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Chapter 1

Introduction

In this thesis we classify all almost perfect nonlinear (APN) vectorial boolean functions
in dimension 4 and 5 up to affine and CCZ equivalence using backtrack programming and
give a partial model for the complexity of such a search. In particular, we demonstrate
that up to dimension 5 any APN function is CCZ equivalent to a power function, while
in dimension 4 and 5 there exist APN functions which are not extended affine equivalent
to any power function.

A function s : F
n
2 → F

n
2 is APN if for every non-zero c ∈ F

n
2 and every a ∈ F

n
2 the

equation s(x)+s(x+c) = a has at most two solutions (see Definition 4.1 for more details).
APN functions were introduced by Nyberg [Nyb94] to disable differential attacks on
block ciphers [BS91]. Since then they have been studied extensively, see [Car06] for a
comprehensive bibliography.

The APN property as well as other cryptographically interesting properties are in-
variant under affine transformations [Nyb94]. Let α, β : F

n
2 → F

n
2 be affine bijections

and γ : F
n
2 → F

n
2 be any affine function, then with

t = αsβ + γ (1.1)

the function t is APN if and only if s is APN, and t is said to be extended affine (EA)
equivalent to s. If γ ≡ 0 and s is a bijection, t is a bijection and we say t is affine
equivalent to s. Also, if s is an APN bijection the inverse s−1 is APN.

In [CCZ98], Carlet, Charpin and Zinoviev introduced a general affine equivalence re-
lation that includes EA and inverse equivalence as special cases. Let G(s) := {(x, s(x)) |
x ∈ F

n
2} ⊆ F

n
2 ×F

n
2 be the graph of the function s. Then a function t is CCZ equivalent

to s if G(t) is affine equivalent to G(s) in F
n
2 × F

n
2 , that means if there exists an affine

function λ ∈ F
2n
2 such that:

G(t) = λ(G(s)) (1.2)

It was proven in [CCZ98] that this equivalence relation stabilises the APN property.

1.1 State of the Art

Until recently, all known constructions of APN functions happened to be equivalent to
power functions on F2n , see Table 1.1, and it was an open question if this is true for all

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Known APN power power functions xd on F2n

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, n) = 1 [Gol68, Nyb94]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [JW93, Kas71]

Welch 2t + 3 n = 2t + 1 [Dob99b]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 [Dob99a]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [BD94, Nyb94]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i [Dob00]

APN functions. Budaghyan, Carlet and Pott [BCP06] constructed APN functions EA
inequivalent (but CCZ equivalent) to any power function. Then Edel, Kyureghyan and
Pott [EKP06] constructed a quadratic function from F

10
2 to itself that they showed to

be CCZ inequivalent to any power function, and shortly afterwards an infinite class of
functions with this property was found [BCFL06]. Since then even more APN functions
that are CCZ inequivalent to any power function have been found in dimensions as low
as 6 [Dil06].

Despite this recent progress, many elementary questions about APN functions re-
main unanswered. For example, it is unknown if there exist bijective APN functions in
even dimensions. A partial negative answer given in [dH03] is not conclusive, as it is
not very restrictive compared to the size of the concerned function spaces.

APN functions have been found to be quite elusive in other ways as well. For
example, APN functions are difficult to construct from smaller APN functions [dH03]
or from functions satisfying weaker constraints [Mil98].

1.2 Overview

In this thesis, we do not investigate families of APN functions which vary over the
dimension, but exhaustively search for and classify all APN functions in specific dimen-
sions, thus adding to a solid foundation of facts for future APN related research. It is
clear that this can only succeed for very small dimensions n, as the search space grows
super-exponentially. A complete classification of dimension up to 3 is easy to do with
just pen and paper. We add the classification of dimension 4 and 5. Although the
techniques presented here apply to any dimension, finding complete solutions for higher
dimensions will require the development of additional or different techniques.

We solve the classification problem using backtrack programming with isomorph
rejection. In backtrack programming the search space is divided into increasingly finer
subsets which contain all functions agreeing on increasingly larger subsets of their do-
main, and we reject subsets that do not contain a canonical representative of the desired
equivalence class. This is possible because the APN and canonicity properties can be
tested efficiently even on functions that are only locally determinate.
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We demonstrate that there are two EA equivalence classes for n = 4, one of which
is not EA equivalent to any power function. For n = 5, there are seven EA equivalence
classes, two of which are not EA equivalent to any power function. The functions
not EA equivalent to any power function are members of the infinite families of APN
functions presented in Theorem 1 and 3 of [BCP06]. We show that no other classes of
APN functions exist in dimension 4 and 5.

Furthermore, we demonstrate that all APN functions for n = 4 are in the same
CCZ equivalent class. For n = 5, all APN functions are equivalent to one of three CCZ
equivalence classes, each containing power functions. There exist APN functions not
CCZ equivalent to any power function for dimensions as low as 6, see [Dil06]. We show
that this is an exact lower bound.

All computations were performed on a Pentium 4 processor with 2.8 GHz. The
results for n ≤ 4 are immediate, and the case n = 5 takes about three weeks.

The thesis is structured as follows:

Backtrack Algorithms: In Chapter 2, we give a formal description of backtrack al-
gorithms for certain constraint satisfaction problems and describe the main optimisation
techniques.

2-dimensional affine subspaces in F
n
2 : In Chapter 3, we take a closer look at 2-

dimensional afine subspaces contained in arbitrary subsets of F
n
2 . It turns out that the

APN property restricts the local behaviour of a function on all such subspaces, and we
can use the generic results about these subspaces in the evaluation of the performance
of a backtrack search for APN functions.

Classification: In Chapter 4, we give a complete classification of all APN functions up
to dimension 5 with respect to three equivalence relations preserving the APN property:
Affine equivalence (permutations only), EA equivalence and CCZ equivalence.

1.2.1 Main contributions

We consider the main contributions of this thesis to be:

• A complete classification of all APN functions in F
n
2 with n ≤ 5 with regards to

(extended) affine and CCZ equivalence (Chapter 4).

• A constructive method to enumerate the 2-dimensional affine subspaces in an
arbitrary subset of F

n
2 and an exact upper bound on their number (Section 3.4).

• A formalisation of backtrack algorithms which unifies different existing optimisa-
tion techniques (Section 2.3.3).

• An efficient filter predicate for the APN property, to be used in backtrack algo-
rithms (Section 4.1.2) and a model to estimate its performance (Section 4.1.3).

• An efficient filter predicate for canonical elements of affine equivalence classes
(Section 4.2.2).

• An efficient algorithm to test for CCZ equivalence (Section 4.3.1).
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1.2.2 Notation

In the text, we identify vectors a ∈ F
n
2 with binary numbers (an−1 . . . a0)2 =

∑

i ai2
i ∈

[0; 2n − 1] ⊂ N0. We use ⊕,⊖ as symbols for the addition in F
n
2 and +,− as symbols

for the addition and subtraction in N0 ⊂ Z.

Note 1.1 It is well known that a function from F
n
2 to itself can be seen as a polynomial

on the finite field F2n; the algebraic degree is an EA (but not CCZ) invariant.

1.3 Future Work

The results in this thesis are self-contained, but raise a number of new questions and
lead to opportunities for further research, for example:

• APN permutations exist for odd dimensions but it is an open question if they
also exist for even dimensions. This suggests that the structure of APN functions
in odd dimensions is somewhat different from even dimensions, which limits the
comparibility of the solutions for n = 4 and n = 5. Thus, it would be very
interesting to have a complete classification for the case n = 6. It has to be
investigated which additional or different techniques are necessary to find the
solution. Alternatively, one can try to find partial (existence) results if a complete
classification is intractable.

• The optimisation techniques described in this thesis are very generic, and can be
applied readily to other, similar constraint satisfaction problems.

A function is called crooked if for all c ∈ F
n
2 , c 6= 0, the set {f(x)+f(x+c) | x ∈ F

n
2}

is an affine hyperplane in F
n
2 . It is easy to see that crooked is an EA invariant

and implies APN (the converse is false).

It is an open question whether all crooked functions are quadratic. If the case
n = 6 is too hard to solve for APN functions, maybe it can be solved for related,
more constraint problems like this.

• The notion of CCZ equivalence is interesting in its own right, and it would be good
to know more about CCZ equivalence classes in the set of all vectorial boolean
functions, for example their number and sizes.



Chapter 2

Backtrack Algorithms

In this chapter we will first develop the formal framework for backtrack programming
and then describe how backtrack algorithms can be used to solve generic constraint
satisfaction problems. We are interested in enumerating all functions F(A,B) with
certain properties, where A and B are finite, ordered sets. Later on we will always set
A = B = F

n
2 , but the more general case can be treated without any extra effort and

prevents possible confusion by using a co-domain distinct from the domain.

2.1 Partial functions

In the discussion of backtrack algorithms it is neccessary to be able to reason about
functions between finite, ordered sets whose images are only determinate on a subset of
the domain.

We describe two ways to interpret such partial functions: First, a procedural view,
in which a partial function is an array indexed by the domain which contains entries
from the codomain extended by a marker ⋄ for indeterminate positions. In this picture,
a partial function can be made more determinate by substituting the value ⋄ at an
indeterminate position by any value from the original codomain.

Second, we have a functional view, in which a partial function represents the set
of all functions that agree on the determinate positions of the domain (cf. Faradžev’s
fragments in [Far78]). In this case, a partial function can be made more determinate by
taking the subset of all functions that take the same fixed value at the position made
determinate.

Both interpretations of partial functions are tightly linked, and their relationship
allows us to connect the procedural language of elementary computer programming
seamlessly with the functional language of mathematics.1 We will switch views fre-
quently, choosing whichever is more efficient in any given situation.

1Recall that (mathematical) functions return values but are side-effect free, while (algorithmic) pro-
cedures do not return values and are only invoked for their side-effects. Low-level machine instructions
are procedures that have the side-effect of causing a change in the machine configuration, see [Tur36].

5



6 CHAPTER 2. BACKTRACK ALGORITHMS

2.1.1 Function templates

We begin with the procedural view on partial functions. For any set A let Ã := A⊎{⋄}
be the disjoint union of A and ⋄. The value ⋄ is called the indeterminate value.

Definition 2.1 (Function templates)
Let A,B be finite, ordered sets. By a function template from the domain A to the
codomain B we mean a function f̃ : Ã → B̃ with f̃(⋄) = ⋄. The set of all such
templates will be denoted by F̃(A,B).

We define the determinate positions D
f̃

as the set D
f̃

:= f̃−1(B) ⊆ A. Its cardi-

nality is called the degree of determination deg f̃ := #D
f̃
. The template f̃ is injective

if its restriction f̃ | D
f̃

is injective.
We further define the indeterminate positions I

f̃
:= A \ D

f̃
as the complement of

the set of determinate positions in A. Its cardinality is called the co-degree codeg f̃ :=
#A− deg f̃ .

If the degree of f̃ takes the maximal value #A, the template has no indeterminate
positions and is said to be determinate. On the contrary, the template ⋄̃ : Ã→ B̃, ⋄̃ ≡ ⋄,
is the fully indeterminate template with the minimal degree 0.

If f̃ is a function template from A to B and g̃ is a function template from B to C,
then the concatenation g̃f̃ is a function template from A to C (for us, that is the only
reason to include ⋄ in the domain). We note that all function templates from A to A
form a monoid.

Given an indeterminate function template, new templates can be constructed by
substituting an indeterminate value in the template by a determinate value. This pro-
cess is called refinement:

Definition 2.2 (Refinement of templates)
Let f̃ , g̃ : Ã→ B̃ be templates. The template g̃ is a one-step refinement of f̃ if f̃ and g̃
agree on all positions except one indeterminate position of f̃ , i. e. if there exist a ∈ A
and b ∈ B such that f̃(a) = ⋄ and for all i ∈ A:

g̃(i) =

{

f̃(i) : i 6= a
b : i = a

In this case, we will write g̃ = 3a7→bf̃ , where 3 is called the refinement operator.
The template g̃ is said to be a k-step refinement of f̃ , k ∈ N0, if there exists a

sequence of k one-step refinements such that g̃ = 3ak 7→bk
· · ·3a1 7→b1 f̃ . The k-tuple

((a1, b1), . . . , (ak, bk)) is the refinement sequence for g̃ from f̃ .
We define 3∗f̃ as the set of all k-step refinements of f̃ where k ∈ N0 arbitrary.

The refinement operator 3 can be seen as a restriction of the substitution operator
S : F̃(A,B)× A×B → F̃(A,B), (f̃ , a, b) 7→ g̃, which substitutes the value of f̃ at the
position a by b unconditionally. The substitution operator corresponds to an elementary
state transition in a computer system that represents a memory store operation. This
illustrates the importance of the refinement operator in the procedural interpretation
of partial functions.
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Clearly, any refinement sequence for g̃ from f̃ is uniquely determined up to the
order of its elements, because the refinement operators commutate. This motivates the
following definition:

Definition 2.3 (Left-refinement)
Let g̃ be a one-step refinement of f̃ such that g̃ = 3a7→bf̃ . Then g̃ is called a one-step
left-refinement of f̃ if f̃(i) 6= ⋄ for all i < a. In this case, we will write g̃ = 3

ℓ
a7→bf̃ .

The template g̃ is said to be a k-step left-refinement of f̃ , k ∈ N0, if there exists a
sequence of k one-step left-refinements such that g̃ = 3

ℓ
ak 7→bk

· · ·3ℓ
a1 7→b1

f̃ .

We define 3
ℓ
∗f̃ as the set of all k-step left-refinements of f̃ where k ∈ N0 arbitrary.

We say that g̃ is a left-refined template if g̃ ∈ 3
ℓ
∗⋄̃.

In any step of a left-refinement the indeterminate value with the lowest position
is made determinate. If a template g̃ is a left-refinement of a template f̃ , then the
left-refinement sequence is uniquely determined.

2.1.2 Compatible functions

We now proceed with the functional view on partial functions and develop the relation-
ship between functions and function templates.

Definition 2.4 (Compatible functions)
Let f̃ : Ã → B̃ be a template and f : A → B be a function. Then f and f̃ are said to
be compatible if they agree on all determinate positions of f̃ , i. e. if for all a ∈ A with
f̃(a) 6= ⋄ we have that f(a) = f̃(a).

The set of all functions compatible with f̃ will be denoted by 3•f̃ .

Let f̃ be a determinate template and f be a function compatible with f̃ . Then it
holds that f ≡ f̃ |A and thus 3•f̃ consists of a single element. In this case, we will
simply identify f̃ with f and write f̃ = f .

The following lemma illustrates why 3 is called the refinement operator.

