x2
i+2j with non-zero coefficients. One reason that they are of significant

interest is because studying them is often easier than studying general functions. For
instance, if F : Fn

2 → F
n
2 is a quadratic function and α ∈ F

n
2 , the first-order derivative

x 7→ F (x)+F (x+α) is affine. The following is a well-known result (see e.g. [8, Proposition
1] or [33, Theorem 4]).

Proposition 1. Let F : Fn
2 → F

n
2 be a quadratic function. Then, |Aut(F)| ≥ 2n.

Proof. Let α ∈ F2n \{0}. Since F is quadratic, F (x)+F (x+α)+F (α)+F (0) is linear.
Let us denote this function by Lα. The function defined as

σα : F
2n
2 → F

2n
2 , (x, y) 7→ (x+ α, y + Lα(x) + F (α) + Lα(α) + F (0))

belongs to Aut(F). Indeed, it is easy to see that σα is an affine permutation. We further
have

σα(ΓF) = σα{(x, F (x))} = {(x+ α,F (x) + Lα(x) + F (α) + Lα(α) + F (0))}

= {(x, F (x+ α) + Lα(x) + F (α) + F (0))} = {(x, F (x))} = ΓF .

This implies that Aut(F) contains 2n − 1 non-trivial elements. Since id is trivially
contained in Aut(F), this concludes the proof.

Many of the known APN functions are CCZ-quadratic, for instance the Gold func-
tions x 7→ x2

i+1 for gcd(i, n) = 1 (see [35, 37]), the two functions from F210 and F212 to
itself defined in [32], and the classes defined in [6, 7, 13, 14, 16, 17, 18, 19, 21, 26, 44, 50].
Indeed, to the best of our knowledge, at the time of writing only a single APN function
is known which is not CCZ-equivalent to either a quadratic or a monomial function
(see [9, 33]). We refer to [25, Sections 11.4–11.5], Table 1.6 in the PhD thesis [1], and
to [15] for a recent summary of the known infinite classes of APN functions. In [15],
the authors proved the CCZ-equivalence between some of the known families and thus
provided a more reduced list.

We leave it as an open question whether for a (quadratic) function F with a non-
trivial automorphism in Aut(F) there always exists a representative G in the CCZ-
equivalence class of F with a non-trivial automorphism in AutLE(G). However, we will
see in the following that for many APN functions, such a representative does exist in
the CCZ-equivalence class.

6

3.2 Shift-Invariant Functions

The shift-invariant functions F : Fn
2 → F

n
2 are exactly those for which

[
Comp(Xn + 1) 0

0 Comp(Xn + 1)

]
∈ AutLE(F).

If F is represented as a function from F2n to F2n in the normal basis representation, this
automorphism corresponds to squaring, i.e., for all x ∈ F2n , F (x2) = F (x)2 (see [41]).
Therefore, the shift-invariant functions correspond to the polynomials with coefficients
in F2.

Many of the known families of APN functions belong to the class of shift-invariant
functions. Those include all the APN monomial functions x 7→ xd and also the functions
defined in [12, 18, 20]. For the latter, this is because Trm(x2) = Trm(x)2, where

Trm(x) =
∑ n

m
−1

i=0 x2
mi

denotes the trace function from F2n to a subfield F2m .
In [47], a classification of quadratic shift-invariant APN functions over Fn

2 for n ≤ 9
is provided.

3.3 APN Binomial (and some Multinomial) Functions

For monomial functions, a non-trivial LE-automorphism can easily be given in terms
of multiplication with finite field elements. In particular, if x ∈ F2n , then, for any
α ∈ F2n \ {0}, we have (αx)d = αdxd.

The binomial functions F : F2n → F2n are those that can be written as F (x) =
xa + ωxb, where a, b ∈ Z and ω ∈ F2n . For special choices of a and b, we can also easily
give an LE-automorphism as follows.

Proposition 2. Let F : F2n → F2n , x 7→ xa + ωxb be a binomial function. Let α ∈ F2n

be an element of order d, where d|(b− a). Then

[
α 0
0 αa

]
∈ AutLE(F).

In particular, if gcd(b− a, 2n − 1) 6= 1, the group AutLE(F) is non-trivial.

Proof. We have (αx)a + ω(αx)b = αaxa + ωαbxb = αa(xa + ωαb−axb), and αb−a = 1
because ord(α)|(b − a).

Example 1 (APN function1 defined in Theorem 2 of [32]). Let u ∈ F
∗
210 be an element

of order 3. The function F : F210 → F210 , x 7→ x3 + ωx36 is APN if and only if ω ∈
{uF∗

25} ∪ {u
2
F
∗
25}.

Since gcd(36−3, 210−1) = 33, a non-trivial automorphism in AutLE(F) can be given
by an element of order 33.

1recently classified into an infinite family, see [21]

7

Example 2 (APN functions defined in Theorem 1 of [17]). Let s and k be positive integers
with gcd(s, 3k) = 1 and let t ∈ {1, 2}, i = 3− t. Let further a = 2s+1 and b = 2ik+2tk+s

and let ω = α2k−1 for a primitive element α ∈ F
∗
23k

. If gcd(23k − 1, (b − a)/(2k − 1)) 6=

gcd(2k − 1, (b− a)/(2k − 1)), the function F : F23k → F23k , x 7→ xa + ωxb is APN.
If gcd(23k − 1, (b− a)/(2k − 1)) 6= 1, the conditions of Proposition 2 are fulfilled and

a non-trivial automorphism can be given by an element of order gcd(23k − 1, (b − a)).
Otherwise, gcd(2k−1, (b−a)/(2k−1)) 6= 1 by assumption and, since (2k−1)(2k+22k+1) =
23k−1, also gcd(23k−1, (b−a)) 6= 1. Therefore, a non-trivial automorphism in AutLE(F)
always exists.

Example 3 (APN functions defined in Theorem 2 of [17]). Let s and k be positive integers
such that s ≤ 4k − 1, gcd(k, 2) = gcd(s, 2k) = 1, and i = sk mod 4, t = 4 − i. Let

further a = 2s+1 and b = 2ik+2tk+s and let ω = α2k−1 for a primitive element α ∈ F
∗
24k

.

Then, the function F : F24k → F24k , x 7→ xa + ωxb is APN.
We will show that b − a mod 5 = 0. Then, since (24 − 1)|(24k − 1), a non-trivial

automorphism can be given. Let m ∈ N be such that i = 4m+ sk. Indeed, the following
equalities hold modulo 5:

b− a = 2ik + 2tk+s − 2s − 1 = 2(4m+sk)k + 2tk+s − 2s − 1

= (2k
2

)s + 2tk+s − 2s − 1 = 2tk+s − 1,

where the last equality is fulfilled because k is odd and thus, 2k
2

= 2 mod 5. It is left
to show that 2s2tk = 1 mod 5. This can easily be obtained by considering the four
different cases of s ∈ {1, 3} mod 4, k ∈ {1, 3} mod 4. In particular, we use the fact
that tk + s = (4− i)k + s, which is equal to (4− sk)k + s mod 4.

Extension to Multinomial Functions Proposition 2 can easily be generalized to
multinomial functions as follows.

Proposition 3. Let F : F2n → F2n , x 7→
∑k−1

i=0 ωix
ai with ωi ∈ F2n and ai ∈ {0, . . . , 2

n−
1}. Let α ∈ F2n be an element of order d, such that, for all i ∈ {0, . . . , k−1}, d|(ai−a0).
Then, [

α 0
0 αa0

]
∈ AutLE(F).

In particular, if gcd(a1 − a0, a2 − a0, . . . , ak−1 − a0, 2
n − 1) 6= 1, the group AutLE(F) is

non-trivial.

Proof. We have

k−1∑

i=0

ωi(αx)
ai =

k−1∑

i=0

ωiα
aixai = αa0

k−1∑

i=0

ωiα
ai−a0xai = αa0

k−1∑

i=0

ωix
ai .