Lemma 2.5 Let f̃ : Ã→ B̃ be an indeterminate template and a ∈ A be an indetermi-
nate position of f̃ . Then:

1. 3•3a7→bf̃ = {f ∈ 3•f̃ | f(a) = b} for all b ∈ B

2. The template f̃ has #B different one-step left-refinements which partition the set
of compatible functions:

3•f̃ =
⊎

b∈B

3•3a7→bf̃ (2.1)

3. The number of functions compatible with f̃ is #3•f̃ = #Bd where d := codeg f̃ .
It follows that the partitions in (2.1) have equal size.
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2.1.3 Examples

We conclude this section with some elementary examples. Further applications of func-
tion templates can be found in Section 2.3 and in all backtrack algorithms throughout.

Example 2.6 Let f : A → B be a function. The templates that are compatible with
f can be mapped to the selector functions F(A, {false,true}) in the following way:
f̃ 7→ s ∈ F(A, {false,true}) if and only if for all a ∈ A:

s(a)

{

true : f̃(a) = ⋄
false : else

Thus there are 2#A templates compatible with f .

Example 2.7 A k-step refinement increases the degree of determination by k. There-
fore every determinate template in F̃(A,B) is a #A-step refinement of the fully inde-
terminate template ⋄̃.

In particular, every function s : F
n
2 → F

n
2 is a 2n-refinement of ⋄̃. Its unique left-

refinement sequence is ((0, s(0)), . . . , (2n − 1, s(2n − 1))), and any permutation of this
is another refinement sequence for s.

2.2 Index function

The following definition allows us to represent a finite, ordered set by natural numbers.
It is used for notational convenience.

Definition 2.8 (Index function)
Let A be a finite, ordered set. Then the index function idxA : A 7→ [0,#A − 1] ⊂ N0

is defined by idx(a) := #{i ∈ A | i < a}. We write idx for idxA if the domain is
determined by the context.

We write A[i] := idx−1
A (i) for the i-th element in A.

The index function yields the position of its argument in the given order of the set,
starting from 0 for the smallest element.2

Example 2.9 Let A,B be finite, ordered sets. For f ∈ F(A,B) let fi := idxB f(A[i])
for 0 ≤ i < #A − 1. The set F(A,B) has #B#A elements and can be identified with
the set [0,#B#A − 1] ⊂ N0 by means of the bijection:

f 7→ (f#A−1 . . . f0)#B (2.2)

This shows that enumerating the functions in F(A,B) is equivalent to listing the natural
numbers from 0 to #B#A − 1 to the base #B.

Example 2.10 Let A,B be finite, ordered sets. Then g̃ ∈ F̃(A,B) is left-refined if and
only if Dg̃ = idx−1([0; deg g̃ − 1]) = {A[0], . . . , A[deg g̃ − 1]}.

2Real Programmers count from zero.
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2.3 Backtrack

Several problems solved in this thesis are constraint satisfaction problems of a combi-
natorial nature, such as finding all vectorial boolean functions that satisfy the APN
property. We assume that for a complete classification of all such functions an exhaus-
tive search is the appropriate method, for example because no algebraic solution in
closed form is known for the constraints that must be satisfied.

The number of vectorial boolean functions is #F(Fn
2 , Fn

2 ) = (2n)2
n

of which 2n! are
permutations. Super-exponential growth of this kind precludes linear search (a. k. a. brute
force) algorithms if n > 3. It is therefore necessary to partition the set of all functions
into suitable disjoint subsets and make statements about all members of a subset at
once.

A first idea would be to enumerate equivalence classes according to some interesting
stability property and analyse only a single representantive from each class. However,
this approach can fail if it is computationally hard to enumerate exactly one represen-
tantive from each class, or if there are still too many equivalence classes. For example,
no efficient method to list all CCZ equivalence classes in F(Fn

2 , Fn
2 ) is currently known,

and the number of affine equivalence classes is huge for n > 4, see Section 4.2.3.

2.3.1 Basic backtrack algorithm

To avoid linear search, it is necessary to partition the search space into coarser sets
than equivalence classes given naturally by interesting mathematical properties. If we
succeed in excluding all members of such a coarser subset with an efficient test, we might
be able to overcome the limitations of linear search. On the other hand, if the partitions
are too coarse we might not be able to make specific interesting statements about their
members. This suggest an adaptive approach where we start with coarse partitions
which are then step-wise refined. This is the core idea of backtrack programming which
has been independently developed and applied by many people. Early descriptions can
be found in [Leh57] and [Wal60], and the first formal treatment is due to [GB65].

Definition 2.11 (Backtrack problem)
A backtrack problem P is a tuple (A,B, ρ, φ) where A and B are finite, ordered sets,

ρ : F(A,B) → {true, false} is the result predicate and φ : 3
ℓ
∗⋄̃ → {true, false} is

the filter predicate satisfying the following condition for all f ∈ F(A,B):

ρ(f) = true ⇐⇒ (φ(f̃) = true for all f̃ ∈ 3
ℓ
∗⋄̃ with f ∈ 3•f̃) (2.3)

The solution L(P ) ⊆ F(A,B) of the backtrack problem P is the set L(P ) := ρ−1(true).

The domain A, usually an index set, and the codomain B specify the search space
F(A,B) = 3•⋄̃ of the problem. The result predicate indicates the functions that are
considered to be a solution to the problem, and the filter predicate φ(f̃) provides an
upper bound (with false < true) of the values ρ(f) for all functions f compatible
with f̃ .

The backtrack problem has a natural interpretation as a tree structure. The associ-
ated tree consists of the set of all left-refined templates 3

ℓ
∗⋄̃ as nodes, and all one-step
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left-refinements g̃ = 3
ℓ
A[i] 7→gi

f̃ as edges from f̃ to g̃ labeled with gi where i is simply the

depth of f̃ in the tree. The root of the tree is ⋄̃, and the leaves are the fully determinate
functions 3•⋄̃. In fact, the tree is a complete, ordered tree of order #B with height #A
and thus the number of nodes is:

T#B(#A) :=

#A
∑

i=0

#Bi =

{

(#B#A+1 − 1)/(#B − 1) : #B 6= 1
#A + 1 : #B = 1

(2.4)

The result predicate ρ labels all leaves of the tree with a boolean value. The filter φ
labels each node of the tree with a boolean value with the property that a path from
the root to a leaf is labeled with true at every node if and only if the leaf is labeled
true by ρ.

Note that in the literature (e. g. [Knu75], but not [Far78]) usually the stricter re-
quirement is made for φ that for all g̃ ∈ 3

ℓ
∗ it holds that:

φ(g̃) = true ⇐⇒ (φ(f̃) = true for all f̃ ∈ 3
ℓ
∗⋄̃ with g̃ ∈ 3

ℓ
∗f̃) (2.5)

Then φ | F(A,B) ≡ ρ and the result predicate is implicit in φ. However, the weaker form
above is sufficient for Algorithm 1 and more convenient, because it allows to optimise
the filter predicate to check only for new failure conditions that result from the last
one-step left-refinement that lead to f̃ . If desired, the stricter filter predicate can be
recovered from φ by defining for f̃ = 3

ℓ
A[k] 7→fk

· · ·3ℓ
A[0] 7→f0

⋄̃:

φS(f̃) :=
k
∧

i=0

φ
(

3
ℓ
A[i] 7→fi

· · ·3ℓ
A[0] 7→f0

⋄̃
)

(2.6)

With this stricter filter predicate, Condition 2.3 in Definition 2.11 is equivalent to:

ρ ≡ φS | F(A,B) (2.7)

The following definition illustrates what the stricter requirement (2.5) means for the
associated tree:

Definition 2.12 (Active search tree)
Let P be a backtrack problem. Then the active search tree T is the subtree of the

associated tree spanned by the nodes that are labeled true by φ and which have only
ancestors labeled true by φ. That means, using (2.6):

T := {f̃ | φS(f̃) = true} (2.8)

The backtrack problem is solved by a pre-order walk through the associated tree,
thus enumerating the left-refinements f̃ of ⋄̃ and evaluating the filter predicate φ(f̃) at
each step. If the filter yields false, the result predicate yields false for all functions
f compatible with f̃ . In this case the template is not compatible with any solution
and thus no further refinement is necessary. At this point, a different refinement of an
earlier considered template has to be chosen (this step is called backtrack and gives the
algorithm its name). However, if we reach a leaf node f because φ yields true for all
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Figure 2.1: An example search tree

The optimal, ordered search tree for a backtrack problem P which lists all multi-sets with k out
of three elements, where k is the depth of the tree. The active search tree is shown in black,
nodes labeled with false are shown in gray. All other labels have been omitted.

nodes from the root to the leaf, we know that ρ(f) = true and we found a solution.
It is clear that this search visits exactly all nodes of the active search tree and their
immediate children.

In the worst case the filter φ is true on all indeterminate templates, and all
T#B(#A) − #B#A = (#B#A − 1)/(#B − 1) internal nodes have to be visited in
addition to the leaves (for these examples, let #B 6= 1). This is worse than linear
search, so in this case backtrack is a failure. However, if φ(f̃) = false for a tem-
plate f̃ with co-degree d, then T#B(d) − 1 nodes are pruned (a complete subtree of
height d excluding its root). For example, if d = #A− 1 then the excluded subtree has
T#B(#A−1) = (#B#A−1)/(#B−1) nodes, thereby completely amortizing the cost of
backtrack. In the best case there exists a path from every node f̃ labeled φ(f̃) = true

to a leaf node f ∈ 3
ℓ
∗f̃ with ρ(f) = true. Then no dead-ends (nodes that do not lead

to a solution) are followed and the active search tree has minimal size.

Algorithm 1 Solve the backtrack problem P := (A,B, ρ, φ)

procedure Backtrack(f̃)
if φ(f̃) = true then

if codeg f̃ = 0 then
Output(f̃) ⊲ Found solution f̃ = f

else
for all b ∈ B do

Backtrack (3ℓ

A[deg f̃ ] 7→b
f̃)

end for
end if

end if
end procedure

Backtrack (⋄̃) ⊲ Invocation

Algorithm 1 solves the backtrack problem P := (A,B, ρ, φ). There are several
variations of this algorithm in the literature which will not be used in this thesis. Some
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descriptions restrict f(A[i]) to different subsets of the codomain Bi ⊆ B, 0 ≤ i < #A.
This can easily be handled by replacing the set B in line 6 with Bdeg f̃

. Some allow to
select other refinements than left-refinements at any step. In Lemma 4.8 we will show
that left-refinements are an appropriate choice for the specific problems we deal with
in this thesis. Some variations limit the codomains such that “isomorph” solutions can
not occur more than once. We will make that – just like preclusion – an obligation of
the filter predicate in Section 4.2.

2.3.2 Problem representation and representation problems

There is substantial freedom in the representation of the search problem by the sets
A,B and in the choice of φ for internal nodes. We will now discuss the choices we make
for the applications in this thesis and give some necessary conditions that the problems
must fulfil for the chosen representation to be appropriate. Later on we will demonstrate
that these conditions are fulfilled, and of course we find further justification after the
fact in producing the actual results.

There are several interesting non-trivial ways to represent vectorial boolean func-
tions, for example in algebraic normal form or as Walsh-transform, but it is not clear how
such representations could support efficient filter predicates for the constraints we are
trying to satisfy. In particular, the APN property is defined by the additive structure,
while the algebraic normal form and the Walsh-transform are based on multiplication.
Therefore it seems appropriate to choose the function look-up table as the most natural
representation.

Care has to be taken if one wants to satisfy several different constraints at the same
time, for example when one wants to find all bijective APN functions, or only one APN
function in each equivalence class according to some equivalence relation. In this case,
the same representation has to support efficient filters for any of the desired constraints
to achieve maximum impact on pruning.

We will use backtrack problems (Fn
2 , Fn

2 , ρ, φ), and directly identify a template s̃ ∈
F̃(Fn

2 , Fn
2 ) with a vectorial boolean function template. This choice can only be justified

by its consequences which will be demonstrated further below. The following note
provides a basis for evaluation.

Note 2.13 (Evaluation of problem representation)
When selecting filters φ for a backtrack problem P as above, the following two require-
ments should be fulfilled as far as possible:

1. The filter should have a high probability to fail function templates f̃ with a low
degree of determination. This ensures that backtrack is applicable to the problem
in the first place.

2. For any template f̃ and any compatible function f the one-step left-refinement
with f ∈ 3

ℓ
a7→f(a)f̃ should have a high probability of satisfying the constraints less

(or equally) than any other one-step refinement with f ∈ 3a′ 7→f(a′)f̃ . This ensures
that choosing left-refinements in the recursive descend is not a limitation.
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The requirements in Note 2.13 are only heuristic. The filter will often have a higher
probability to fail templates with a high degree of determination because then more
information is available about the compatible functions. Also, refinement sequences
other than left-refinements may lead at times to a better pruning of the search tree.
However, in the absence of better global knowledge about the behaviour of the filter
predicate with regards to the refinement sequence chosen, the heuristics above have
proven to be useful in practice.

2.3.3 Backtrack with stateful filters

A typical application of backtrack programming that we need later on is generating all
permutations in Sn for n ∈ N0.

The filter φσ is checking the constraint that no value from 0 to n− 1 occurs twice in
the image of the permutation template. However, it is unnecessarily expensive to per-
form this check given only the currently considered template. Instead, we could use the
information obtained by earlier refinements to avoid assigning an already assigned value
to another position as well. This enhancement of backtrack is called preclusion [Leh57]
because assigning a value f(a) to the position a precludes that the same value f(a)
is assigned to any other position. More generally, preclusion can be seen as a filter
predicate that is optimised by carrying along additional state beside f̃ throughout the
recursion. Modifications to this state must then be rolled back when backtrack occurs.
Such additional state can also be used to avoid repetitive calculation in other filters
which traditionally would not be considered preclusions.

Definition 2.14 (Backtrack problem with stateful filter)
A backtrack problem P with a stateful filter φ is a tuple (A,B, ρ, φ,Σ, S⋄̃) where A,B
are finite, ordered sets, ρ : F(A,B) → {true, false} is the result predicate, Σ is a
finite set of states with false ∈ Σ, and S⋄̃ ∈ Σ is the initial state. Finally, φ is the
stateful boolean filter predicate φ : Σ × B → Σ such that P̂ := (A,B, ρ, φ̂) with φ̂ as
defined below is a backtrack problem.