8

Example 4 (APN functions defined in Theorem 1 of [6]). Let k and s be odd integers with
gcd(k, s) = 1. Let b ∈ F22k which is not a cube, c ∈ F22k \F2k , and, for i ∈ {1, . . . , k−1},
let ri ∈ F2k . Then, the function

F : F22k → F22k , x 7→ bx2
s+1 + b2

k

x2
k+s+2k + cx2

k+1 +

k−1∑

i=1

rix
2i+k+2i

is APN.
Recall that 22k − 1 = 0 mod 3. To show that F admits a non-trivial automorphism

according to Proposition 3, we see that

(i) 2k+s + 2k − 2s − 1 = 0 mod 3, and

(ii) for all i ∈ {0, 1, . . . , k − 1}, we have 2i+k + 2i − 2s − 1 = 0 mod 3.

Example 5 (APN functions defined in Theorem 2.1 of [7]). Let k and s be positive
integers such that k+ s = 0 mod 3 and gcd(s, 3k) = gcd(3, k) = 1. Let further u ∈ F

∗
23k

be primitive and let v,w ∈ F2k with vw 6= 1. Then, the function

F : F23k → F23k , x 7→ ux2
s+1 + u2

k

x2
2k+2k+s

+ vx2
2k+1 + wu2

k+1x2
k+s+2s

is APN.
Recall that 23k − 1 = 0 mod 7. To show that F admits a non-trivial automorphism

according to Proposition 3, we show that

(i) 22k + 2k+s − 2s − 1 = 0 mod 7, and

(ii) 22k + 1− 2s − 1 = (2k)2 − 2s = 0 mod 7, and

(iii) 2k+s + 2s − 2s − 1 = 2k+s − 1 = 0 mod 7.

Case (iii) holds because k + s = 0 mod 3 and thus, 2k+s = 1 mod 7. Case (ii) can
be deduced by considering the two cases of k = 1 mod 3 and k = 2 mod 3 separately.
Case (i) immediately follows from (ii) and (iii).

3.4 Generalized Butterflies

It was shown in [40] that the sporadic APN permutation in dimension six (i.e., Dillon’s
permutation) can be decomposed into a special structure.

Definition 2 (Generalized Butterfly [22]). Let n ∈ N be odd and let R : F2n×F2n → F2n

be such that, for all fixed y ∈ F2n , the mapping x 7→ R(x, y) is a permutation of F2n .
Then, an open generalized butterfly is defined as a permutation

HR : F2n × F2n → F2n × F2n , (x, y) 7→
(
R(y,R−1(x, y)), R−1(x, y)

)
.

If R(x, y) = (x + αy)3 + βy3 for some α, β ∈ F2n , β 6= 0, HR is called an open
generalized butterfly with exponent 3 and it is denoted by Hα,β .

9

Dillon’s permutation is affine equivalent to Hα,β for n = 3, β = 1 and an α ∈ F
∗
2n

with Tr(α) = 0. More generally, open generalized butterflies with exponent 3 are APN
for n = 3, α 6= 0 with Tr(α) = 0 and β ∈ {α3 + α,α3 + α−1} and they are never
APN for other odd values of n. Even when generalizing to Gold-like exponents, i.e., for
R(x, y) = (x+ αy)2

i+1 + βy2
i+1 with gcd(i, n) = 1, the open generalized butterflies HR

are never APN for odd values of n 6= 3, see [24].
Let ζ denote a non-zero element of the finite field F2n . For

A =

[
ζ3 0
0 ζ

]
,

we have Hα,β ◦ A = A ◦ Hα,β for any α, β ∈ F2n , β 6= 0. Thus, there always exists a
non-trivial element in AutLE(Hα,β).

For n = 3, it is easy to verify that all matrices A of the structure above for ζ 6= 1 are
similar to Comp(X6 +X5 +X4 +X3 +X2 +X +1). This corresponds to Class 5 of the
possible LE-automorphisms for 6-bit permutations (see Corollary 1), which we deduce
later.

3.5 Known APN Functions in Small Dimension

Up to dimension n = 5, all APN functions are CCZ-equivalent to monomial functions,
see [9].

In [33], for dimensions n ∈ {6, 7, 8}, Edel and Pott constructed new APN functions
up to CCZ-equivalence from the APN functions known at that time (see [30]) by the
so-called “switching construction”. In particular, they listed 14 CCZ-inequivalent APN
functions in dimension six, 19 in dimension seven, and 23 in dimension eight. All but
one of them (see [33, Theorem 11]) are either monomial or quadratic functions. For
the function inequivalent to monomial functions and quadratic functions, the authors
of [33] computed the order of the automorphism group,2 which is 8. Note that this is
the only known example of an APN function that is not CCZ-equivalent to either a
monomial function or a quadratic function. This function was discovered independently
by Brinkmann and Leander in [9]. Note that in the recent works [13, 14], the authors
have found a new class of quadratic APN functions which lead to new APN functions
in dimension 9. In [13], it was shown that some of the APN functions from [33] can be
classified into an infinite class. The 10-bit APN functions defined in [32] have recently
been classified into an infinite family as well [21].

In [48, 49], the authors found 471 new CCZ-inequivalent quadratic APN functions in
dimension seven, and 8157 new CCZ-inequivalent quadratic APN functions in dimension
eight. In [45], the authors presented 10 new CCZ-inequivalent quadratic APN functions
in dimension eight.3 In [47], two new quadratic shift-invariant APN functions in dimen-

2In [33], this notion corresponds to the multiplier group M(GF) of the development of GF .
3In [45], the authors also claimed to have found 285 CCZ-inequivalent APN functions in dimension

seven. However, their computational results are not available anymore, so we do not know whether those
functions contain new APN functions.

10

sion 9 have been found. We also refer to the Tables in https://boolean.h.uib.no/

mediawiki/index.php/Tables for an up-to-date list of the known APN functions.
To the best of our knowledge, the functions mentioned above include all the sporadic

APN functions known at the time of submission of this manuscript (i.e., March 2020).

3.6 APN Permutations

One of the most interesting problems in this area concerns the construction of APN
permutations. For instance, it is natural to apply a permutation when substituting n-bit
strings by other n-bit strings, as it is usually done in symmetric cryptographic algorithms.
Then, APN permutations offer the best resistance against differential cryptanalysis.
Note that the property of being a permutation is not invariant under CCZ-equivalence.
Actually, not many examples of APN permutations are known. To the best of our
knowledge, the CCZ-equivalence classes which are, at the time of submission of this
manuscript, known to contain APN permutations fall in one of the following three cases,
where the first two cases define infinite families of functions, and the third one is a
sporadic example which is not classified into an infinite family yet.4

1. The CCZ-equivalence classes represented by APN monomial functions for n odd.

2. The CCZ-equivalence classes represented by the quadratic functions F : F23k 7→

F23k , x 7→ x2
s+1+ωx2

ik+2tk+s

, where s, k are positive integers with k odd, gcd(k, 3) =
gcd(s, 3k) = 1, i = sk mod 3, t = 3 − i, and ω ∈ F

∗
23k

with order 22k + 2k + 1
(Corollary 1 of [17]).

3. The CCZ-equivalence class of the quadratic (non-invertible) function F : F26 7→
F26 , x 7→ x3 + αx24 + x10, where α is an element in F

∗
26 with minimal polynomial

X6+X4+X3+X+1 (i.e., the CCZ-equivalence class of Dillon’s permutation [11]).

The authors of [17] showed that the functions in Class 2 are CCZ-inequivalent to
Gold functions when k ≥ 4. In [46], Yoshiara proved that if a quadratic APN function
is CCZ-equivalent to a monomial function, it must be EA-equivalent to a Gold function.
Therefore, the functions in Class 2 are CCZ-inequivalent to any monomial function when
k ≥ 4.

For each of the different CCZ-equivalence classes coming from the above cases,
one can give a representative which is a permutation and admits a non-trivial LE-
automorphism. Indeed, the monomial functions are shift-invariant and a non-trivial
LE-automorphism can be given as described in Section 3.2. Class 2 defines a special
case of Theorem 1 in [17], which was covered in Example 2 above. Finally, Class 3 is
covered by the generalized butterfly structure with exponent 3, described in Section 3.4.