The filter φ induces a function Sφ : 3
ℓ
∗⋄̃ → Σ as follows, writing φb(S) for φ(S, b):

Sφ(f̃) := φfk−1
· · ·φf0S⋄̃ for f̃ = 3

ℓ
A[k−1] 7→fk−1

· · ·3ℓ
A[0] 7→f0

⋄̃ (2.9)

The function Sφ in turn induces a function φ̂ : 3
ℓ
∗⋄̃ → {true, false} with

φ̂(f̃) :=

{

false : Sφ(f̃) = false

true : else
(2.10)

The solution L(P ) ⊆ F(A,B) of the backtrack problem P with a stateful filter is
L(P ) := ρ−1(true).

Although its definition is complex, a stateful filter is conceptually very easy: Each
node f̃ in the associated tree of the backtrack problem is labeled by φ with a state
Sφ(f̃). The state of a node and the label of the edge to one of its children are used to
calculate the state of that child. Note that in this formalisation all knowledge about f̃
that φ can access is subsumed by Sφ(f̃) in cause for a lighter notation. This is not a loss
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of generality, as it is always possible to expand the state space by Σ′ := Σ × 3
ℓ
∗⋄̃ and

removing all unreached states. In an actual implementation this overhead can easily be
avoided (see Section A.2).

The construction of P̂ in the definition contains a simulation of the backtrack prob-
lem P̂ using P . Both have the same solution set, but their computational complexity is
very different. In the simulation, φb(Sφ(f̃)) is evaluated once for every descendant node
g̃ ∈ 3

ℓ
∗f̃ visited by the backtrack search. Algorithm 2 solves the backtrack problem

with a stateful filter P := (A,B, ρ, φ,Σ, S⋄̃) much more efficiently, evaluating φb(Sφ(f̃))
only once for every visited node.

Algorithm 2 Solve the backtrack problem P := (A,B, ρ, φ,Σ, S⋄̃). Note that φb is
never invoked with the argument S = false.

procedure Backtrack(f̃ , S)
if S 6= false then

if codeg f̃ = 0 then
Output(f̃) ⊲ Found solution f̃

else
for all b ∈ B do

Backtrack (3ℓ

A[deg f̃ ] 7→b
f̃ , φb(S))

end for
end if

end if
end procedure

Backtrack (⋄̃, S⋄̃) ⊲ Invocation

To carry on with the permutation example, the stateful filter φσ can keep track of
the (determinate) image of σ̃ as a subset of B. The set of states is Σ := ℘(B)∪{false},
the initial state is S⋄̃ := ∅, and then we let:

φb(S) :=

{

false : b ∈ S
S ∪ {b} : else

In this example every one-step refinement will purge exactly one descendant sub-tree
from every inner node of the search tree without regards to which value is substituted
for ⋄ at which position. Thus, the probability that the filter fails σ̃ is deg σ̃/#B.
Furthermore, the order of refinements does not matter and a left-refinement is as good
as any other choice; there is no prejudice towards the choice of position or value in
selecting the next refinement that satisfies the constraints the least. This means that
both requirements in Note 2.13 are fulfilled.
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2.4 Isomorph rejection in backtrack algorithms

The constraints satisfied by the solutions of a backtrack problem are often stable under
some transformations. For example, the fact that a configuration of n queens on an
n × n chess board solves the classical n queens puzzle is stable under the action of
the symmetry group D8 of the (uncoloured) chess board. The orbits under the group
action partition the search space and thus induce an equivalence relation. The mod-
ified constraint satisfaction problem then becomes the problem of finding exactly one
representative from each equivalence class satisfying the solution. In principle, all so-
lutions can then be recovered by reconstructing all members of the equivalence class
given by a specific representative. By pruning those subtrees from the search tree which
do not contain any representatives, the search space and the solution set can be vastly
reduced in size. Filter predicates with this property will be called canonicity filters (see
Definition 2.17 below).

2.4.1 Canonicity filter

Isomorph rejection in backtrack programming has been studied extensively in conjunc-
tion with combinatorial problems in graph theory. A simple technique that requires
only constant space was developed independently several times and first published by
Faradžev [Far78] and Read [Rea78]. This method is based on defining a canonical rep-
resentative that is extremal among all members of the same equivalence class under
some order. If a bound can be calculated for the index of all functions compatible to
a template, it may be possible to fail the template and prune all its refinements in a
backtrack search.

Definition 2.15 (Lexicographical order)
Let A and B be finite, ordered sets. With the notation from Example 2.9, p. 8, the
orders on A, B and N0 induce an order < on F(A,B) in the following way:

f < g ⇐⇒ (f#A−1 . . . f0)#B < (g#A−1 . . . g0)#B (2.11)

We extend this to a partial order < on F̃(A,B) by letting f̃ < g̃ if and only if f < g
for all f ∈ 3•f̃ and g ∈ 3•g̃.

Note that the partial order in the definition coincedes with the total lexicographic
order on all functions in F(A,B) defined above. We use this order to define the canonical
representatives as the smallest member of each equivalence class.

Definition 2.16 (Canonical representatives)
Let A, B be finite ordered sets. Let ≃ be an equivalence relation on F(A,B). Then the
canonical set of representatives for ≃ is the set:

R≃ := {f ∈ F(A,B) | f ≤ f ′ for all f ≃ f ′} (2.12)

Definition 2.17 (Canonicity filter)
Let A,B be ordered sets and ≃ an equivalence relation on F(A,B). Define the result

predicate ρ≃ by:
ρ≃(f) = true ⇐⇒ f ∈ R≃ (2.13)
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Then φ≃ : 3
ℓ
∗⋄̃ → {true, false} is a canonicity filter for ≃ if (A,B, ρ≃, φ≃) is a

backtrack problem.

If P = (A,B, ρ, φ) is a backtrack problem, then P ′ = (A,B, ρ′, φ′) with ρ′(f) =
ρ(f) ∧ ρ≃ and φ′(f̃) = φ(f̃) ∧ φ≃(f̃) is a backtrack problem with the solution L(P ′) =
L(P ) ∩R≃.

2.4.2 Weak canonicity filter

A canonicity filter fails a template only if the template has no canonical representatives
among its compatible functions. We capture this observation in a definition.

Definition 2.18 (Weak canonicity filter)
Let A,B be ordered sets and ≃ an equivalence relation on F(A,B). Then φw

≃ : 3
ℓ
∗⋄̃ →

{true, false} is a weak canonicity filter for ≃ if:

3•f̃ ∩R≃ 6= ∅ ⇒ φw
≃(f̃) = true (2.14)

Note that a weak canonicity filter for ≃ is not a canonicity filter for ≃. Equa-
tion (2.14) is a necessary but not sufficient condition for a canonicity filter: It en-
sures that the backtrack search will not suppress valid solutions, but it does not pre-
vent the production of false positives which are not ≃ canonical. That means if
P≃ = (A,B, ρ≃, φ≃) and Pw

≃ = (A,B, ρw
≃, φw

≃) are backtrack problems, we have:

L(P≃) ⊆ L(Pw
≃ ) (2.15)

We call the elements of L(Pw
≃ ) candidates. To recover the solution L(P≃) from the set

of all candidates we have to determine in a post-processing step which candidates are
≃ canonical and which are not. This puts weak canonicity filters at a disadvantage.
However, the benefit is that they can be implemented more efficiently than proper
canonicity filters.

Determining the ≃ canonical candidates efficiently may require elaborate reasoning
and manual effort. We will now describe three general techniques that can be used to
perform this post-processing. All of these techniques will be applied to specific problems
in Section 4.2.4 and Section 4.3.2.

Canonicity: A canonicity filter φ≃ may exhibit a worst case behaviour that makes it
unusable in a backtrack problem. But if it has good average case behaviour it may still
be useful to reject many candidates. This works particularly well if the canonicity filter is
weakened first, for example by forcing it to return true if it does not terminate within
a certain time limit or by adding a (possibly human-operated) oracle that provides
heuristic guesses. If this weakened filter is stronger than φw

≃ at least for some candidates,
it can be used to reject those.
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Equivalence: Even if there is no efficient canonicity filter φ≃, there may be an efficient
equivalence test s ≃ t. In this case, and if the number of candidates is small, the
following naive approach at isomorph rejection will perform well: We iterate over the
candidates in lexicographical order, beginning with the smallest. For each candidate,
we test its equivalences to all known canonical representatives. If the candidate is not
equivalent to any of those, it is itself a canonical representative and we add it to the
list of known ones to test against. After all candidates have been processed, this list
contains all canonical representatives among the candidates. Algorithm 3 implements
this method.

Algorithm 3 Naive method to determine a set of canonical representatives L := L(R≃)
from a candidate set Lw := L(Rw

≃).

function Can(Lw)
var L ∈ ℘(F(Fn

2 , Fn
2 ))

L← ∅
for all s ∈ Lw do ⊲ In lexicographical order

if s 6≃ t for all t ∈ L then
L← L ∪ {s}

end if
end for

return L
end function

If this technique is used, one further optimisation suggests itself immediately. Be-
cause the equivalence test s ≃ t is executed many times for the same t ∈ L(R≃), it may
be useful to write equivalence tests s ≃t which are specific to t. We will discuss this
important optimisation in more detail later on in Section 4.2.4 and Section 4.3.2.

Invariants: Let χ : F(A,B) → X be a mapping from all determinate functions to
an indicator set X. We say that χ is ≃ invariant if it is stable under ≃. In this case
χ(s) 6= χ(t) implies s 6≃ t and χ induces a partition on F(A,B) by its preimages χ−1(x)
for x ∈ X. It is not hard to see that then for Algorithm 3:

L(R≃) = Can(L(Rw
≃)) =

⊎

x

Can(L(Rw
≃) ∩ χ−1(x)) (2.16)

This reduction is beneficial because it lowers the number of equivalence tests s ≃ t
that are executed in Algorithm 3 if more than one non-empty χ equivalence class is hit
by L(Rw

≃).

Typically we are interested in invariants that can be computed much more efficiently
than any canonicity filter or equivalence test, at the cost of being less specific. For
example, we already mentioned in Note 1.1 that the algebraic degree of a vectorial
boolean function is an extended affine invariant.
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2.5 Estimating the efficiency of backtrack algorithms

Note: The content of this subsection is due to an article by D. E. Knuth with the same
title [Knu75]. We bring in the results in our notation here, and apply the method to
our problems in later sections.

No systematic method to predict the performance of a backtrack algorithm is known.
However, there is a method to estimate the computational complexity by sampling
random paths in the search tree. The same method can be used to estimate other
functions defined on the tree, for example the number of nodes at depth k.

Let P be a backtrack problem, and T be the active search tree as defined in Def-
inition 2.12. Let c : T → R be any function defined on T , and define the total of c
by:

cT :=
∑

f̃∈T

c(f̃) (2.17)

The following theorem provides an estimate of cT based on a single random walk in
the tree without backtracking:

Theorem 2.19 Let f̃ = 3
ℓ
A[k−1] 7→fk−1

· · ·3ℓ
A[0] 7→f0

⋄̃ ∈ 3
ℓ
∗ be a node in T , and di, 0 ≤

i < k, the number of one-step left-refinements of 3
ℓ
A[i−1] 7→fi−1

· · ·3ℓ
A[0] 7→f0

⋄̃ in T (that

is the number of child nodes for the nodes along the path from the root to f̃). Define:

CT (f̃) :=
k
∑

i=0

d0d1 . . . dk−1c(3
ℓ
A[k−1] 7→fk−1

· · ·3ℓ
A[1] 7→f1

3
ℓ
A[0] 7→f0

⋄̃) (2.18)

Pick a random leaf node for f̃ . Then the expected value of CT (f̃) is cT .

Although the estimates have a high variance in general, they turn out to be rather
accurate in practice. The estimate can be improved by taking the average of many
samples CT (f̃) which will approximate cT due to the law of large numbers.

Example 2.20 Let c(f̃) = 1 if f̃ is a node at depth k, and 0 otherwise. Then the
expected value of CT = d0d1 . . . dk−1 is the number of nodes in T at depth k.
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Affine subspaces in F
n
2 of

dimension 2

The APN property is closely related to the 2-dimensional affine subspaces of F
n
2 , as

we will see in Theorem 4.3. Knowledge about construction and enumeration of 2-
dimensional affine subspaces will allow us to construct and evaluate a stateful filter
predicate for a backtrack search for APN functions.

Let A(M) be the set of all 2-dimensional affine subspaces in M ⊆ F
n
2 (not the affine

subspace generated by M). The following proposition characterises such subspaces:

Proposition 3.1 (2-dimensional affine subspaces)
The 2-dimensional affine subspaces A(M) in M ⊆ F

n
2 are the sets {t, u, v, w} ⊆ M of

four pairwise different vectors with t⊕ u⊕ v ⊕ w = 0.

Proof: Two vectors u, v ∈ F
n
2 \ {0} are linearly independent if and only if u 6= v.

“⊆”: A 2-dimensional affine subspace is a set A = t⊕ L(u, v) = t⊕ {0, u, v, u ⊕ v}
where t, u, v ∈ F

n
2 and u, v are linearly independent. Clearly A consists of four pairwise

different vectors whose sum is 0.
“⊇”: Let A = {t, u, v, w} ∈ F

n
2 be a set of four pairwise different vectors with

t⊕u⊕v⊕w = 0. Then u⊖t and v⊖t are linearly independent and A = t⊕L(u⊖t, v⊖t)
is a 2-dimensional affine subspace. 2

3.1 The case A(Fn
2)

The cardinality of A(Fn
2 ) can be calculated using gaussian binomials1 or directly, as in

the following proposition.

Proposition 3.2 (Cardinality of A(Fn
2 ))

The number of different 2-dimensional affine subspaces of F
n
2 is:

#A(Fn
2 ) =

1

4
·

(

2n

3

)

(3.1)

1See also sequence A016290 in [Slo06].

19
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N
2 OF DIMENSION 2

Proof: There are
(2n

3

)

different sets {t, u, v} of three pairwise different vectors in F
n
2 .

For each of these w := t + u + v is different from t, u and v. Thus {t, u, v, w} is
a 2-dimensional affine subspace. However, exactly three other sets of three pairwise
different vectors result in the same subspace, namely {t, u, w}, {t, v, w} and {u, v,w}.
Thus we have to divide by 4. 2

Example 3.3 There are
(8
3

)

/4 = 14 affine subspaces of dimension 2 in F
3
2:

0, 1, 2, 3 0, 3, 4, 7 1, 3, 5, 7
0, 1, 4, 5 0, 3, 5, 6 2, 3, 4, 5
0, 1, 6, 7 1, 2, 4, 7 2, 3, 6, 7
0, 2, 4, 6 1, 2, 5, 6 4, 5, 6, 7
0, 2, 5, 7 1, 3, 4, 6

3.2 Decomposition Lemma

To calculate the number #A(M) for arbitrary subsets M ⊆ F
n
2 , the following Decom-

position Lemma can be used. It is preceeded by a characterisation of the hyperplanes
in F

n
2 .