4In the GitHub repository [39], Perrin implements an algorithm that checks whether an APN function
is CCZ-equivalent to a permutation. We tested all cases of APN functions that come from infinite classes
in dimension 7 and 9 (see the list in [43] and the new class from [13] and [14]), all the cases for dimension
7 listed in [33], and the two functions in dimension 9 found in [47]. Besides the monomial functions,
none of them are CCZ-equivalent to a permutation.

11

https://boolean.h.uib.no/mediawiki/index.php/Tables
https://boolean.h.uib.no/mediawiki/index.php/Tables

A Conjecture on the Automorphisms of APN Functions and Permutations

For all of the known APN functions, the automorphism group is non-trivial (recall that
this is clear for functions CCZ-equivalent to quadratic and monomial functions and that
the only known APN function which is not CCZ-equivalent to either a quadratic or a
monomial function has an automorphism group of order 8). Moreover, for all known
APN permutations, a CCZ-equivalent permutation G can be given with |AutLE(G)| > 1.
Therefore, we formulate the following conjecture.

Conjecture 1. For an APN function F : Fn
2 → F

n
2 , we have |Aut(F)| > 1. More-

over, if F is an APN permutation, there exists a CCZ-equivalent permutation G with
|AutLE(G)| > 1.

In the spirit of this conjecture, we are going to search for APN permutations with
non-trivial LE-automorphisms in small dimensions. In the remainder of this paper, we
describe our method for carrying out this search.

Remark 1. Intuitively, the property of having a non-trivial automorphism group should
be quite rare among all the n-bit to n-bit functions for a fixed dimension n ≥ 6. We
took 10,000 functions from F

6
2 to F

6
2 sampled uniformly at random and computed their

automorphism groups. All of them were trivial.

Remark 2. The size of the group of LE-automorphisms is invariant under linear equiv-
alence, but not under affine equivalence. In particular if |AutLE(F)| > 1 for a function
F : Fn

2 → F
n
2 , then there might exist a constant c ∈ F

n
2 such that AutLE(F + c) is trivial.

For example, this is the case for the 6-bit APN permutation found by Algorithm 1 (see
Section 5.1).

More precisely, if F (0) = 0, one can show that AutLE(F+c) is a subgroup of AutLE(F)
given by

AutLE(F + c) =

{
σ =

[
A 0
0 B

]
| σ ∈ AutLE(F), Bc = c

}
.

Remark 3. One can further ask whether for any APN function, there exists a represen-
tative in its CCZ-equivalence class which admits a non-trivial LE-automorphism. We
checked that this is the case for any APN function in dimension n ≤ 5.

4 Equivalences for Permutations with Non-Trivial LE-Auto-

morphisms

If we want to classify all n-bit permutations F (up to CCZ-equivalence) with non-trivial
elements [

A 0
0 B

]
∈ AutLE(F),

we can significantly reduce the number of tuples (B,A) to consider. The observations
in this section result in Corollary 1, which states that for n = 6, 7, 8 we only need to
consider 17, 27, and 32 tuples (B,A), respectively. Note that this classification holds for
any permutation with a non trivial LE-automorphism, not only for APN permutations.

12

Let F ◦ A = B ◦ F for a function F : Fn
2 → F

n
2 and A,B ∈ GL(n,F2). For a

permutation P on F
n
2 , we define the sets of points of order divisible by i as Ord(P, i) :=

{x ∈ F
n
2 | P

i(x) = x}, which is a subspace of Fn
2 if P is linear.

Lemma 1. Let F : Fn
2 → F

n
2 and let A,B be permutations on F

n
2 such that F ◦A = B◦F .

Then, for all i ∈ N,

x ∈ Ord(A, i) ⇒ F (x) ∈ Ord(B, i).

Moreover, if F is a permutation, the above implication is an equivalence.

Proof. Observe that, for all i ∈ N, F ◦ Ai = Bi ◦ F . If x ∈ Ord(A, i), then F (x) =
Bi(F (x)), thus F (x) ∈ Ord(B, i). Let on the other hand F (x) ∈ Ord(B, i). Then,
F (x) = F (Ai(x)). Thus, x = Ai(x) if F is a permutation.

We only need to consider A and B of prime order, as shown in the following.

Lemma 2. Let F : Fn
2 → F

n
2 for which there exists a non-trivial automorphism in

AutLE(F). Then, F ◦ A = B ◦ F with A,B ∈ GL(n,F2) such that either

1. ord(A) = ord(B) = p for p prime, or

2. A = In and ord(B) = p for p prime, or

3. B = In and ord(A) = p for p prime.

If F is a permutation, the first of the above conditions must hold.

Proof. Let g ∈ AutLE(F), g 6= In. We consider the cyclic subgroup 〈g〉 ⊆ AutLE(F).
From the fundamental theorem of cyclic groups, it contains a cyclic subgroup of prime
order. Let this subgroup be generated by

h =

[
A 0
0 B

]
.

The result follows since ord(h) = lcm(ord(A), ord(B)). If F is a permutation, then
ord(A) = ord(B) because of Lemma 1.

Two matrices M,M ′ ∈ GL(n,F2) are called similar, denoted M ∼M ′, if there exists
a matrix P ∈ GL(n,F2) such that M ′ = P−1MP . It is obvious that similarity defines
an equivalence relation. Moreover, we can provide a representative of each equivalence
class as follows.

Lemma 3. (Rational Canonical Form)[31, Page 476] Every matrix M ∈ GL(n,F2) is
similar to a unique matrix M ′ ∈ GL(n,F2) of the form

M ′ =

Comp(qr)
Comp(qr−1)

. . .

Comp(q1)

13

for polynomials qi such that qr | qr−1 | · · · | q1. The matrix M ′ in the form above is
called the rational canonical form of M , denoted RCF(M).

If A′ ∼ A, B′ ∼ B, and F ◦ A = B ◦ F , there exists a function G which is linear
equivalent to F and for which G ◦A′ = B′ ◦G. Therefore, if we are only interested in F
up to linear equivalence, it is sufficient to consider A and B in rational canonical form.

We can reduce the search space further if we use the fact that all powers of automor-
phisms are also automorphisms. Based on this fact, we consider the following equivalence
classes for matrices of prime order.

Definition 3. Let A,B,C,D ∈ GL(n,F2) be of order p for p prime. The tuple (A,B)
is said to be power-similar to the tuple (C,D), denoted (A,B) ∼p (C,D), if there exists
i ∈ N such that A ∼ Ci and B ∼ Di. The tuple (A,B) is said to be extended power-
similar to (C,D), denoted (A,B) ∼Ep (C,D), if one of the two following conditions
holds:

1. (A,B) ∼p (C,D)

2. (A−1, B−1) ∼p (D,C).

Power-similarity and extended power-similarity define equivalence relations on the
tuples of matrices in GL(n,Fn

2) of the same prime order. Therefore, we can deduce the
following lemma.

Lemma 4. Let F : Fn
2 → F

n
2 with an automorphism

[
A 0
0 B

]
∈ AutLE(F)

for A,B ∈ GL(n,F2) being of prime order p. For every (B̃, Ã) power-similar to (B,A),
there is a function G linear-equivalent to F such that

[
RCF(Ã) 0

0 RCF(B̃)

]
∈ AutLE(G). (1)

Moreover, if F is a permutation, then for every tuple (B̃, Ã) extended power-similar
to (B,A), there is such a function G fulfilling Equation (1) and being linear equivalent
to either F or F−1.

Proof. Let A = P−1ÃiP and let B = Q−1B̃iQ. We have that

F ◦A = B ◦ F ⇔ F ◦ P−1ÃiP = Q−1B̃iQ ◦ F

and, thus, for G := Q ◦ F ◦ P−1, we have G ◦ Ãi = B̃i ◦G. Let k = i−1 mod p. Then,

G ◦ Ãik = B̃ik ◦G ⇔ G ◦ Ã = B̃ ◦G.