Definition 3.4 (Hyperplane in F
n
2)

Let 〈; 〉 : F
n
2 ×F

n
2 → F2 denote the canonical inner product of F

n
2 . An affine hyperplane

of F
n
2 is an n − 1 dimensional affine subspace Ha

λ = {b | 〈a; b〉 = λ} with a ∈ F
n
2 \ {0}

and λ ∈ F2.

Clearly, two hyperplanes Ha
0 and Ha

1 partition the set F
n
2 for any a ∈ F

n
2 \ {0}, that

means F
n
2 = Ha

0 ⊎Ha
1 . This partition is the basis for the Decomposition Lemma:

Lemma 3.5 (Decomposition of A(M))
Let M ⊆ F

n
2 be an arbitrary set and a ∈ F

n
2 with a 6= 0. Then the hyperplanes H0 := Ha

0

and H1 := Ha
1 partition F

n
2 , inducing a partition of A(M) into three disjoint subsets.

Let A+ := {A ∈ A(M) | #(A ∩H0) = 2}. Then:

A(M) = A(M ∩H0) ⊎A(M ∩H1) ⊎ A+

Proof: The direction “⊇” is trivial. It is also clear that the subsets are disjoint. To see
“⊆”, let A = {t, u, v, w} ∈ A(M). Then t⊕ u⊕ v⊕w = 0 ∈ H0. The set H0 (resp. H1)
is a linear (resp. affine) subspace, so H0 ⊕H0 = H0, and it holds that H0 ⊕H1 = H1

and H1 ⊕H1 = H0 (because F
n
2 has characteristic 2). This means that the number of

elements in A∩H1 must be even and thus 0, 2 or 4. It follows that A is in A(M ∩H0),
A+ or A(M ∩H1) respectively. 2

Any 2-dimensional affine subspace in F
n
2 with n ≥ 2 can be written as an intersection

of n−2 affine hyperplanes. Thus the Decomposition Lemma can be used successively to
isolate the 2-dimensional affine subspaces in M by appropriate choices of a ∈ F

n
2 \ {0}.
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3.3 The case A([0; k − 1])

If some information about the set M is available, the construction of A(M) can be
efficient and explicit, as for example in the proof of the next proposition.

Definition 3.6 Let k ∈ N0, then define A(k) to be the number of 2-dimensional affine
subspaces in [0; k − 1], that means A(0) = #A(∅) = 0 and A(k) := #A([0; k − 1]) for
k > 0.

Further define the difference ∆(k) to be the number of 2-dimensional affine subspaces
in [0; k−1] that contain the point k−1, that means ∆(0) := 0 and ∆(k) := A(k)−A(k−1)
for k > 0.

Proposition 3.7 Let k ∈ N0 such that 2 ≤ k ≤ 2n and i ∈ N0 such that 2i ≤ k − 1 <
2i+1. Then for A(k) and ∆(k) the following recurrence relations hold:

A(1) = 0

A(k) = A(2i) + A(k − 2i) +

(

k − 2i

2

)

· 2i−1

∆(1) = 0

∆(k) = ∆(k − 2i) + (k − 2i − 1) · 2i−1

Proof: We first show the relation for ∆ by induction over k. Clearly ∆(2) = 0 =
∆(1) + 0. Let now the relation be true for j < k. By the Decomposition Lemma 3.5 for
a = 2i we have:

A([0; k − 1]) = A([0; 2i − 1]) ⊎ A([2i; k − 1]) ⊎ A+ (3.2)

Note that ∆(k) is the number of 2-dimensional affine subspaces in A([0; k − 1]) which
contain the point t := k − 1. The first term on the right hand side of (3.2) contributes
none of those and the second term contributes ∆(k − 2i) by means of the bijection
j 7→ j ⊕ 2i.

This leaves A+: Choose any u ∈ [2i; k−2], v ∈ [0; 2i−1], then {t, u, v, t⊕u⊕v} ∈ A+.
This gives (k−2i−1) ·2i, but choosing v′ = t⊕u⊕v yields the same solution, so we have
to divide by 2. On the other hand, if {t, u, v, w} ∈ A+, let without loss of generality
v,w ∈ H2i

0 and thus u ∈ [2i; k − 2], because u ∈ H2i

1 \ {t}.

We now derive the relation for A(k) directly:

A(k) =

k
∑

j=0

∆(j) =

2i
∑

j=0

∆(j) +

k
∑

j=2i+1

∆(j)

= A(2i) +
k
∑

j=2i+1

(

∆(j − 2i) + (j − 2i − 1) · 2i−1
)
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Figure 3.1: The function ∆(k), square root scale.
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= A(2i) +
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∑

j=1

∆(j) + 2i−1 ·
k−2i−1
∑

j=0

j

= A(2i) + A(k − 2i) +

(

k − 2i

2

)

· 2i−1

2

The integer sequences A(i) and ∆(i) are, starting with i = 1:

A(i) :0, 0, 0, 1, 1, 3, 7, 14, 14, 18, 26, 39, 55, 77, 105, 140, . . . (3.3)

∆(i) :0, 0, 0, 1, 0, 2, 4, 7, 0, 4, 8, 13, 16, 22, 28, 35, . . . (3.4)

The values A(2k) are underlined and correspond to the number of two-dimensional affine
subspaces in F

k
2 . The following equations are easy to verify and show that A(2k) is cubic

in 2k, ∆(2k) is quadratic2 in 2k and ∆(2k + j) is linear in 2k for a fixed 0 < j < 2k.

A(2k) =
1

24

(

(2k − 1)3 − 2k + 1
)

(3.5)

∆(2k) =
1

6

(

2k −
3

2

)2

−
1

24
(3.6)

∆(2k + j) = ∆(j) +
1

2
(j − 1) · 2k (3.7)

The different growth of ∆(2k) and ∆(2k + j) has an analogy in the sum
∑k+j

i=j i which
grows linearly with j but quadratic with k, even if the analytical treatment of the
recurrence relation for ∆ is more complicated. A quick glance at Figure 3.1 supports
the conjecture that ∆ is well approximated by (3.6).

3.4 The case A(M), M arbitrary

The number of affine subspaces of an arbitrary set M ⊆ F
n
2 can be smaller than A(#M),

for example it is zero if M is a basis. The following proposition shows that it can never

2See also sequence A006095 in [Slo06].
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be greater and thus A(#M) constitutes an exact upper bound on #A(M). To get this
result we construct an injective mapping from A(M) to A([0; k − 1]) with k := #M .
Unfortunately, this construction is rather delicate. For example, a simple induction over
k fails, as applying the Decomposition Lemma to arbitrary sets with k elements yields
upper bounds that exceed A(k). Another failure is to successively map elements in M
to elements in [0; k − 1]: There is one 2-dimensional affine subspace in {4, 5, 6, 7}, but
none in any other set which has exactly three points in common with this one.

We combine induction over k for sets which fulfil the additional property of being
saturated (see Definition 3.8 below) and small local modifications to unsaturated sets
to saturate them.

3.4.1 The case A(M), M saturated

Definition 3.8 (Gaps and saturated sets)
Let M ⊆ F

n
2 be a set. The gaps of M is the set G(M) := N0 \M , and the minimal gap

is g := g(M) := min G(M) ≤ 2n.

The set M is saturated if M = ∅, or M = {0}, or otherwise if minG(M) ≥ 2i with
i := ⌊log2 maxM⌋ ∈ N0 being the most significant bit of max M .

Example 3.9 The set M1 := {0, 1, 2, 3, 5, 7} is saturated, while the set M2 := {0, 1, 3, 4,
6, 7} is not. If one writes the numbers from 0 to 2i − 1 below the numbers from 2i to
2i+1− 1 and marks those that belong to the set Mj , the following diagrams result. Note
that the set is saturated if and only if the lower row is completely marked.

M1=̂
4

0
saturated M2=̂

4

0
not saturated

A different way to look at saturated sets may be helpful to motivate their name: A
non-empty set M with maxM > 0 and i := ⌊log2 maxM⌋ ∈ N0 is saturated if and only
if M ∩H2i

0 = H2i

0 . Because of this property saturated sets provide an ideal target for
the Decomposition Lemma.

Lemma 3.10 (2-dimension affine subspaces of saturated sets)
Let M be a saturated set, M 6= ∅, M 6= {0} and i := ⌊log2 maxM⌋ ∈ N0. Then the

following equation holds with k = #M :

#A(M) = A(2i) + #A(M \ [0; 2i − 1]) +

(

k − 2i

2

)

· 2i−1

Proof: First, apply the Decomposition Lemma with a = 2i. Using that M ∩H2i

0 = H2i

0

because M is saturated, we can apply Proposition 3.7 to #A(M ∩ H2i

0 ) which gives

A(2i). Clearly M ∩H2i

1 = M \ [0; 2i − 1].

This leaves A+ (cf. proof of Proposition 3.7): Let t := max M . Choose any u ∈
M ∩ [2i; t− 1], v ∈ [0; 2i − 1], then {t, u, v, t ⊕ u⊕ v} ∈ A+. This gives (k − 2i − 1) · 2i,
but choosing v′ = t ⊕ u ⊕ v yields the same solution, so we have to divide by 2. On
the other hand, if {t, u, v, w} ∈ A+, let without loss of generality v,w ∈ H2i

0 and thus

u ∈M ∩ [2i; t− 2], because u ∈ H2i

1 \ {t}. 2
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3.4.2 Saturation of arbitrary sets

If M is a saturated set, in general (M \H2i

0 ) ⊕ 2i is not again a saturated set, and of
course not every set is saturated to begin with. The following lemma overcomes this
problem by showing that every set can be mapped to a saturated set without decreasing
the number of 2-dimensional affine subspaces it contains.

Lemma 3.11 Let M ⊆ F
n
2 be an arbitrary subset. Then there exists a saturated set

M ′ ⊆ F
n
2 with #M = #M ′ and #A(M) ≤ #A(M ′).

Proof: The claim is trivial if M is saturated, then M ′ = M is a solution. So assume
that M is not saturated, and thus M 6= ∅, M 6= {0}. Let g := min G(M) and let
i be the largest integer such that 2i ≤ g if g > 0 and let i := −1 if g = 0. Then
m := max M ≥ 2i+1 because M is not saturated, and there exists an integer j with
j > i and 2j ≤ m < 2j+1.

We will now map m to g without affecting the elements below the minimal gap, and
without decreasing the number of 2-dimensional affine subspaces. Iterating the process
will lead to a sequence of sets which terminates in a saturated set with at least as many
2-dimensional affine subspaces as M . For clarity we will present the mapping that does
this trick in two steps.

Shuffle: As a first step, consider the affine function α ∈ F(Fn
2 , Fn

2 ) which maps 2j

to m ⊕ g and leaves all other powers of 2 constant. Because m ⊕ g lies in H2j

1 , the
function α maps a basis to a basis and is thus a bijection on F

n
2 and leaves the number

of 2-dimensional affine subspaces in an arbitrary subset invariant. Furthermore, α is
constant on [0; 2i+1 − 1] ⊂ [0; 2j − 1] and 2j ≤ maxα(M) < 2j+1. The desired outcome
of applying α on M is α(m) = g⊕2j , that means α shuffles the elements of H2j

1 around
so that at least one of them is at the location of the minimal gap g modulo 2j . We shall
call the set S := {s ∈ G(α(M)) ∩ H2i

0 | s ⊕ 2j ∈ M} the set of sinkable positions of
α(M).

Sink: In the second step, we will map all sinkable elements of α(M) to their re-
spective gaps. Let σ be the permutation on F

n
2 which swaps each element s ∈ S with

s⊕ 2j and does not affect any other element. It is clear that σα(M) = S ⊎M \ (S ⊕ 2j)
and thus [0; g] ⊆ σα(M), so we have min G(σα(M)) > min G(M). That means σ sinks
each sinkable element of α(M) into its associated gap, while leaving all other elements
invariant. In the process, the minimal gap is filled as well.

Monotony of #A: We shall see now that #A(M) = #A(α(M)) ≤ #A(σα(M)).
For this, we have to construct an injective mapping sA : A(α(M)) → A(σα(M)).
Unfortunately, this is rather tricky. We will require that sA leaves the values of A
invariant modulo 2j . The we only need to show that sA is injective on each subset
At,u,v,w = {{t′, u′, v′, w′} ∈ A(α(M)) | t ≡ t′, u ≡ u′, v ≡ v′, w ≡ w′ (mod 2j)} with
t, u, v, w ∈ [0; 2j − 1], not necessarily pairwise different. To differentiate between the
possible cases, we characterize a position t < 2j by its signature sig : [0; 2j − 1] →
{ , , , } with:

sig t :=















: t /∈ α(M), t ⊕ 2j /∈ α(M)
: t ∈ α(M), t ⊕ 2j /∈ α(M)
: t /∈ α(M), t ⊕ 2j ∈ α(M)
: t ∈ α(M), t ⊕ 2j ∈ α(M)
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In other words (and for all positions mod 2j), the symbol denotes a position with
a gap above a gap, an element in the saturated part of α(M) that does not have a
corresponding candidate for sinking, a position at which a sinkable element resides
and a position with a candidate for sinking that is blocked by a corresponding element
in the saturated part.

We will now define sA on the sets At,u,v,w based on the multi-set sig {t, u, v, w}.

• If S ∩ {t, u, v, w} has even cardinality (i. e. 0, 2 or 4) then let sA | At,u,v,w be the
concatenation of all transpositions (x, x⊕ 2j) where x ∈ S ∩ {t, u, v, w}.

• Otherwise, if ∈ sig {t, u, v, w} then take y := max{x ∈ {t, u, v, w} | sig (x) = }
and let sA | At,u,v,w be the concatenation of the transposition (y, y ⊕ 2j) with all
transpositions (x, x⊕ 2j) where x ∈ S ∩ {t, u, v, w}.

• In all other cases the set At,u,v,w is actually empty, because a 2-dimensional affine

subspace in it would necessarily have an odd number of points in H2j

1 , a contra-
diction.

To illustrate these rules, assume that ∈ sig {t, u, v, w} (otherwise sA | At,u,v,w is simply
the identity). In that case t⊕ 2j /∈ A for every A ∈ At,u,v,w and {t, u, v, w} are pairwise
different. Up to renaming the variables this case splits into 10 distinct sub-cases (see
Figure 2.1, p. 11) which are listed in Table 3.1.

Table 3.1: The mapping sA from the proof of Lemma 3.11.

sig (t, u, v, w) sA | At,u,v,w

( , , , ), ( , , , ) n/a, the set At,u,v,w is empty
( , , , ), ( , , , ) (t, t⊕ 2j)(u, u ⊕ 2j)(v, v ⊕ 2j)(w,w ⊕ 2j)
( , , , ), ( , , , ) (t, t⊕ 2j)(u, u ⊕ 2j)
( , , , ), ( , , , ) (t, t⊕ 2j)(u, u ⊕ 2j)
( , , , ) (t, t⊕ 2j)(x, x ⊕ 2j) where x = max{u, v}
( , , , ) (t, t⊕ 2j)(x, x ⊕ 2j) where x = max{u, v,w}

All these restrictions of sA are permutations generated by an even number of trans-
positions (x, x⊕ 2j), x ∈ {t, u, v, w} with sig x ∈ { , }. Because they are permutations,
they are injective. Because a transpositions swaps two elements x ≡ x ⊕ 2j (mod 2j),
these restrictions leave any subspace affine invariant modulo 2j . Thus injectivity of sA
on the sets At,u,v,w is sufficient for sA to be injective. Furthermore, there is an even
number of transpositions and thus the 2-dimensional affine subspaces are mapped to
2-dimensional affine subspaces in A(Fn

2 ). Finally, because sig x ∈ { , } for all trans-
positions (x, x ⊕ 2j), these images are also in A(σα(M)). In summary we have that
sA : A(α(M))→ A(σα(M)) is well-defined and injective on its whole domain.

Iterate: The algorithm above constructs a new set σα(M) with the same number
of elements as M , and with at least the same number of 2-dimensional affine subspaces.
In addition, the minimal gap of σα(M) is strictly larger than that of M , while the
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maximum max σα(M) is bound by 2j+1. By iterating this process as often as possible
we get a sequence:

M =: M0
σ1α1→ M1

σ2α2→ · · ·
σrαr→ Mr

This sequence has a strictly monotically increasing minimal gap gl, while jl := ⌊log2 maxMl⌋
is monotonically decreasing. Eventually, the sequence terminates when gr ≥ 2jr and
thus Mr is saturated.

This sequence has the additional property that #A(Ml) ≤ #A(Ml+1) for all l ∈
[0; r − 1] from which the original claim finally follows. 2

Example 3.12 The subset {0, 1, 5, 7, 10} ⊂ F
n
2 with n = 4 does not contain any 2-

dimensional affine subspace, while the saturated set {0, 1, 2, 3, 6} has exactly one. The
following diagram shows the iterations in the sinking step of the proof.

8

0
→ 8

0
= 4

0
→ 4

0

3.4.3 Upper bound on A(M), M arbitrary

Finally we can derive the main result of this section: The exact upper bound for the
number of 2-dimensional affine subspaces in arbitrary subsets of F

n
2 .

Theorem 3.13 (Number of 2-dimensional affine subspaces)
Let M ⊆ F

n
2 be an arbitrary subset. Then:

#A(M) ≤ A(#M)

Proof: Proof by induction over k := #M . It is clear that #A(∅) = 0 = A(0) and
#A({0}) = 0 = A(1). Let k ≥ 2 and the claim be true for sets with fewer elements
than k. By Lemma 3.11 find a saturated set M ′ such that #A(M) ≤ #A(M ′). We
apply Lemma 3.10 and get:

#A(M) ≤ #A(M ′) = A(2i) + #A(M ′ \ [0; 2i − 1]) +

(

k − 2i

2

)

· 2i−1

But M ′ \ [0; 2i − 1] is a set with k − 2i + 1 < k elements, so the induction assumption
applies, and we get:

#A(M) ≤ A(2i) + A(k − 2i) +

(

k − 2i

2

)

· 2i−1 = A(k)

2

Note that this proof contains a way to construct the injective mapping from A(M)
to A([0; k − 1]) by applying the shuffle-sink algorithm from the proof of Lemma 3.11
to the sets (M ′ ∩ H2j

1 ) ⊕ 2j recursively, and then mapping the result back to H2j

1 by
adding 2j , expanding the functions outside of their domain by the identity. We do not
give the pseudocode for this algorithm, as it is not further needed here.

Also note that saturated sets are only a tool introduced to split the burden of the
proof at the point where two nested iterations interact. They are not used further in
this thesis.



Chapter 4

Classification of APN functions

In this chapter, we will develop the classification of APN functions according to the
affine and CCZ equivalence relations.

4.1 APN functions

Definition 4.1 (Almost perfect nonlinear)
A function s ∈ F(Fn

2 , Fn
2 ) is almost perfect nonlinear (APN) if the equation

s(x)⊕ s(x⊕ c) = a (4.1)

for x ∈ F
n
2 has 0 or 2 solutions for all a, c ∈ F

n
2 and c 6= 0.

We define the result predicate ρAPN : F(Fn
2 , Fn

2 ) → {true, false} by ρAPN(s) =
true ⇐⇒ sis APN, to be used as the result function in backtrack problems related to
finding APN functions.

Note that if x is a solution of (4.1), then x⊕ c is another solution because s(x⊕ c)⊕
s(x⊕ c⊕ c) = s(x)⊕ s(x⊕ c) and x 6= x⊕ c due to c 6= 0. Thus, the number of different
solutions is always even and the requirement in the definition is optimal.

Consider an affine function α ∈ F(Fn
2 , Fn

2 ). Then the equation

α(x⊕ c) = α(x)⊕ α(c) ⊖ α(0) ⇐⇒ α(x)⊕ α(x⊕ c) = α(0) ⊕ α(c) (4.2)

holds for all x, c ∈ F
n
2 . This shows that APN functions can not be approximated well

by affine functions and explains the origin of their name.

Example 4.2 Let n = 1 and s ∈ F(Fn
2 , Fn

2 ). Then s is trivially APN, because F
n
2 has

only 2 members. There are (21)2
1

= 4 such functions.

4.1.1 APN functions and affine subspaces

The following theorem shows how the APN property is related to the set of 2-dimensional
affine subspaces in F

n
2 . The first part of the theorem is central to the development and

analysis of a filter function suitable to be used in APN-related backtrack problems.

27
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Theorem 4.3 Let s ∈ F(Fn
2 , Fn

2 ). Then the following conditions are equivalent:

1. The function s is APN.

2. For all pairwise different t, u, v, w ∈ F(Fn
2 , Fn

2 ) it holds that:

t⊕ u⊕ v ⊕ w = 0⇒ s(t)⊕ s(u)⊕ s(v)⊕ s(w) 6= 0 (4.3)

(If s is a permutation, this is equivalent to the condition that no image of a 2-
dimensional affine subspace of F

n
2 is a 2-dimensional affine subspace.)

3. For the image of any 2-dimensional affine subspace A = {t, u, v, w} ∈ A(Fn
2 ) under

s the following is true:

• s(A) is not a 0-dimensional affine subspace of F
n
2 , and

• s(A) is not a 1-dimensional affine subspace of F
n
2 where #(s−1(s(a))∩A) = 2

for any a ∈ A, and

• s(A) is not a 2-dimensional affine subspace of F
n
2 .

(This is equivalent to saying that the multi-set {s(t), s(u), s(v), s(w)} is not an
affine subspace with even multiplicities.)

Proof: First we show that 1 is equivalent to 2.

“1 ⇒ 2”: Assume that s ∈ F(Fn
2 , Fn

2 ) is APN and t, u, v, w ∈ F
n
2 pairwise different

such that t⊕u⊕v⊕w = 0. Let c := t⊕u 6= 0, then we have s(t)⊕s(t⊕c) 6= s(v)⊕s(v⊕c)
because s is APN and v 6= t, v 6= u = t⊕ c. Thus, s(t)⊕ s(t⊕ c)⊕ s(v) ⊕ s(v ⊕ c) 6= 0
but t + c = u and v + c = v + t + u = w.

“2 ⇒ 1”: Assume that we have x, y, c, a ∈ F
n
2 , c 6= 0, such that s(x)⊕ s(x⊕ c) = a

and s(y) ⊕ s(y ⊕ c) = a. Then we have s(x)⊕ s(y) ⊕ s(x⊕ c) ⊕ s(y ⊕ c) = 0 and thus
x, y, x ⊕ c, y ⊕ c can not be pairwise different. But c 6= 0 so we find either y = x or
y = x⊕ c.

Now it remains to be shown that 2 is equivalent to 3.

“2 ⇒ 3”: Assume that s ∈ F(Fn
2 , Fn

2 ) is APN, and A ∈ A(Fn
2 ) is a two-dimensional

affine subspace. Then s(t)⊕s(u)⊕s(v)⊕s(w) 6= 0 and clearly s(A) is not a single point,
and thus not a 0-dimensional affine subspace. Also, s(A) is not a 2-dimensional affine
subspace because of Proposition 3.1. Let s(A) = {x, y}, x 6= y, be a 1-dimensional
affine subspace. Then without loss of generality s(t) = s(u) = x and s(v) = y. It
follows that x⊕ x⊕ y ⊕ s(w) 6= 0, so s(w) 6= y which leaves s(w) = x. This shows that
#(s−1(s(a)) ∩A) ∈ {1, 3} for all a ∈ A.

“3 ⇒ 2”: Assume that we have A = {t, u, v, w} ∈ A(Fn
2 ) pairwise different with

t⊕ u ⊕ v ⊕ w = 0 and s satisfies the conditions under 3. Consider the multi-set {s(t),
s(u), s(v), s(w)}, which we can assume without loss of generality to be ordered by
increasing multiplicity. The cases are:

• Multiplicities (1, 1, 1, 1): We have that s(t), s(u), s(v), s(w) are all pairwise differ-
ent, but do not form a 2-dimensional affine subspace and thus s(t)⊕ s(u)⊕ s(v)⊕
s(w) 6= 0.
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• Multiplicities (1, 1, 2): We have that s(t) 6= s(u) and s(v) = s(w) and it follows
that s(t)⊕ s(u)⊕ s(v)⊕ s(w) = s(t)⊕ s(u) 6= 0 trivially.

• Multiplicities (1, 3): We have that s(t) 6= s(u) = s(v) = s(w) and it follows that
s(t)⊕ s(u)⊕ s(v)⊕ s(w) = s(t)⊕ s(u) 6= 0 trivially.

• Multiplicities (2, 2): Then the image would be a 1-dimensional affine subspace
with #(s−1(s(a)) ∩ {t, u, v, w}) = 2 for all a ∈ A, a contradiction.

• Multiplicities (4): Then the image would be a 0-dimensional affine subspace, a
contradiction.

2

Example 4.4 Let n = 2 and s ∈ F(Fn
2 , Fn

2 ). Then s is APN if and only if s(0) ⊕
s(1) ⊕ s(2) ⊕ s(3) 6= 0. This means that of the (2n)2

n

= 44 = 256 functions there
are 4 · 4 · 4 · 3 = 192 APN functions (choose s(0), s(1), and s(2) out of 22, then
s(3) 6= s(0)⊕ s(1)⊕ s(2) out of 22 − 1). There are 4 · 4 · 4 · 1 = 64 functions which are
not APN, including all permutations (because 0⊕ 1⊕ 2⊕ 3 = 0).

4.1.2 APN filter predicate

We will now develop a filter predicate for the constraint that s is APN. We can fail a
left-refined template s̃ and backtrack if we can determine that 3•s̃ does not contain
any function that is APN. Condition 2 in Theorem 4.3 gives us a suitable local property
of APN functions to check. What is still missing is an efficient method to check this
condition for all 2-dimensional affine subspaces among the determinate positions of s̃.

Consider the maximum maxA of a 2-dimensional affine subspace A. If s̃ is a left-
refined template we can check Condition 2 in Theorem 4.3 only for subspaces A ⊆ Ds̃

among the determinate positions of s̃, that means for those subspaces with maxA <
deg s̃. This motivates the following partition of A(Fn

2 ):

Ai := {A ∈ A(Fn
2 )|max A = i− 1}, for 0 ≤ i ≤ 2n (4.4)

A(Fn
2 ) =

2n
⊎

i=0

Ai (4.5)

Lemma 4.5 Let φAPN be a stateful filter such that the induced filter φ̂APN(s̃) is true

if and only if s̃ satisfies Condition 2 in Theorem 4.3 on all subspaces in Adeg s̃. Then

φ̂APN satisfies (2.7), p. 10, that means:

ρAPN ≡ φ̂S
APN | F(Fn

2 , Fn
2 ) (4.6)
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Proof: For s ∈ F(Fn
2 , Fn

2 ) with s = 3
ℓ
2n−17→s2n

−1
· · ·3ℓ

07→s0
⋄̃ we have:

φ̂S
APN(s) =

2n
∧

i=0

φ̂APN(3ℓ
i−17→si−1

· · ·3ℓ
07→s0
⋄̃)

=

2n
∧

i=0

(s satisfies Condition 2 in Theorem 4.3 for A ∈ Ai)

= (s satisfies Condition 2 in Theorem 4.3 for A ∈ A(Fn
2 ))

= ρAPN(s)

2

We now turn to the implementation of the filter predicate φAPN. One possibility
would be to iterate through the subspaces {t, u, v, w} ∈ At+1, w < v < u < t = deg s̃−1,
and check that s̃(t)⊕ s̃(u)⊕ s̃(v)⊕ s̃(w) 6= 0 for each of them. The subspace sets At can
be pregenerated; to our knowledge there is no efficient1 way to generate them anyway.
However, the total time and space complexity of this algorithm (for a single walk from
the root to a leaf in the search tree) is O(A(2n)), which is cubic in 2n as was shown
in (3.5), p. 22.

A much better method is to determine, after each one-step refinement, the new
equations s̃(t)⊕ s̃(t⊕ c) = a for which solutions have now been found, where c is chosen
such that t ⊕ c < t = deg s̃ − 1. These equations can be stored in a table indexed
by (c, a) ∈ F

n
2 × F

n
2 with values in {true, ⋄}. A boolean value is sufficient, because

we do not need to remember what the solution is, only that one exists. When a table
entry already contains true a conflict arises and a backtrack occurs. Otherwise, if s̃ is
determinate and no such conflict occured, the function is APN. The following theorem
asserts the correctness of Algorithm 4.

Theorem 4.6 Algorithm 4 implements a filter φAPN for the backtrack problem PAPN :=
(Fn

2 , Fn
2 , ρAPN, φAPN,Σ, S⋄̃).

Proof: Let s̃i = 3
ℓ
i−17→si−1

· · ·3ℓ
07→s0

be the templates compatible with any function
s ∈ F(Fn

2 , Fn
2 ) and let T be the active search tree (see Definition 2.12, p. 10). Because

of Lemma 4.5 it suffices to show that for all s̃k with s̃k−1 ∈ T it holds that:

φAPN(sk−1, Ss̃k−1
) = false

⇐⇒ s̃k(t)⊕ s̃k(u)⊕ s̃k(v) ⊕ s̃k(w) = 0 for some {t, u, v, w} ∈ Ak

Note that Algorithm 4 returns false if and only if a conflict arises when writing the
table entries.