Without loss of generality, Ã and B̃ can be chosen up to similarity. If we chose them in
rational canonical form, we obtain the first part of the lemma.

The second part can be obtained by the same argument and using the fact that, for
a permutation F , we have F−1 ◦B−1 = A−1 ◦ F−1.

14

Thus, if we want to consider all permutations with a non-trivial linear self-equivalence
up to CCZ-equivalence (since F is CCZ-equivalent to F−1), we can restrict to a single
tuple (B,A) from each equivalence class under extended power-similarity.

Therefore, combining all the lemmas established in this section, we can enumerate
the tuples we need to consider for n ∈ {6, 7, 8} as follows. The code for generating all
those tuples can be found in [2].

Corollary 1. Let n ∈ {6, 7, 8}. All linear-equivalence classes of permutations F : Fn
2 →

F
n
2 or F−1 with a non-trivial automorphism

[
A 0
0 B

]
∈ AutLE(F)

can be obtained by considering the following classes for tuples (B,A):
For n = 6, we have the 17 classes

1. B = Comp(X6 +X5 +X4 +X3 +X + 1) A = Comp(X6 +X3 +X2 + 1)

2. B = Comp(X6+X5+X4+X3+X+1) A = Comp(X6+X5+X3+X2+X+1)

3. B = Comp(X6 +X5 +X4 +X3 +X + 1) A = Comp(X6 +X5 +X4 + 1)

4. B = A = Comp(X6 +X5 +X4 +X3 +X + 1)

5. B = A = Comp(X6 +X5 +X4 +X3 +X2 +X + 1)

6. B = A = I1 ⊕ Comp(X5 + 1)

7. B = I2 ⊕ Comp(X4 +X3 +X2 + 1) A = I2 ⊕ Comp(X4 +X2 +X + 1)

8. B = A = I2 ⊕ Comp(X4 +X3 +X2 + 1)

9. B = A = Comp(X3 + 1)⊕ Comp(X3 + 1)

10. B = Comp(X3 +X2 + 1) ⊕ Comp(X3 + X2 + 1) A = Comp(X6 + X5 +X4 +
X3 +X2 +X + 1)

11. B = Comp(X3 + X2 + 1) ⊕ Comp(X3 + X2 + 1) A = Comp(X3 + X + 1) ⊕
Comp(X3 +X + 1)

12. B = A = Comp(X3 +X2 + 1)⊕ Comp(X3 +X2 + 1)

13. B = A = I3 ⊕ Comp(X3 + 1)

14. B = A = Comp(X2 + 1)⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)

15. B = A = Comp(X2 +X + 1)⊕ Comp(X2 +X + 1)⊕ Comp(X2 +X + 1)

16. B = A = I2 ⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)

15

17. B = A = I4 ⊕ Comp(X2 + 1).

For n = 7, we have the 27 classes

1. B = A = Comp(X7 + 1)

2. B = Comp(X7 +X6 +X5 +X4 +X3 +X2 + 1) A = Comp(X7 +X3 + 1)

3. B = Comp(X7+X6+X5+X4+X3+X2+1) A = Comp(X7+X5+X3+X+1)

4. B = Comp(X7 + X6 + X5 +X4 +X3 +X2 + 1) A = Comp(X7 + X5 +X4 +
X3 +X2 +X + 1)

5. B = Comp(X7 +X6 +X5 +X4 +X3 +X2 + 1) A = Comp(X7 +X6 + 1)

6. B = Comp(X7+X6+X5+X4+X3+X2+1) A = Comp(X7+X6+X4+X+1)

7. B = Comp(X7+X6+X5+X4+X3+X2+1) A = Comp(X7+X6+X5+X2+1)

8. B = Comp(X7 + X6 + X5 +X4 +X3 +X2 + 1) A = Comp(X7 + X6 +X5 +
X3 +X2 +X + 1)

9. B = Comp(X7+X6+X5+X4+X3+X2+1) A = Comp(X7+X6+X5+X4+1)

10. B = Comp(X7 + X6 + X5 +X4 +X3 +X2 + 1) A = Comp(X7 + X6 +X5 +
X4 +X2 +X + 1)

11. B = A = Comp(X7 +X6 +X5 +X4 +X3 +X2 + 1)

12. B = I1⊕Comp(X6+X5+X4+X3+X+1) A = I1⊕Comp(X6+X3+X2+1)

13. B = I1 ⊕Comp(X6 +X5 +X4 +X3 +X +1) A = I1 ⊕Comp(X6 +X5 +X3 +
X2 +X + 1)

14. B = I1⊕Comp(X6+X5+X4+X3+X+1) A = I1⊕Comp(X6+X5+X4+1)

15. B = A = I1 ⊕ Comp(X6 +X5 +X4 +X3 +X + 1)

16. B = A = I2 ⊕ Comp(X5 + 1)

17. B = Comp(X3 +X + 1)⊕ Comp(X4 +X3 +X2 + 1) A = Comp(X7 + 1)

18. B = Comp(X3 +X +1)⊕Comp(X4 +X3 +X2+1) A = Comp(X3 +X2 +1)⊕
Comp(X4 +X2 +X + 1)

19. B = A = Comp(X3 +X + 1)⊕ Comp(X4 +X3 +X2 + 1)

20. B = I3 ⊕ Comp(X4 +X3 +X2 + 1) A = I3 ⊕ Comp(X4 +X2 +X + 1)

21. B = A = I3 ⊕ Comp(X4 +X3 +X2 + 1)

22. B = A = I1 ⊕ Comp(X3 + 1)⊕ Comp(X3 + 1)

16

23. B = A = Comp(X2 +X + 1)⊕ Comp(X2 +X + 1)⊕ Comp(X3 + 1)

24. B = A = I4 ⊕ Comp(X3 + 1)

25. B = A = I1 ⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)

26. B = A = I3 ⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)

27. B = A = I5 ⊕ Comp(X2 + 1).

For n = 8, we have the 32 classes

1. B = Comp(X8+X7+X6+X4+X2+X+1) A = Comp(X8+X5+X4+X3+1)

2. B = A = Comp(X8 +X7 +X6 +X4 +X2 +X + 1)

3. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X6 +
X4 +X3 +X2 + 1)

4. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X6 +
X5 +X4 +X2 + 1)

5. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X6 +
X5 +X4 +X3 +X2 +X + 1)

6. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X7 +
X4 +X3 +X + 1)

7. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X7 +
X5 +X2 +X + 1)

8. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X7 +
X5 +X4 +X + 1)

9. B = Comp(X8+X7+X6+X5+X4+X3+X2+1) A = Comp(X8+X7+X6+1)

10. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X7 +
X6 +X3 +X + 1)