“⇒”: Assume that a conflict arises. This means that at the refinement of s̃t the
equation s̃t+1(t)⊕ s̃t+1(t⊕ c) = a with t⊕ c < t was added to the table without creating
a conflict. Then at the refinement of s̃k−1 with k− 1 =: t′ > t > t⊕ c another equation
s̃k(t

′)⊕ s̃k(t
′ ⊕ c) = a is found with t′ ⊕ c < t′. Note that necessarily t′ > t because all

1Efficient here means that there are constant time algorithms to determine the initial element and
the successor function to any natural order of the set Ai.
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Algorithm 4 The stateful filter φAPN for APN functions with Σ := (F(Fn
2 \ {0} ×

F
n
2 , {⋄,true})×F(Fn

2 , F̃n
2 )) ∪ {false}, S⋄̃ := (⋄̃, ⋄̃).

function φAPN(b, (f̃ , s̃))
var k ∈ N0

var c ∈ F
n
2 \ {0}

var a ∈ F
n
2

k ← deg s̃ ⊲ Depth of recursion
s̃← 3

ℓ
deg s̃7→bs̃

for all x ∈ [0; k − 1] do
c← k ⊕ x
a← s̃(x)⊕ s̃(k) ⊲ k = x⊕ c

if f̃(c, a) = true then
return false ⊲ Table conflict

else
f̃ ← 3(c,a)7→truef̃ ⊲ Table update

end if
end for

return (f̃ , s̃)
end function



32 CHAPTER 4. CLASSIFICATION OF APN FUNCTIONS

Figure 4.1: The configuration of the APN filter algorithm just after detecting a conflict
for s̃ = 3

ℓ
37→33

ℓ
27→23

ℓ
17→13

ℓ
07→0⋄̃. Table entries with true are marked by the depth k at

which they were written and by the equation that produced them. Rows and columns
with all false are omitted.

c=1 c=2 c=3

a=1 2: s(0)⊕ s(0⊕ 1) = 1

a=2 3: s(0)⊕ s(0⊕ 2) = 2

a=3
3: s(1)⊕s(1⊕3) = 3
4: s(0)⊕s(0⊕3) = 3

solutions entered in a single invocation of the filter are in different table entries due to
different values of c. From t′ > t > t⊕ c it follows that t′, t′ ⊕ c, t and t⊕ c are pairwise
different and the APN property is violated for {t′, t′ ⊕ c, t, t⊕ c} ∈ Ak+1.

“⇐”: Proof is by induction over k. Clearly the claim holds for any one-step re-
finement of ⋄̃, this settles the case k = 1. Assume now that the claim is true for all
k′ < k and that s̃(t)⊕ s̃(u) ⊕ s̃(v) ⊕ s̃(w) = 0 for some {t, u, v, w} ∈ Ak. Without loss
of generality assume that t < u < v < w = k − 1. Let c := t⊕ u, then u⊕ c < u < w,
w ⊕ c < w and s(u)⊕ s(u⊕ c) = s(w)⊕ s(w ⊕ c) =: a.

Because s̃k−1 ∈ T we know by the induction hypothesis that no conflict occured
for any ancestor s̃i with i < k. Thus we can reconstruct fully what happens to the
table entry (c, a): For all states Ss̃i

= (f̃i, s̃i) we have f̃i(c, a) = ⋄ for i ≤ u and
f̃i(c, a) = true for u < i ≤ w because the table entry fi(c, a) is written when the loop
in Algorithm 4 is executed for φAPN(su, Ss̃u) with x = t. Finally, if the loop is executed
for φAPN(sk−1, Ss̃k−1

) with x = v a conflict will occur for the table entry (c, a). The
only reason for the loop not to execute with x = v is that a conflict occurs for x < v.
In either case the return value is false. 2

Figure 4.1 shows an example for the internal state of Algorithm 4 at the critical step
right after a conflict occured.

4.1.3 Evaluation of φAPN

The number of memory bits needed to store the table entries is (2n − 1) · 2n and thus
only quadratic2 in 2n. At most half of the table entries will be populated at any time
during the execution of the algorithm. To check for a conflict, only deg s̃ − 1, s̃ 6= ⋄̃,
table entries have to be checked at each step, requiring this very number of fetch and
store operations. Hence time complexity (for a single walk from the root to a leaf in the
search tree) is quadratic in 2n as well.3 The downside is that some calculations which
are only needed to fail a node at a deeper depth are done early. However, the results of
these calculations are shared by all descendant nodes and thus the costs are more than

2For n ≤ 8 such a table can fit completely into the level 1 data cache of a modern desktop CPU.
3Note that because in this case every table entry is written at most once, keeping a stack of modified

table entries and undoing the modifications at rollback time (see Section A.2) increases processing space
and time only by a small linear factor.
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amortized.

The success in this construction of the filter is rooted in the way the data to cal-
culate potential conflicts is stored: An unused table entry (i. e. a single memory fetch
operation) gives a lot of information about which conflicts do not occur at that step.
This is one way in which a stateful filter function may vastly outperform a stateless one.

Example 4.7 Algorithms 2 and 4 can be combined to a program that lists all APN
functions for n = 3 in a few of seconds. There are 668128 in total, among them 10752
permutations.

If used in addition to the permutation filter φσ from Section 2.3.3, one can verify
in a couple of hours that there are no bijective APN functions for n = 4. However,
listing the existing, non-bijective APN functions for n = 4 takes too long. We will see
in Section 4.2 why that is the case and also develop techniques to deal with the cases
n = 4 and n = 5.

We will now show that the requirements in Note 2.13, p. 12, are fulfilled, and then
give quantitative results about the constraints imposed by the APN property.

Proposition 4.8 A left-refined template s̃ creates the maximum number of opportuni-
ties for conflicts Cs̃ compared to all other possible templates t̃ with the same degree.

Proof: An opportunity for a conflict is a 2-dimensional affine subspace in the set Dt̃

of determinate positions of t̃. The number of elements in Dt̃ is #Dt̃ = deg t̃. Thus,
the number of opportunities for a conflict created by t̃ is #A(Dt̃) and according to
Theorem 3.13 we have:

Ct̃ = #A(Dt̃) ≤ A(deg t̃) = A(deg s̃) = #A(Ds̃) = Cs̃

The proof uses that Ds̃ = [0; deg s̃− 1]. 2

Note 4.9 The sequence ∆(k) gives the number of new opportunities for conflicts created
at depth k of the recursion and thus is an indication for how well the filter satisfies
Condition 1 in Note 2.13, p. 12.

It is clear that this is only a heuristic approach to the problem in which order the
APN function template should be refined, because we are only looking at the number
of opportunities for new conflicts, not at the number of actual conflicts. Indeed, if
the approximation (3.6) is correct, then ∆(k) ≈ 1

6k2 ≫ 2n for sufficiently large k, and
the possible conflicts vastly overdetermine the possible values at most positions. The
opposite scenario can also occur. If, for example, we have a ridiculously high dimension
like n = 2k and s̃(i) = 2i for 0 ≤ i < 2k − 1, then all ∆(2k) possible conflicts are proper
because there are no linearly dependent vectors among s̃([0; 2k − 1]).

Example 4.10 The 2-dimensional affine subspaces {0, 3, 9, 10} and {4, 6, 8, 10} lead to
the two constraints s(10) 6= s(0)⊕ s(3)⊕ s(9) and s(10) 6= s(4)⊕ s(6)⊕ s(8), but there
is no constraint that forbids s(0) ⊕ s(3) ⊕ s(9) = s(4) ⊕ s(6) ⊕ s(8). In fact, one can
easily find APN functions with this property, for example for n = 4:
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Figure 4.2: Actual number of conflicts for n = 6 over depth k. The estimated model
values C(k) are given by crosses and the measured estimates by dots.

0 8 16 32 64

0

16

32

48

64

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s(x) 0 0 0 1 0 2 4 7 0 5 6 8 3 14 11 13

To determine the actual number of conflicts occuring at each one-step refinement,
we bravely assume that all possible conflicts ∆(k) are independent probability events
and are not influenced by the determinate values at positions smaller than k. Then the
following proposition holds:

Proposition 4.11 The estimated number of actual conflicts C(k) at the k-th one-step
refinement is

C(k) = 2n ·

(

1−

(

2n − 1

2n

)∆(k)
)

(4.7)

Proof: The probability that an individual conflict does not occur is (2n − 1)/2n, and
all conflicts are assumed to be independent, thus the probability for no conflict at the
k-th one-step refinement is (2n−1

2n )∆(k). There are 2n such one-step refinements. 2

Corollary 4.12 The expected number of nodes at level k in the active search tree T is:

2n
∏

i=0

(2n − C(k)) (4.8)

This estimate is astonishingly accurate, in particular for large n and small k, for
example k < 2n−1. The estimate for the total number of nodes breaks down for k ≈ 2n,
because the errors are propagating multiplicatively.

Note 4.13 We can now appreciate the difficulties in constructing APN functions. The
number of potential new conflicts ∆(k) grows with the square of k, and thus the number
of actual conflicts C(k) approaches 2n rapidly, see Figure 4.2. There are “breathing
holes” at every power of 2 (and small “dips” at short sums of powers of 2) where
the number of conflicts goes down, but overall an APN function is faced with about
2n − α log2 2n = 2n − αn positions for which the expected number of non-conflicting
values is close to 0, where α ∈ R>0 is a small constant.
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One should note that even if the actual number of conflicts at any particular step
were not maximal for a left-refinement, the left-refinement might still be the appropriate
choice in some situations. After all, the refinement chosen must also support other
interesting filter predicates that we want to apply at the same time, for example affine
equivalence as in Section 4.2.

4.2 Affine equivalence

Even though the estimated number of nodes in the active search tree T given by (4.8) is
not very reliable, it indicates that trying to list all APN functions for n > 4 is a hopeless
task. Not only is the search space enormous, but the number of APN functions itself
is rather large. Therefore, it is necessary to partition the vectorial boolean functions
into equivalence classes according to some equivalence relation which stabilizes the APN
property. We can then apply the methods described in Section 2.4. Suitable equivalence
relations are well known [NK93]:

Definition 4.14 (Affine and extended affine equivalence)
Two functions s, t ∈ F(Fn

2 , Fn
2 ) are said to be affine equivalent, written s ≃A t, if there

exist affine permutations α, β ∈ F(Fn
2 , Fn

2 ), such that:

t = βsα (4.9)

Two functions s, t ∈ F(Fn
2 , Fn

2 ) are said to be extended affine (EA) equivalent,
written s ≃EA t, if there exist affine permutations α, β ∈ F(Fn

2 , Fn
2 ) and an affine

function γ ∈ F(Fn
2 , Fn

2 ), such that:

t = βsα⊕ γ (4.10)

Proposition 4.15 For s, t ∈ F(Fn
2 , Fn

2 ) the following propositions hold:

1. If s ≃A t then s is APN (and bijective) if and only if t is APN (and bijective).

2. If s ≃EA t then s is APN if and only if t is APN.

3. If s is bijective then s is APN if and only if s−1 is APN.

Affine and EA equivalence are special cases of CCZ equivalence (see Section 4.3).
However, from an algorithmic point of view it is preferable to consider them separately.
The known tests for affine equivalence are more efficient than those for the more general
CCZ equivalence. For the description of these tests we need to extend the concept of
partial functions to affine functions.

4.2.1 Affine functions and refinements

Let α ∈ F(Fn
2 , Fn

2 ) be an affine function. Then α is uniquely determined by its values
on any affine basis on F

n
2 . Let b0, . . . , bn be such an affine basis. Then Algorithm 5

can be used to reconstruct the affine function α by a sequence of affine refinements
3

A
bn 7→α(bn) · · ·3

A
b0 7→α(b0)⋄̃, where each refinement expands a template compatible with α
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to an enclosing affine subspace of a higher dimension. The algorithm makes use of the
relation:

α(t⊕ u⊕ v) = α(t⊕ u)⊕ α(v) ⊖ α(0) = α(t) ⊕ α(u) ⊕ α(v)

Algorithm 5 Refinement on affine subspaces.

function 3
A
k 7→ak

(α̃)

var α̃′ ∈ F(Fn
2 , F̃n

2 )
var D ∈ ℘(Fn

2 )
α̃′ ← 3k 7→αk

α̃
D ← Dα̃

if D 6= ∅ then
var α0 ∈ F

n
2

α0 ← min D ⊲ Pick a displacement vector
for all i ∈ D \ {α0} do

α̃′ ← 3α0⊕i⊕k 7→ α̃(α0)⊕α̃(i)⊕α̃(αk)α̃
′

end for
end if
return α̃′

end function

An affine function template is the result of k affine refinements of ⋄̃ where k ∈
N0, k ≤ n + 1. Any affine (injective) function template can be refined to an affine
(bijective) function by extending the determinate positions (and values) to an affine
basis. Algorithm 6 implements this method.

Algorithm 6 Expand an affine function template α̃ to an affine function. If the tem-
plate is injective the result will be bijective.

function ExpandAffine(α̃)
var I ∈ ℘(Fn

2 )
I ← Iα̃

while I 6= ∅ do
var k ∈ F

n
2

var ak ∈ F
n
2

k ← min I
ak ← min(Fn

2 \ α̃(Fn
2 ))

α̃← 3
A
k 7→ak

α̃
I ← Iα̃

end while
return α̃

end function
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4.2.2 Affine canonicity filter

We will now develop a canonicity filter φ≃A
for affine equivalence of functions in

F(Fn
2 , Fn

2 ). An efficient algorithm to determine affine equivalence and canonicity of
functions in F(Fn

2 , Fn
2 ) is given in [BCBP03]. Algorithm 7 gives a generalisation of this

algorithm which works on functions as well as indeterminate templates:

φ≃A
(s̃) = false ⇐⇒ βs̃α < s̃ for some affine permutationsα, β (4.11)

If φ≃A
(s̃) = false then clearly R≃A

∩ 3•s̃ = ∅ and we can fail the function template
s̃. A perfect filter would check this inequality for each function in 3•s̃ separately.
By making α and β dependent only on s̃ we weaken the filter considerably, thereby
decreasing specificity but increasing efficiency. However, if s̃ =: s is determinate, there
is only one compatible function and φ≃A

(s) = true if and only if s ∈ R≃A
. This means

that Algorithm 7 implements a proper canonicity filter for affine equivalence.

The filter algorithm itself uses backtracking informally, with the current recursion
depth and function templates α̃, β̃ for α, β as state. The algorithm is based on the
two core ideas presented in [BCBP03]: The needlework effect, which means that the
guesses for α̃ and β̃ are immediately evaluated for their consequences on domain-value
constraints, and the exponential amplification of guesses, which means that for k > 0
a k-step affine refinement has 2k−1 determinate positions. The algorithm ensures that
refinements for α̃ and β̃ are always affine and injective. When the algorithm terminates
with false, α̃ and β̃ can be extended to affine permutations α and β that satisfy (4.11)
using Algorithm 6.

Note 4.16 Algorithm 7 can also be used to determine the canonical representative of the
affine equivalence class of an arbitrary function s by calculating s′ = βsα and iterating
the process until a canonical representative βm · · · β0sα0 · · ·αm has been found.

4.2.3 Evaluation of the affine canonicity filter

Affine equivalence is the preferred equivalence relation for APN permutations because it
preserves bijectivity. Using the filter φ≃A

together with the permutation filter φσ results
in a backtrack problem whose solution is the canonical set of representatives for the affine
equivalence classes of all permutations. Their number was calculated first in [Lor64] and
corrected in [dH03], and is 4 for n = 3, 302 for n = 4 but 2, 569, 966, 041, 123, 938, 084
for n = 5, which is already too large to be constructed explicitly. Thus, the filter φ≃A

is
primarily useful in conjunction with other filters that further restrict the search space,
in particular the APN filter.

The affine canonicity filter is relatively expensive, and thus it should only be run
after the APN (and permutation) filter. It is also of advantage to use it in a weaker
form. We modify the filter to return true unconditionally if the degree of s̃ is greater
than a certain cut-off depth and less than 2n (so that its validity as a proper canonicity
filter is preserved). The best cut-off depth was experimentally determined to be 11 for
n = 4 and 15 for n = 5. Beyond that depth, excluding affine equivalent functions is
slower than a brute force search using only the APN (and permutation) filter.
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Algorithm 7 The canonicity filter φ≃A
for affine equivalence.

function φ≃A
(s̃)

return φα
≃A

(s̃, (0, ⋄̃, ⋄̃))
end function

function φα
≃A

(s̃, (d, α̃, β̃)) ⊲ Make a guess for α̃
if α̃(d) = ⋄ then

for all αd ∈ [0; deg s̃− 1] do ⊲ Ensure comparability of β̃s̃α̃ and s̃
if αd /∈ α(Fn

2
) then ⊲ Ensure bijectivity of α̃

if ¬φβ
≃A

(s̃, (d, 3A
d 7→αd

α̃, β̃)) then
return false

end if
end if

end for
else

if s̃(α̃(d)) = ⋄ then
return true ⊲ β̃s̃α̃ not comparable with s̃

end if
end if

end function

function φβ
≃A

(s̃, (d, α̃, β̃)) ⊲ Make a guess for β̃
var d′ ∈ F

n
2

d′ ← s̃(α̃(d))
if β̃(d′) = ⋄ then

var β̃′ ∈ F(Fn
2
, F̃n

2
)

β̃′ ← 3
A
d′ 7→β

d′
β̃

for all βd′ ∈ [0; deg s̃] do ⊲ Ensure comparability of β̃s̃α̃ ≤ s̃
if βd′ < s̃(d) then

return false ⊲ β̃s̃α̃ < s̃
else if d = deg s̃− 1 then

return true ⊲ β̃s̃α̃ not comparable with s̃
else if ¬φα

≃A
(s̃, d + 1, α̃, β̃′) then

return false

end if
end for
return true

else
if β̃(d′) < s̃(d) then

return false ⊲ β̃s̃α̃ < s̃
else if β̃(d′) > s̃(d) then

return true ⊲ β̃s̃α̃ > s̃
else if d = deg s̃− 1 then

return true ⊲ s̃α̃ not comparable with β̃s̃
else

return φα
≃A

(s̃, d + 1, α̃, β̃)
end if

end if
end function
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Table 4.1: Canonical APN permutation in F(F3
2, F

3
2) up to affine equivalence. The

algebraic degree is also shown.

0 1 2 3 4 5 6 7 ◦

0 1 2 4 3 6 7 5 2

Table 4.2: Canonical APN permutations in F(F5
2, F

5
2) up to to affine equivalence. The

algebraic degree and equivalences to power functions are also shown.

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ◦ Aff.
1 0 1 2 4 3 6 8 16 5 10 15 27 19 29 31 20 7 18 25 21 12 14 24 28 26 11 23 13 30 9 17 22 4 x15

2 0 1 2 4 3 8 13 16 5 11 21 31 23 15 19 30 6 28 29 9 24 27 14 18 10 17 12 26 7 25 20 22 3 x11

3 0 1 2 4 3 8 13 16 5 17 28 27 30 14 24 10 6 19 11 20 31 29 12 21 18 26 15 25 7 22 23 9 3 x7

4 0 1 2 4 3 8 16 28 5 10 25 17 18 23 31 29 6 20 13 24 19 11 9 22 27 7 14 21 26 12 30 15 2 x3

5 0 1 2 4 3 8 16 28 5 10 26 18 17 20 31 29 6 21 24 12 22 15 25 7 14 19 13 23 9 30 27 11 2 x5

Both the APN filter and the affine equivalence canonicity filter have higher specificity
with increasing depth. However, they exclude different branches of the tree, and that
makes their combination very effective.

The affine equivalence is mainly interesting for permutations. For non-bijective
functions the extended affine equivalence is a more appropriate equivalence relation.
We will see how to extend Algorithm 7 for EA equivalence in the next subsection. For
now, we collect the results for the permutations in F(Fn

2 , Fn
2 ) with n = 3, 4, 5, which were

calculated using φ = φσ ∧ φAPN ∧ φ≃A
(Section 2.3.3, Section 4.1.2 and Algorithm 7).

Theorem 4.17 All bijective APN functions in F(F3
2, F

3
2) are affine equivalent, see Ta-

ble 4.1.
There are no bijective APN functions in F(F4

2, F
4
2). This was found by exhaustive

search in less than 100 ms.
There are 5 bijective APN functions in F(F5

2, F
5
2) up to affine equivalence. These

functions are all equivalent to APN power functions, see Table 4.2. This was found by
exhaustive search in under 24 hours.

4.2.4 EA canonicity filter

We will now extend the treatment of affine equivalence to EA equivalence. First, we
show that the canonical representatives of EA equivalence classes vanish on the affine
standard basis BA := {0, 20, 21, . . . , 2n−1}.

Lemma 4.18 Let s ∈ R≃EA
be a canonical representative for EA equivalence. Then

s(0) = s(2i) = 0 for all 0 ≤ i < n.

Proof: By contradiction. Let s ∈ R≃EA
and let k be the smallest number in {0, 20, 21, . . . ,

2n−1} such that s(k) 6= 0. Define:

γ := 3
A
2n−1 7→s(2n−1) · · ·3

A

2k 7→s(2k)3
A

2k−1 7→0 · · ·3
A
20 7→03

A
07→0⋄̃ (4.12)
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Then s ⊕ γ agrees with s on [0, 2k − 1] and (s ⊕ γ)(2k) = 0 < s(2k). Thus s ⊕ γ < s
which contradicts the assumption that s is the smallest element in its EA equivalence
class. 2

Let φ0 be a filter predicate that fails all templates that do not have compatible
functions vanishing on BA, and let φ be any (weak) EA canonicity filter. Then by
Lemma 4.18 it follows that φ0 ∧φ is also a (weak) EA canonicity filter which in general
will perform better than φ. We now show that φ0 ∧ φ≃A

is a weak canonicity filter for
EA equivalence:

Proposition 4.19 Let the template s̃ vanish on its determinate positions of BA. If
φ≃A

(s̃) = false then there exist affine bijections α, β and an affine function γ such
that t̃ := βs̃α + γ vanishes on its determinate positions of BA and t̃ < s̃.

Proof: By the assumption φ≃A
(s̃) = false we have affine functions α′ and β′, such

that s̃′ := β′s̃α′ < s̃. Let t̃ := βs̃′α ⊕ γ ≤ s̃′ < s̃ be the EA canonical representative of
s̃′. Then the claim follows immediately by Lemma 4.18. 2

It is not very difficult to turn Algorithm 7 into a proper EA canonicity filter by
allowing β(d′) to take arbitrary values and moving the relevant constraint checks into

the guess for γ(d), which has to be inserted at the locations just before φβ
≃A

invokes
φα
≃A

. It is also quite easy to turn φ≃A
or φ≃EA

into an equivalence test rather than a
canonicity filter by changing the constraints from

(βsα⊕ γ)(i) < s(i) to (βsα⊕ γ)(i) = t(i) (4.13)

where t is a target function. We omit the rather lengthy and mostly redundant pseu-
docode for all these slight variations.

It turns out that the resulting three stage recursion is not efficient enough to be useful
as a filter in a backtrack problem. The EA canonicity filter is vastly outperformed
by the weaker affine canonicity filter. Thus, we use φ0 ∧ φ≃A

as a weak canonicity
filter and apply the techniques described in Section 2.4.2 to recover the EA canonical
representatives from the candidate sets.

4.2.5 Evaluation of the EA canonicity filter

We find 16 (n = 4) resp. 11768 (n = 5) candidates for EA canonical representatives. We
use the inefficient EA canonicity filter with a time limit of several seconds per candi-
date to quickly eliminate 14 resp. 11760 non-canonical candidates. The two remaining
candidates for n = 4 have a different algebraic degree, therefore they are EA inequiva-
lent (Note 1.1) and canonical. The eight remaining candidates for n = 5 are separated
by their algebraic degree and the remaining EA equivalences and inequivalences are
determined by the EA equivalence test described by the modification (4.13).

An important optimisation of the EA equivalence test is exploiting self-equivalences.
The affine permutations α for which we have s = βsα form a group that acts on all
affine permutations by concatenation from the left. The orbits of this group action
induce an equivalence relation, leading to canonical representatives and canonicity filters
for α which can be used to optimise the EA equivalence test. We merely hint at this
possibility here and treat this subject more thoroughly in the context of CCZ equivalence
in Section 4.3.1.
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Table 4.3: Canonical functions in F(F3
2, F

3
2) up to EA equivalence. The algebraic degree

is also shown.

0 1 2 3 4 5 6 7 ◦

0 0 0 1 0 2 4 7 2

Table 4.4: Canonical APN functions in F(F4
2, F

4
2) up to EA equivalence. The algebraic

degree, equivalences to power functions and CCZ equivalences are also shown.

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ◦ EA CCZ

1 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13 2 x3 can.
2 0 0 0 1 0 2 4 7 0 4 6 3 8 14 11 12 3 cf. [BCP06] 1

Theorem 4.20 All APN functions in F
3
2F

3
2 are EA equivalent, see Table 4.3.

There are 2 APN functions in F(F4
2, F

4
2) up to EA equivalence, see Table 4.4. One

of those is EA equivalent to a power function.
There are 7 APN functions in F(F5

2, F
5
2) up to EA equivalence, see Table 4.5. Five

of those are EA equivalent to a power function.

Note that the three APN functions in Table 4.4 and 4.5 that are EA inequivalent
to any power function actually belong to infinite families of APN functions presented
in Theorem 1 and 2 of [BCP06]. Our contribution here is that there are no further
equivalence classes with APN functions in these dimensions.

4.3 CCZ equivalence

Affine equivalence, EA equivalence and inverse (for permutations) relations are special
cases of a more general affine equivalence, which was introduced by Carlet, Charpin and
Zinovievin in [CCZ98] and is thus nicknamed CCZ equivalence. For s ∈ F(Fn

2 , Fn
2 ) we

define the graph G(s) ⊆ F
n
2 × F

n
2 as the set:

G(s) := {(x, s(x)) | x ∈ F
n
2} (4.14)

Definition 4.21 (CCZ equivalence)
Two functions s, t ∈ F(Fn

2 , Fn
2 ) are said to be CCZ equivalent, written s ≃CZZ t, if there

exists an affine permutation λ : F
2n
2 → F

2n
2 such that:

λ(G(s)) = G(t) (4.15)

Note that in this case λ ≡ (λ1, λ2) for two affine functions λ1,2 : F
2n
2 → F

n
2 where

λ1(x, s(x)) is a bijection.

Proposition 4.22 Let s, t ∈ F(Fn
2 , Fn

2 ) be CCZ equivalent. Then s is APN if and only
if t is APN.
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Table 4.5: Canonical APN functions in F(F5
2, F

5
2) up to EA equivalence. The algebraic

degree, equivalences to power functions and CCZ equivalences are also shown.

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ◦ EA CCZ
1 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27 0 8 16 25 5 15 17 26 22 26 14 3 3 13 31 16 2 x5 can.
2 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27 0 8 16 25 5 15 17 26 27 23 3 14 14 0 18 29 2 x3 can.
3 0 0 0 1 0 2 4 7 0 4 8 13 16 22 29 26 0 8 16 25 5 15 19 24 7 11 27 22 26 20 1 14 3 [BCP06] 1
4 0 0 0 1 0 2 4 7 0 4 8 13 16 22 29 26 0 8 16 25 5 15 19 24 10 6 22 27 23 25 12 3 3 [BCP06] 2
5 0 0 0 1 0 2 4 8 0 3 6 12 7 16 25 23 0 7 3 22 28 19 9 0 19 8 15 28 21 9 29 2 4 x15 can.
6 0 0 0 1 0 2 4 8 0 3 6 16 8 21 26 29 0 5 12 27 20 6 31 16 7 31 8 22 9 26 17 11 3 x11 2
7 0 0 0 1 0 2 4 8 0 3 6 16 8 21 26 29 0 6 15 24 18 3 17 30 2 29 14 20 25 13 9 23 3 x7 1

CCZ equivalence does not lend itself easily to the definition of an efficient filter
predicate in a similar manner to affine equivalence because a relation like λ(G(s̃)) < G(s̃)
means that the graph of every function s ∈ 3•s̃ must be mapped to a graph by a fixed
affine function λ, and these conditions have to be verified. But verifying all these
conditions is very expensive.

However, because EA equivalence implies CCZ equivalence, an EA canonicity filter
constitutes a weak canonicity filter for CCZ equivalence and we can apply the techniques
from Section 2.4.2. As indicated there, this requires an efficient CCZ equivalence test
which we will develop in the next section.