11. B = Comp(X8 + X7 + X6 +X5 +X4 +X3 + X2 + 1) A = Comp(X8 +X7 +
X6 +X5 +X3 + 1)

12. B = A = Comp(X8 +X7 +X6 +X5 +X4 +X3 +X2 + 1)

13. B = A = I1 ⊕ Comp(X7 + 1)

14. B = I2⊕Comp(X6+X5+X4+X3+X+1) A = I2⊕Comp(X6+X3+X2+1)

15. B = I2 ⊕Comp(X6 +X5 +X4 +X3 +X +1) A = I2 ⊕Comp(X6 +X5 +X3 +
X2 +X + 1)

17

16. B = I2⊕Comp(X6+X5+X4+X3+X+1) A = I2⊕Comp(X6+X5+X4+1)

17. B = A = I2 ⊕ Comp(X6 +X5 +X4 +X3 +X + 1)

18. B = A = I3 ⊕ Comp(X5 + 1)

19. B = Comp(X4+X3+X2+1)⊕Comp(X4+X3+X2+1) A = I1⊕Comp(X7+1)

20. B = Comp(X4 +X3 + X2 + 1) ⊕ Comp(X4 +X3 + X2 + 1) A = Comp(X4 +
X2 +X + 1)⊕ Comp(X4 +X2 +X + 1)

21. B = A = Comp(X4 +X3 +X2 + 1)⊕ Comp(X4 +X3 +X2 + 1)

22. B = A = Comp(X4 +X3 +X2 +X + 1)⊕ Comp(X4 +X3 +X2 +X + 1)

23. B = I4 ⊕ Comp(X4 +X3 +X2 + 1) A = I4 ⊕ Comp(X4 +X2 +X + 1)

24. B = A = I4 ⊕ Comp(X4 +X3 +X2 + 1)

25. B = A = Comp(X2 +X + 1)⊕ Comp(X3 + 1)⊕ Comp(X3 + 1)

26. B = A = I2 ⊕ Comp(X3 + 1)⊕ Comp(X3 + 1)

27. B = A = I5 ⊕ Comp(X3 + 1)

28. B = A = Comp(X2 + 1)⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)⊕Comp(X2 + 1)

29. B = A = Comp(X2 + X + 1) ⊕ Comp(X2 + X + 1) ⊕ Comp(X2 + X + 1) ⊕
Comp(X2 +X + 1)

30. B = A = I2 ⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)

31. B = A = I4 ⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)

32. B = A = I6 ⊕ Comp(X2 + 1).

Note that, when searching for permutations in one of the above classes, we can reduce
the search space further by filtering candidates up to affine equivalence as follows. For a
matrix M ∈ GL(n,F2), let Comm(M) denote the subgroup of GL(n,F2) of all matrices
that commute with M .

Lemma 5. Let F : Fn
2 → F

n
2 and let A,B ∈ GL(n,F2) such that F ◦ A = B ◦ F . Then,

G ◦A = B ◦G for any G = CB ◦ F ◦ CA with CA ∈ Comm(A) and CB ∈ Comm(B).

Proof. We have G ◦ A = CB ◦ F ◦ CA ◦ A = CB ◦ F ◦ A ◦ CA = CB ◦ B ◦ F ◦ CA =
B ◦ CB ◦ F ◦ CA = B ◦G.

This allows us to only consider one representative within the class of Comm(B)◦F ◦
Comm(A).

18

5 Searching for APN Permutations with Non-Trivial LE-

Automorphisms

We now use the classification of tuples from Corollary 1 to search for APN permutations
with non-trivial linear self-equivalences in dimensions n ∈ {6, 7, 8}. First, we observe
that not all of the tuples (B,A) obtained in Corollary 1 have to be considered in the
search.

Definition 4. Let A,B ∈ GL(n,F2). A tuple (B,A) is admissible if there exists an
APN permutation F : Fn

2 → F
n
2 with F ◦ A = B ◦ F .

The following two propositions provide necessary conditions for a tuple to be admis-
sible.

Proposition 4. Let F : Fn
2 → F

n
2 be an APN permutation. Let A1, A2 ⊆ F

n
2 be two

affine subspaces of Fn
2 such that F (A1) = A2. Then, dimAi /∈ {2, 4, n − 1}.

Proof. Let d = dimA1 = dimA2. Without loss of generality, we can choose A1 = A2 =
F
d
2 × {0}

n−d by considering a permutation F ′ that is affine equivalent to F . Because
F ′ is APN, the property F ′(A1) = A2 implies the existence of an APN permutation in
dimension d. This cannot happen for d = 2 and d = 4, see [36]. The case of d = n − 1
was shown in [36, Proposition 2.1].

Therefore, if (B,A) ∈ GL(n,F2) ×GL(n,F2) is an admissible tuple we have, for all
i ∈ N, dimOrd(A, i) = dimOrd(B, i) /∈ {2, 4, n − 1}.

Proposition 5. Let (B,A) ∈ GL(n,F2)×GL(n,F2) be an admissible tuple with ord(A) =
ord(B) = k for k prime. Then, there exists no quadrinomial in F2[X]/(Xk + 1) that is
a multiple of both the minimal polynomial of A and the minimal polynomial of B.

Proof. Suppose there is such a quadrinomial p = Xa + Xb + Xc + 1. Then, both
Aa + Ab = Ac + 1 and Ba + Bb = Bc + 1 hold. Let g ∈ F

n
2 be an element with

ordA(g) = k and let F be a permutation that fulfills the self-equivalence for (B,A). We
have

F (Aag) + F (Abg) = BaF (g) +BbF (g) = (Ba +Bb)F (g)

= (Bc + 1)F (g) = F (Acg) + F (g),

which implies that F cannot be APN.

Depth-First Tree Search Algorithm Using the above propositions, for some of the
tuples given in Corollary 1 we can immediately see that they are not admissible. For
the other tuples, we can check their admissibility by the recursive depth-first tree search
described in Algorithm 1 at the end of the paper.

The algorithm receives two matrices A,B ∈ GL(n,F2) as input and constructs the
look-up tables of all n-bit APN permutations F with F ◦ A = B ◦ F up to linear

19

equivalence. To reduce the search space according to Lemma 5, we provide a subset of
CA ⊆ Comm(A) and a subset CB ⊆ Comm(B) as additional inputs. The idea is that
the algorithm should output only the smallest representative of an APN permutation up
to conjugation with elements in CA, resp. CB , where the term smallest refers to some
lexicographic ordering of the look-up table (this check is performed by the procedure
isSmallest).5

At the beginning of the search, the look-up table is initialized to ⊥ at each entry,
where ⊥ indicates that the respective entry is not yet defined. At the beginning of
each iteration of the recursive NextVal procedure, the algorithm checks whether the
look-up table is completely defined, i.e., whether there are no entries marked ⊥ left
(procedure isComplete). If it is completely defined, the look-up table is appended to
the list of solutions and the procedure returns. Otherwise, the algorithm chooses the
next undefined entry x in the look-up table according to some previously defined ordering
(procedure NextFreePosition) and sets F (x) to the next value y (also according to
some previously defined ordering) which does not yet occur in the look-up table and
for which ordA(x) = ordB(y). Besides fixing F (x) := y, the algorithm further fixes
F (Ai(x)) := Bi(y) for all i according to the self-equivalence. For each entry that is fixed,
the algorithm checks whether the partially-defined function can still be APN (procedure
IsAPN). In case that the APN property has already been violated, the entry x is set to
the next possible value y. In case that the partially-defined function can still be APN,
the algorithm goes one level deeper.

APN Check We would like to stress that it is important to implement Algorithm 1
carefully in order to obtain the results presented in this work. Indeed, the description
above is a bit simplified. Instead of checking for each newly fixed entry whether the
partially-defined function can still be APN (for example by constructing a partial differ-
ence distribution table (DDT)), we use a global two-dimensional array, called ddt, and
initialized to 0, of size 2n × 2n that dynamically stores the partial DDT. Recall that
the DDT of a function F : Fn

2 → F
n
2 is defined as the 2n × 2n integer matrix containing

|{x ∈ F
n
2 | F (x) + F (x + α) = β}| at the position in row α and column β. After each

entry of F is fixed, we update the partial DDT according to the newly fixed entry and
check whether, for any α 6= 0, it contains values larger than 2 (in that case, F cannot
be APN). This is done by the following procedure, where ⊕ denotes the bitwise XOR
operation and wt(α) denotes the Hamming weight of the integer α interpreted as an
element in F

n
2 :

1: function addDDTInformation(c)
2: for α ∈ [1, . . . , 2n − 1] with wt(α) being even do

3: if sbox[c⊕ α] 6= ⊥ then

4: ddt[α][sbox[c]⊕ sbox[c⊕ α]]← ddt[α][sbox[c]⊕ sbox[c⊕ α]] + 2
5: if ddt[α][sbox[c]⊕ sbox[c⊕ α]] > 2 then

5The test for being the smallest representative is omitted if the depth exceeds some threshold t,
because at some depth it is faster to just traverse the remaining tree. Therefore, it might happen that
the algorithm outputs more representatives than just the smallest.