4.3.1 CCZ equivalence test

Algorithm 8 implements an efficient test for CCZ equivalence of functions s, t ∈ F(Fn
2 , Fn

2 )
using a backtrack problem P := (Fn

2 , Fn
2 , ρ, φ, Fn

2×F̃(F2n
2 , F2n

2 )×F̃(Fn
2 , Fn

2 )⊎{false}, (0, ⋄̃, ⋄̃))
where ρ(σ) = true if and only if exists λ ∈ F

2n
2 with G(t) = λ(G(s)) such that

π := λ1(x, s(x))−1 ≡ σ. The state (d, λ̃, π̃) is the search depth d, π̃, and the affine,
injective template λ̃.

The nodes in the search tree correspond to left-refinements for π, such that at depth
d it holds that

λ̃(G(s)) \ {⋄} = G(t̃ | Dt̃) (4.16)

for a template t̃ ∋ t which is determinate on all positions less than d. Due to affine
refinements of λ̃, the template t̃ may be determinate on additional positions. This
means that the algorithm recursively finds the preimage (a, s(a)) ∈ G(s) of a point
(d, t(d)) ∈ G(t) with π(d) = a, while ensuring affinity and injectivity of λ̃.

Note 4.23 We choose to refine π rather than π−1 = λ1(x, s(x)) because then t̃ in (4.16)
is determinate on all positions less than d. This makes it possible to modify Algorithm 8
to determine CCZ canonicity of arbitrary functions s. The modified algorithm finds any
function t < s with t ≃CCZ s if such a function exists, otherwise it fails.

In this way we can quickly determine that candidates no. 3 and 4 in Table 4.5 are
not canonical. However, these functions can also be eliminated, albeit less quickly, using
explicit equivalence tests and thus the classification presented here does not depend on
this optimisation. Furthermore, the canonicity test is not efficient enough to make a
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statement about the remaining candidates, therefore we omit the details of the necessary
modifications to Algorithm 8.

Algorithm 8 The filter φπ for a CCZ equivalence test s ≃CCZ t.

function φπ((d, λ̃, π̃), a)
if π̃(d) 6= ⋄ then

return (d + 1, λ̃, π̃) ⊲ Verified previously.
end if
if λ̃(a, s(a)) 6= ⋄ then

return false ⊲ Position a already used.
end if
if (d, t(d)) ∈ λ̃(F2n

2 ) then
return false ⊲ Ensure bijectivy of λ̃.

end if
if φ≃π ((d, π̃), a) = false then

return false ⊲ Self-equivalences, see text.
end if
π̃ ← 3d7→aπ̃
var λ̃′ ∈ F

2n
2

λ̃′ ← 3
A
(a,s(a))7→(d,t(d))λ̃

for all (x, s(x)) ∈ λ̃′−1(G(t)) \ λ̃−1(G(t)) do ⊲ Follow implications.
var (y, ty) ∈ F̃

n
2 × F̃

n
2

(y, ty)← λ̃′(x, s(x))
if π̃(y) 6= ⋄ then

return false ⊲ Ensure bijectivity of λ̃′
1(x, s(x)).

end if
if ty 6= t(y) then

return false ⊲ Ensure G(t) ⊇ λ̃′(G(s)) \ {⋄}.
end if
if φ≃π((y, π̃), ty) then

return false ⊲ Self-equivalences, see text.
end if
π̃ ← 3y 7→xπ̃

end for

return (d + 1, λ̃′, π̃)
end function

We optimise further using self-equivalences: Let Λt be the subgroup of affine per-
mutations λt which stabilize G(t).

With G(t) = λ(G(s)) we have G(t) = λtλ(G(s)) for all λ−1
t ∈ Λt. If also G(t) =

λ′(G(s)) we have λ′ = (λ′λ−1)λ with λ′λ−1 ∈ Λt and the orbit of λ under the action of
Λt is the set of all affine functions λ′ which map G(s) to G(t).

The group Λt induces a permutation subgroup Πt which acts on π. The orbit of π
under Πt is the set of all permutations π′ for which a λ′ exists with π′ = λ′

1(x, s(x))−1



44 CHAPTER 4. CLASSIFICATION OF APN FUNCTIONS

and G(t) = λ′(G(s)). This allows us to search only for the canonical representative
in the orbit of π by a stateful canonicity filter φ≃π for π̃ that is usefully defined on
arbitrary (not just left-) refinements. Note that Πt can be found incrementally using
Algorithm 8 and canonicity filters derived from subgroups of Πt.

Example 4.24 Consider the function t that is no. 1 in Table 4.5. The group Λt induces
a permutation subgroup Πt with elements πt generated by:

(0)(1)(2 17 25 22 28)(3 16 24 23 29)(4 21 12 26 6)(5 20 13 27 7)(8 15 10 30 19)(9 14 11 31 18)

(0)(1 2 10 13 4)(3 8 7 9 5)(6 11 15 14 12)(16 27 20 26 22)(17 25 30 23 18)(19)(21 24 28 29 31)

(0 1)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15)(16 17)(18 19)(20 21)(22 23)(24 25)(26 27)(28 29)(30 31)

This leads to the following canonicity test for π̃:

function φ≃π
((d, π̃), a)

if (d = 0 and a 6= 0) or (d = 1 and a 6= 1) then
return false

end if
if π̃(2) 6= ⋄ and d = 17, 22, 25 or 28 then and a < π̃(2) then

return false

end if
return true

end function

4.3.2 Weak CCZ canonicity filter

As mentioned before, an EA canonicity filter constitutes a weak canonicity filter for CCZ
equivalence. We will now apply the techniques from Section 2.4.2 to this situation. The
set of candidates is the set of all EA canonical APN functions, and our task is to purge
from this set those functions which are not CCZ canonical. We use CCZ invariants
and the CCZ equivalence test from Section 4.3.1; see Note 4.23 why we forfeit the CCZ
canonicity test.

CCZ invariants: The Walsh spectrum of s ∈ F(Fn
2 , Fn

2 ) is the multi-set Ws :=
{|ws(a, b)| | a, b ∈ F

n
2 , b 6= 0} where ws(a, b) =

∑

x∈F
n
2
(−1)bs(x)+ax, and is known to

be a CCZ invariant. For n = 4, all APN functions have the same Walsh spectrum. But
for n = 5, the APN functions with degree 2 and 3 have the Walsh spectrum (0; 527),
(28; 496), (232; 1) given as (value;multiplicity), while those with degree 4 have the Walsh
spectrum (0; 217), (24; 465), (28; 310), (212; 31), (232; 1). Therefore, the CCZ equivalence
classes split into two sets which we can treat separately.

CCZ equivalence: We only deal with n = 5 here, the case n = 4 is analogous. We
already know due to the Walsh spectrum invariant that no. 1 and 5 in Table 4.5 are
CCZ canonical. No. 5 is alone in its class of EA canonical representatives with degree 4,
so we turn our attention to the remaining candidates no. 2, 3, 4, 6 and 7. The optimised
equivalence test ≃no. 1

CCZ from Example 4.24 can be used to find out that no. 2 is CCZ
inequivalent and no. 3 is CCZ equivalent to no. 1. That no. 3, 6 and 7 are not canonical
follows similarly, following Algorithm 3 faithfully. We find:
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Theorem 4.25 All APN functions in F(F4
2, F

4
2) are in the same CCZ equivalence class.

There are only three APN functions in F(F5
2, F

5
2) up to CCZ equivalence. They

are no. 1, 2, and 5 respectively in Table 4.5. Any APN function in F(F5
2, F

5
2) is CCZ

equivalent to a power function.
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Appendix A

Implementation notes

The pseudocode in this thesis is provided for mathematical clarity, but it is far remote
from the actual implementation of the algorithms on a real machine architecture. As
Golomb and Baumert point out in [GB65]:

In fact “most” combinatorial problems grow to such an extent that there is
at most one additional case beyond hand computation that can be handled
by our present high speed digital computers. For many of these problems it
takes an extremely sophisticated application of the principles of backtrack
even to do this one additional case. Thus the success or failure of backtrack
often depends on the skill and ingenuity of the programmer in his ability
to adapt the basic methods to the problem at hand and in his ability to
reformulate the problem so as to exploit the characteristics of his own com-
puting device. That is, backtrack programming (as many other types of
programming) is somewhat of an art.

Therefore, we believe that to give a description of an algorithm without saying how
it can be efficiently implemented on an existing architecture is like telling a joke but
omitting the punchline. In this section we will give a different presentation of the basic
Algorithm 1 which is closer to the actual implementation used in producing the results of
this thesis. We will also give some general principles which lead to this implementation.

All algorithms were implemented in the C programming language [KR88], compiled
using the GNU C Compiler [GNU06] and executed on Pentium 4 2.8 GHz processor
running the Ubuntu [Ubu06] operating system based on GNU/Linux.

The following tricks of the trade were used to arrive at the implementation:

1. Efficient data structures

2. Globally shared state and rollback functions

3. Static compilation for a fixed problem size

4. Reordered execution flow to delay expensive operations

5. Exploitation of machine characteristics

47
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We did not try to pessimize the algorithms to compare the performance of these
optimisations against possible alternatives. Some algorithms were prototyped in an
interpreted programming language without any optimisation before cast into C. These
prototypes were improved upon by several orders of magnitude. Considering that all
computations for this thesis required about four weeks in total, even differences of a few
percent are significant.

A.1 Efficient data structures

Mathematical objects are built for clarity, not algorithmic performance. To improve
the performance of algorithms, it is often advisable to extend the mathematical object
by additional properties – usually precalculated values of interesting functions – which
are then updated whenever the object itself is modified. The literature on efficient
data types for commonly encountered objects is vast and extensive (see for example
the bibliography in [AHU83]), as this is one of the most commonly used methods of
optimisation.

Example A.1 The backtrack algorithm makes frequent use of the degree deg f̃ of a
function template f̃ . Therefore, performance can be improved by adding the degree of
f̃ to the implementation of the data type for f̃ . When f̃ is refined to f̃ ′ by a one-step
refinement, the degree of f̃ ′ can be computed efficiently from the degree of f̃ by adding
1.

Also used in this thesis is the representation of sets as bit vectors [Leh57] and
functions as value vectors.

It is important, but also often easy, to ensure consistency among all members of the
data structures if this optimisation is used.

A.2 Global state and rollback functions

Recursive algorithms frequently use local state to hold copies of important data objects
private to a particular invocation of the procedure. The incurred direct cost is creating
a temporary copy of the object. The indirect cost is reduced sharing which affects
memory caching negatively. One solution is to share as much state as possible in global
state, and rollback any local changes before returning from the local function.

Example A.2 At each step of the recursion the template function f̃ is refined by a one-
step left-refinement. However, that refinement does not change the existing determined
positions of f̃ . As only the determined positions of f̃ are ever used in the execution of
the algorithm, the same object instance can be used for all instances of the Backtrack

and even the φ functions.

Algorithm 9 shows the optimised version of the backtrack algorithm with this mod-
ification. Also, the state of the filter is split into a global part ΣG and a local part
ΣL.
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A.3 Static compilation for a fixed problem size

Mathematical problems are often formulated in a general way with a dependency on a
flexible parameter set. For example, the APN Definition 4.1 is valid for all s ∈ F(Fn

2 , Fn
2 )

with n ∈ N. This allows reasoning over a class of interesting objects. But in the actual
implementation of algorithms, parametrization comes at an indirect cost of increased
code size and less optimised data structures.

A good compromise is to use programming language support to select different
implementations fine-tuned for a given parameter that is fixed statically at compile
time. This allows for more opportunities for optimisation by the programmer as well as
by the compiler itself.

Example A.3 Most sets that occur in the algorithms presented here have at most F
n
2

elements. If n is fixed at compile time, macros can be used to select the most efficient
bit vector representation for such sets of fixed sizes that is available on the hardware
architecture. In particular, the maximum size of a set is statically determined and thus
does not need to be handled at run-time.

A.4 Reordered execution flow

In Algorithm 1, the filter function φ is invoked immediately after creating a new instance
of the Backtrack function. However, if φ fails, the main body of the Backtrack

function is not executed. In this case, it is preferable to execute the filter φ first and
only create a new instance of Backtrack if the result is true.

In general, it is a good guideline to execute an algorithm in an order which maximizes
the impact of decisions that can be made early. This is why in a backtrack problem the
next parameter should be selected from the most constrained parameter set.

Example A.4 Algorithm 9 shows the optimised backtrack algorithm for stateful filters.

It is also worth noting that some execution flow restructuring can be done by the
compiler. However, this requires special attention by the developer to avoid pitfalls due
to the language specification.

A.5 Exploitation of machine characteristics

All of the above items have one goal: to optimize the execution performance of an
algorithm on a specific architecture. There are numerous other techniques which can be
deployed which are not listed above. The following list is not meant to be exhaustive.

• Branch prediction hints which allow optimisation of the execution of conditional
statements in the instruction pipeline of the CPU

• Special CPU instructions which are not exposed by the programming language
(and thus can not be used in a portable manner), like finding the most/least
significant bit of a number
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Algorithm 9 Solve the backtrack problem P := (A,B, ρ, φ,ΣG × ΣL, S⋄̃), optimised
version.

var depth ∈ N0 ⊲ Global declarations
var f̃ array [0;#A− 1] of B
var SG ∈ ΣG

procedure BacktrackOpt

depth← depth + 1
for all b ∈ B do

var SL ∈ ΣL

f̃ [depth− 1]← b
SL ← φ() ⊲ Modifies SG

if SG /∈ Σfalse then
if depth = #A then

Output(f̃) ⊲ Found solution f̃
else

BacktrackOpt ()
end if

end if
φR(SL) ⊲ Rollback, modifies SG

end for
depth← depth - 1;

end procedure

depth← 0 ⊲ Initialisation
SG ← S⋄̃

if SG /∈ Σfalse then
BacktrackOpt () ⊲ Invocation

end if
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• Special compiler options to control optimisation settings and the target architec-
ture for code generation

• Knowledge about the cache layout of the target architecture to optimize cache
locality [CHL99]

Last but not least, one should also know when not to use certain “optimisations.”
Programmers are notoriously bad at judging the run-time performance of their own
programs, and the final judge is the experiment. Profiling tools can help to analyze
the call tree and memory access patterns, which establishes a factual basis from which
optimisation decisions can be made.

A.6 Engineering and mathematics

The above considerations are in fact more concerned about engineering than mathemat-
ics, although there are many interesting mathematical problems hiding in the description
and analysis of these techniques. However, as Golomb and Baumert point out so elo-
quently, there is no single technique that leads to success for these type of problems. In
the end, the engineers may be reassured that to achieve the “one additional case beyond
hand computation” their skills in the art of programming are required, while the math-
ematicians may be reassured that the most significant steps forward in algorithm design
are derived from new mathematical insights. We hope that this thesis exemplifies both
to a modest extent.
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