20

6: return 0
7: end if

8: end if

9: end for

10: return 1
11: end function

The input parameter c corresponds to the position that we fix in sbox. If an entry
is reset to ⊥ (line 32 of Algorithm 1) the ddt array also has to be updated accordingly,
which is implemented by the following procedure. Note that in the for loop, the elements
α have to be traversed in the same order as in addDDTInformation. The parameter
c corresponds to the entry that is reset to ⊥.

1: function removeDDTInformation(c)
2: for α ∈ [1, . . . , 2n − 1] with wt(α) being even do

3: if sbox[c⊕ α] 6= ⊥ then

4: ddt[α][sbox[c]⊕ sbox[c⊕ α]]← ddt[α][sbox[c]⊕ sbox[c⊕ α]]− 2
5: if ddt[α][sbox[c]⊕ sbox[c⊕ α]] = 2 then

6: return 0
7: end if

8: end if

9: end for

10: end function

Note that we do not have to consider the whole DDT for the APN check. As it was
shown in [3, Theorem 4], only those DDT entries corresponding to input differences with
even Hamming weight have to be computed.

For the details of our implementation, we refer to the source code provided in [2].

5.1 Results for n = 6

By Propositions 4 and 5, we immediately obtain that 8 out of the 17 tuples given in
Corollary 1 are not admissible (see Table 1). We performed an exhaustive search for
APN permutations in the remaining 9 tuples using Algorithm 1. The case of

B = A = Comp(X2 + 1)⊕ Comp(X2 + 1)⊕ Comp(X2 + 1) (2)

(Class 14) was the most difficult one. The functions A and B are involutions and
therefore only consist of cycles of length 1 and 2, which causes Algorithm 1 to be less
efficient. However, without loss of generality we can set F on the fixed points of A to
an APN permutation. More precisely, let F : Fn

2 → F
n
2 be an APN permutation with

F ◦ A = B ◦ F for A,B ∈ GL(n,Fn
2) with dimOrd(A, 1) = dimOrd(B, 1) = k. Let

further πA : Fk
2 → Ord(A, 1) and πB : Fk

2 → Ord(B, 1) be (vector space) isomorphisms.
Then there exists an APN permutation G : Fk

2 → F
k
2 such that, for all x ∈ Ord(A, 1),

we have F (x) = πB(G(π−1
A (x))). The following definition and lemma show a sufficient

condition that allows to fix this APN permutation G up to affine equivalence.

21

Algorithm 1 APNsearch

Input: Matrices A,B ∈ GL(n,F2), CA ⊆ Comm(A), CB ⊆ Comm(B). Global array
sbox of size 2n, initialized to sbox[i] = ⊥, for all i ∈ {0, . . . , 2n − 1}

Output: All n-bit APN permutations F s.t. FA = BF up to linear equivalence.

1: L← {}, sbox[0]← 0
2: nextVal(0)
3: return L

4: function nextVal(depth)
5: if isComplete(sbox) then
6: L← L ∪ {sbox}
7: return

8: end if

9: x← nextFreePosition()
10: for y ∈ F

n
2 do

11: if y is not in sbox and ordA(x) = ordB(y) then ⊲ x interpreted to be in F
n
2

12: xS ← x, yS ← y
13: for i = 0 to ordA(x)− 2 do

14: sbox[xS]← yS
15: if not isAPN(sbox) then
16: go to 31
17: end if

18: xS ← A(xS), yS ← B(yS)
19: end for

20: sbox[xS]← yS
21: if not isAPN(sbox) then
22: go to 31
23: end if

24: if depth ≤ t then
25: if isSmallest(sbox) then
26: nextVal(depth + 1)
27: end if

28: else

29: nextVal(depth + 1)
30: end if

31: repeat

32: sbox[xS]← ⊥
33: xS ← A−1(xS)
34: until xS = A−1(x)
35: end if

36: end for

37: end function

22

Table 1: Analysis of the tuples (B,A) given in Corollary 1. “No.” corresponds to the
number of the tuple in Corollary 1. The column “admissible” indicates whether there
exists an n-bit APN permutation F for which F ◦ A = B ◦ F . In case that it does, we
list all the solutions for the CCZ-equivalence classes of such F . The “?” indicates that
we were not able to either exclude the tuple by Prop. 4 or 5, or to finish the exhaustive
search for F .

n = 6 n = 7 n = 8
No. admissible solutions No. admissible solutions No. admissible
1 no (Alg. 1) 1 yes x 7→ x5 1 no (Alg. 1)

x 7→ x9

x 7→ x63

x 7→ x78

x 7→ x85

x 7→ x88

2 no (Alg. 1) 2 no (Prop. 5) 2 no (Alg. 1)
3 no (Alg. 1) 3 no (Prop. 5) 3 no (Prop. 5)
4 no (Prop. 5) 4 yes x 7→ x63 4 no (Alg. 1)
5 yes Dillon’s [11] 5 yes x 7→ x9 5 no (Alg. 1)
6 no (Prop. 4) 6 no (Prop. 5) 6 no (Alg. 1)
7 no (Alg. 1) 7 yes x 7→ x5 7 no (Prop. 5)
8 no (Prop. 5) 8 yes x 7→ x78 8 no (Alg. 1)
9 no (Prop. 4) 9 yes x 7→ x85 9 no (Alg. 1)
10 no (Alg. 1) 10 yes x 7→ x88 10 no (Alg. 1)
11 no (Alg. 1) 11 no (Prop. 5) 11 no (Prop. 5)
12 no (Prop. 5) 12 no (Prop. 4) 12 no (Prop. 5)
13 no (Prop. 4) 13 no (Prop. 4) 13 no (Prop. 4)
14 no (Alg. 1) 14 no (Prop. 4) 14 no (Alg. 1)
15 no (Alg. 1) 15 no (Prop. 4) 15 no (Alg. 1)
16 no (Prop. 4) 16 ? 16 no (Alg. 1)
17 no (Prop. 4) 17 no (Alg. 1) 17 no (Prop. 5)

18 no (Alg. 1) 18 no (Prop. 4)
19 no (Prop. 5) 19 no (Prop. 4)
20 no (Prop. 4) 20 no (Prop. 4)
21 no (Prop. 4) 21 no (Prop. 4)
22 ? 22 ?
23 ? 23 no (Alg. 1)
24 no (Alg. 1) 24 no (Prop. 5)
25 no (Prop. 4) 25 no (Prop. 4)
26 no (Alg. 1) 26 no (Prop. 4)
27 no (Prop. 4) 27 no (Alg. 1)

28 no (Prop. 4)
29 no (Alg. 1)
30 ?
31 no (Alg. 1)
32 no (Prop. 4)

23

Definition 5. An element A ∈ GL(n,F2) is called extendable if, for all linear permu-
tations L : Ord(A, 1)→ Ord(A, 1), there exists an element L′ ∈ Comm(A) such that the
restriction of L′ to Ord(A, 1) equals L.

Lemma 6. Let A,B ∈ GL(n,F2) be extendable and let F : Fn
2 → F

n
2 be a permutation for

which F ◦A = B ◦ F . Further, for all x ∈ Ord(A, 1), let F (x) = πB(G(π−1
A (x))), where

G : Fk
2 → F

k
2 with k = dimOrd(A, 1) and πA : Fk

2 → Ord(A, 1), πB : Fk
2 → Ord(B, 1)

are vector space isomorphisms. For every permutation G′ affine-equivalent to G, there
exists a permutation F ′ affine-equivalent to F such that F ′ ◦ A = B ◦ F ′ and, for all
x ∈ Ord(A, 1), it fulfills

F ′(x) = πB(G
′(π−1

A (x))).

Proof. Let C : Fk
2 → F

k
2, x 7→ Lx + c be an affine permutation with L ∈ GL(k,F2) and

c ∈ F
k
2. We first show the statement for G′ = G ◦ C and then for G′ = C ◦ G, which

finally proves the statement for all G′ affine-equivalent to G.
Case 1: G′ = G ◦ C. Because A is extendable, there exists an affine permutation

C ′ : Fn
2 → F

n
2 , x 7→ L′x + πA(c), where the linear permutation L′ ∈ GL(n,F2) has the

property that
L′(x) = πA(L(π

−1
A (x))) if x ∈ Ord(A, 1)

and fulfills L′A = AL′. Therefore, C ′A = L′A+πA(c) = AL′+πA(c) = A(L′+πA(c)) =
AC ′, since πA(c) ∈ Ord(A, 1). For x ∈ Ord(A, 1), we have

F (C ′(x)) = πB(G(π−1
A (L′x+ πA(c)))) = πB(G(Lπ−1

A (x) + c)) = πB(G
′(π−1

A (x))).

Further, F ◦ C ′ ◦ A = F ◦A ◦ C ′ = B ◦ F ◦ C ′.
Case 2: G′ = C ◦ G. Because B is extendable, there exists an affine permutation

C ′ : Fn
2 → F

n
2 , x 7→ L′x + πB(c), where the linear permutation L′ ∈ GL(n,F2) has the

property that
L′(x) = πB(L(π

−1
B (x))) if x ∈ Ord(B, 1)

and fulfills L′B = BL′. For x ∈ Ord(A, 1), we have

C ′(F (x)) = L′(πB(G(π−1
A (x)))) + πB(c) = πB(LG(π−1

A (x)) + c) = πB(G
′(π−1

A (x))).

Further, C ′ ◦ F ◦ A = C ′ ◦B ◦ F = B ◦ C ′ ◦ F .

For the case of A = B as in Equation (2), we checked that A, resp. B is extendable.
Therefore, since A, resp. B has eight fixed points and since there is only one APN
permutation on 3 bits up to affine equivalence, eight entries of F can be fixed in advance.
This trick reduced the computation time for this case to around 8 hours on a PC.

To summarize, APN permutations exist only in the case

B = A = Comp(X6 +X5 +X4 +X3 +X2 +X + 1) (3)

(Class 5) and they are all CCZ-equivalent to Dillon’s permutation. As a conclusion, we
have shown the following.

Theorem 1. Up to CCZ-equivalence, there is only one APN permutation F in dimension
6 with |AutLE(F)| > 1.

24

5.2 Results for n = 7

By Propositions 4 and 5, we directly obtain that 13 out of the 27 tuples given in Corol-
lary 1 are not admissible. We performed an exhaustive search for APN permutations in
11 of the remaining 14 tuples using Algorithm 1.

Class 1 corresponds to the shift-invariant permutations and obviously contains all
the monomial permutations. By letting Algorithm 1 run for several days on a cluster
with 256 cores, we were able to finish the search for APN permutations in this class. We
obtained that the APN monomial permutations are (up to CCZ-equivalence) the only
shift-invariant APN permutations in this dimension (see Table 1).

Theorem 2. Up to CCZ-equivalence, a shift-invariant APN permutation in dimension
7 must be a monomial function.

The 6 APN monomial permutations in dimension 7 are also contained in Classes
4, 5, 7, 8, 9, and 10, respectively. Those classes correspond to tuples (B,A), where
A and B correspond to multiplications by elements in the finite field F27 . We did not
find any other APN permutations. This allows us to state the following theorem, which
summarizes the three missing cases that are infeasible to handle with Algorithm 1.

Theorem 3. Let F be an APN permutation in dimension 7 with |AutLE(F)| > 1 that is
not CCZ-equivalent to a monomial function. Then, F is CCZ-equivalent to a permuta-
tion G for which G ◦A = B ◦G with

1. B = A = I2 ⊕ Comp(X5 + 1) or

2. B = A = I1 ⊕ Comp(X3 + 1)⊕ Comp(X3 + 1) or

3. B = A = Comp(X2 +X + 1)⊕ Comp(X2 +X + 1)⊕ Comp(X3 + 1).

5.3 Results for n = 8

By Propositions 4 and 5, we directly obtain that 15 out of the 32 tuples given in Corol-
lary 1 are not admissible. We performed an exhaustive search for APN permutations in
15 of the remaining 17 tuples using Algorithm 1. We did not find any APN permutation.
To conclude, we state the following theorem.

Theorem 4. Let F be an APN permutation in dimension 8 with |AutLE(F)| > 1. Then,
F is CCZ-equivalent to a permutation G for which G ◦ A = B ◦G with

1. B = A = Comp(X4 +X3 +X2 +X + 1)⊕ Comp(X4 +X3 +X2 +X + 1) or

2. B = A = I2 ⊕ Comp(X2 + 1)⊕ Comp(X2 + 1)⊕ Comp(X2 + 1).

Table 1 summarizes our results. The source code of our implementation of Algo-
rithm 1 can be found in [2]. For checking whether the solutions that we find are CCZ-
equivalent to an already known APN permutation, we used the equivalent condition on
code equivalence as explained in [11]. Practically, we used the code equivalence algo-
rithm of the computer algebra system Magma [5], which for n = 7 takes a few seconds
on a PC.

25

5.4 Randomized Search

In case that the search space for a tuple (B,A) is so large that handling it with Algo-
rithm 1 would be infeasible, we can perform a random search for APN permutations F
for which F ◦ A = B ◦ F . It is straightforward to implement a randomized version of
Algorithm 1. For that, before the initial call of NextVal, we randomly shuffle the order
in which the values for y are iterated in line 10. We abort the search after a predeter-
mined amount of time and repeat with a new initial shuffling. Furthermore, since we are
not aiming for an exhaustive search, we omit the check for the smallest representative,
i.e., set t to −1.

We applied the randomized search for the 5 tuples for which we were not able to
finish the exhaustive search, i.e., Classes 16, 22, and 23 for n = 7, and Classes 22 and
30 for n = 8. We did not find any APN permutation by letting the algorithm run for at
least 128 CPU days for each of those cases.

6 Conclusion and Open Questions

We observed that all APN permutations known from the literature contain a permuta-
tion in their CCZ-equivalence class that admit a non-trivial linear self-equivalence. We
performed an exhaustive search for 6-bit APN permutations with such non-trivial linear
self-equivalences and a partial search in dimension 7 and 8.

We expect that there are no more APN permutations with non-trivial linear self-
equivalences in dimension 7 and 8. As open problems, it would be interesting to settle
the cases described in Theorems 3 and 4, i.e., to show that those cases contain no
APN permutations. Another (very ambitious) open problem is to prove or disprove
Conjecture 1. This would certainly be considered a major breakthrough in the theory
of APN functions.

Acknowledgment

We thank the anonymous reviewers for their detailed and helpful comments. We further
thank Anne Canteaut, Yann Rotella and Cihangir Tezcan for fruitful discussions at an
early stage of this project.

References

[1] R. Arshad. Contributions to the theory of almost perfect nonlinear functions. PhD
thesis, Otto-von-Guericke-Universität Magdeburg, 2018.

[2] cbe90. cbe90/self equivalent apn: Self-Equivalent APN Permutations v1.1. Soft-
ware, Zenodo, 2020. DOI: 10.5281/zenodo.4017782.

[3] T. Beth and C. Ding. On almost perfect nonlinear permutations. In T. Helle-
seth, editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the The-
ory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,

26

1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages 65–76.
Springer, 1993.

[4] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology, 4(1):3–72, 1991.

[5] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[6] C. Bracken, E. Byrne, N. Markin, and G. McGuire. New families of quadratic almost
perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications,
14(3):703–714, 2008.

[7] C. Bracken, E. Byrne, N. Markin, and G. McGuire. A few more quadratic APN
functions. Cryptography and Communications, 3(1):43–53, 2011.

[8] C. Bracken, E. Byrne, G. McGuire, and G. Nebe. On the equivalence of quadratic
APN functions. Des. Codes Cryptogr., 61(3):261–272, 2011.

[9] M. Brinkmann and G. Leander. On the classification of APN functions up to
dimension five. Des. Codes Cryptogr., 49(1-3):273–288, 2008.

[10] K. Browning, J. Dillon, R. E. Kibler, and M. McQuistan. APN polynomials and
related codes. Special volume of Journal of Combinatorics, Information and System
Sciences, 34(1–4):135–159, 2009.

[11] K. Browning, J. Dillon, M. McQuistan, and A. Wolfe. An APN permutation in
dimension six. Finite Fields: theory and applications, 518:33–42, 2010.

[12] L. Budaghyan. The simplest method for constructing APN polynomials EA-
inequivalent to power functions. In C. Carlet and B. Sunar, editors, Arithmetic
of Finite Fields, First International Workshop, WAIFI 2007, Madrid, Spain, June
21-22, 2007, Proceedings, volume 4547 of Lecture Notes in Computer Science, pages
177–188. Springer, 2007.

[13] L. Budaghyan, M. Calderini, C. Carlet, R. Coulter, and I. Villa. Generalized isotopic
shift construction for APN functions. Des. Codes Cryptogr., 89(1):19–32, 2021.

[14] L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, and I. Villa. Construct-
ing APN functions through isotopic shifts. IEEE Trans. Information Theory,
66(8):5299–5309, 2020.

[15] L. Budaghyan, M. Calderini, and I. Villa. On equivalence between known families of
quadratic APN functions. Finite Fields and Their Applications, 66, 101704, 2020.

[16] L. Budaghyan and C. Carlet. Classes of quadratic APN trinomials and hexanomials
and related structures. IEEE Trans. Information Theory, 54(5):2354–2357, 2008.

27

[17] L. Budaghyan, C. Carlet, and G. Leander. Two classes of quadratic APN binomials
inequivalent to power functions. IEEE Trans. Information Theory, 54(9):4218–4229,
2008.

[18] L. Budaghyan, C. Carlet, and G. Leander. Constructing new APN functions from
known ones. Finite Fields and Their Applications, 15(2):150–159, 2009.

[19] L. Budaghyan, C. Carlet, and G. Leander. On a construction of quadratic APN
functions. In 2009 IEEE Information Theory Workshop, pages 374–378, Oct 2009.

[20] L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent and almost
perfect nonlinear polynomials. IEEE Trans. Information Theory, 52(3):1141–1152,
2006.

[21] L. Budaghyan, T. Helleseth, and N. S. Kaleyski. A new family of APN quadrino-
mials. IEEE Trans. Information Theory, 66(11):7081–7087, 2020.

[22] A. Canteaut, S. Duval, and L. Perrin. A generalisation of Dillon’s APN permutation

with the best known differential and nonlinear properties for all fields of size 24k+2.
IEEE Trans. Information Theory, 63(11):7575–7591, 2017.

[23] A. Canteaut and L. Perrin. On CCZ-equivalence, extended-affine equivalence, and
function twisting. Finite Fields and Their Applications, 56:209–246, 2019.

[24] A. Canteaut, L. Perrin, and S. Tian. If a generalised butterfly is APN then it
operates on 6 bits. Cryptography and Communications, 11(6):1147–1164, 2019.

[25] C. Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, 2021.

[26] C. Carlet. Relating three nonlinearity parameters of vectorial functions and building
APN functions from bent functions. Des. Codes Cryptogr., 59(1-3):89–109, 2011.

[27] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations
suitable for DES-like cryptosystems. Des. Codes Cryptogr., 15(2):125–156, 1998.

[28] L. Carlitz and D. Hayes. Permutations with coefficients in a subfield. Acta Arith-
metica, 21(1):131–135, 1972.

[29] C. De Cannière. Analysis and design of symmetric encryption algorithms. PhD
thesis, KULeuven, 2007.

[30] J. F. Dillon. APN polynomials and related codes. Banff International Research
Station workshop on Polynomials over Finite Fields and Applications, 2006.

[31] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley and Sons, Inc., 2004.

28

[32] Y. Edel, G. M. M. Kyureghyan, and A. Pott. A new APN function which is not
equivalent to a power mapping. IEEE Trans. Information Theory, 52(2):744–747,
2006.

[33] Y. Edel and A. Pott. A new almost perfect nonlinear function which is not quadratic.
Adv. in Math. of Comm., 3(1):59–81, 2009.

[34] T. Feulner. The automorphism groups of linear codes and canonical representatives
of their semilinear isometry classes. Adv. in Math. of Comm., 3(4):363–383, 2009.

[35] R. Gold. Maximal recursive sequences with 3-valued recursive cross-correlation
functions. IEEE Trans. Information Theory, 14(1):154–156, 1968.

[36] X. Hou. Affinity of permutations of Fn
2 . Discrete Applied Mathematics, 154(2):313–

325, 2006.

[37] K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, edi-
tor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Ap-
plication of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Pro-
ceedings, volume 765 of Lecture Notes in Computer Science, pages 55–64. Springer,
1993.

[38] K. Nyberg and L. R. Knudsen. Provable security against differential cryptanalysis.
In E. F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 16-
20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages
566–574. Springer, 1992.

[39] L. Perrin. sboxU. GitHub repository, 2017. Availabe via https://github.com/

lpp-crypto/sboxU, commit fb8941790ce6850d9fbdee3334ca2e2d381fb24c.

[40] L. Perrin, A. Udovenko, and A. Biryukov. Cryptanalysis of a theorem: Decompos-
ing the only known solution to the big APN problem. In M. Robshaw and J. Katz,
editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, volume 9815 of Lecture Notes in Computer Science, pages 93–122. Springer, 2016.

[41] V. Rijmen, P. S.L.M. Barreto, and D. L. Gazzoni Filho. Rotation symmetry in
algebraically generated cryptographic substitution tables. Information Processing
Letters, 106(6):246–250, 2008.

[42] N. J. A. Sloane (editor). The on-line encyclopedia of integer sequences. Sequence
A326932, published electronically at https://oeis.org, 2019.

[43] B. Sun. On Classification and Some Properties of APN Functions. PhD thesis,
University of Bergen, 2018.

29

https://github.com/lpp-crypto/sboxU
https://github.com/lpp-crypto/sboxU
https://oeis.org

[44] H. Taniguchi. On some quadratic APN functions. Des. Codes Cryptogr., 87(9):1973–
1983, 2019.

[45] G. Weng, Y. Tan, and G. Gong. On quadratic almost perfect nonlinear functions and
their related algebraic object. In Workshop on Coding and Cryptography, WCC.,
2013.

[46] S. Yoshiara. Equivalences of power APN functions with power or quadratic APN
functions. Journal of Algebraic Combinatorics, 44(3):561–585, 2016.

[47] Y. Yu, N. Kaleyski, L. Budaghyan, and Y. Li. Classification of quadratic APN
functions with coefficients in F2 for dimensions up to 9. Finite Fields and Their
Applications, 68:101733, 2020.

[48] Y. Yu, M. Wang, and Y. Li. A matrix approach for constructing quadratic APN
functions. Cryptology ePrint Archive, Report 2013/007, 2013., https://eprint.
iacr.org/2013/007.

[49] Y. Yu, M. Wang, and Y. Li. A matrix approach for constructing quadratic APN
functions. Des. Codes Cryptogr., 73(2):587–600, 2014.

[50] Y. Zhou and A. Pott. A new family of semifields with 2 parameters. Advances in
Mathematics, 234:43 – 60, 2013.

30

https://eprint.iacr.org/2013/007
https://eprint.iacr.org/2013/007

	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Automorphisms of Some (APN) Functions
	3.1 Quadratic Functions
	3.2 Shift-Invariant Functions
	3.3 APN Binomial (and some Multinomial) Functions
	3.4 Generalized Butterflies
	3.5 Known APN Functions in Small Dimension
	3.6 APN Permutations

	4 Equivalences for Permutations with Non-Trivial LE-Automorphisms
	5 Searching for APN Permutations with Non-Trivial LE-Automorphisms
	5.1 Results for n=6
	5.2 Results for n=7
	5.3 Results for n=8
	5.4 Randomized Search

	6 Conclusion and Open Questions

