
cba doi:10.18420/sicherheit2018_09

H. Langweg, M. Meier, B.C. Witt, D. Reinhardt et al. (Hrsg.) (Hrsg.): Sicherheit 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 105

Is MathML dangerous?

Christopher Späth 1

Abstract: HTML5 forms the basis for modern web development and merges different standards. One
of these standards is MathML. It is used to express and display mathematical statements. However,
with more standards being natively integrated into HTML5 the processing model gets inherently more
complex.
In this paper, we evaluate the security risks of MathML. We created a semi-automatic test suite
and studied the JavaScript code execution and the XML processing in MathML. We added also the
Content-Type handling of major browsers to the picture. We discovered a novel way to manipulate
the browser’s status line without JavaScript and found two novel ways to execute JavaScript code,
which allowed us to bypass several sanitizers. The fact, that JavaScript code embedded in MathML
can access session cookies worsens matters even more.

Keywords: MathML; Web Security; XSS

1 Introduction

HTML has largely contributed to the success of the World Wide Web. HTML can be
enriched with custom styles and scripts. With the current release of HTML5 even more
technologies are meant to be processed by web browsers natively. SVGs [Da11] are one
example where the integration into the web browser resulted in novel security threats.
These have received considerable attention in the meantime from the literature [Za12], the
academic field [He11b] and the community [He11a, DW17].
In this paper, we discuss MathML [Au14] which is also natively integrated into HTML5,
however, has not received any attention from the research community yet. Developers and
users are waged with uncertainty about the question which risks must be dealt with due
to the support of MathML, both in popular hosting sites such as Wikimedia [wi15] and in
sanitizers [Ah16]. We contribute a systematic and thorough investigation of the MathML
specification and implementation in popular browsers and answer the following research
questions: RQ1: Which elements and attributes of MathML can be considered dangerous?
RQ2: How does the handling of Content-Types by major browsers affect the security of
MathML? RQ3: How do sanitizers and websites deal with MathML?

Officially, Firefox and Safari implement MathML [Mo17b]. However, our evaluation
demonstrates that both Internet Explorer and Chrome have already implemented the
1 Ruhr-University Bochum, christopher.spaeth@rub.de

cba doi:10.18420/sicherheit2018_09

H. Langweg, M. Meier, B.C. Witt, D. Reinhardt (Hrsg.): Sicherheit 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 119

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2018_09
christopher.spaeth@rub.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sicherheit2018_09

106 Christopher Späth

processing (parsing) of MathML. According to a publicly available report there is also
a prototype implementation for Chrome available [Wa17]. Currently, Google Blogger
2, WolframAlpha3, fmath.info4, mathjax5 and several other Math-related websites (e.g.
mathmlcentral.com6) support MathML.
We investigated which of the elements and attributes can be misused for script execution
(and thereby Cross-Site Scripting (XSS) attacks). We identified two novel XSS variants
based on MathML.
Furthermore, we uncovered a flaw in the MathML specification leading to a Status Line
Manipulation attack. This means, every browser which implements the specification is
susceptible to this attack. This can be used to trick the user into executing unwanted actions
(e.g., redirecting to an attacker’s site). Currently, for such an attack to work, JavaScript code
execution is necessary (e.g. by using an event handler which overwrites the default triggered
action on the fly). Our approach improves on existing attacks in respect to that no script
execution is necessary.
We investigated the handling of Content-Types by major browsers. This is important as
MathML is both embeddable in HTML and XML. So the question arises, how is a document
handled which has a MathML file extension (.mml), a XML MIME-Type (application/xml)
and HTML markup as content? By using a semi-automatic test suite we provide a detailed
insight into the handling of documents by browsers and investigate the XSLT processing.
Additionally, by extending the scope to Namespaces, we show how MathML can be used to
execute scripts and thereby access to authentication tokens, such as cookies, is possible.
To measure the impact of our vectors, we applied them to Web Application Firewalls and
sanitizers. Our investigation yields two results: Firstly, currently none of the evaluated
sanitizers implement specific actions to handle MathML but rather rely on general detection
mechanisms. Secondly, when benign MathML is allowed in these sanitizers, 50 % can be
bypassed using at least one of our vectors. No sanitizer detects the Status Line Manipulation
attack. The evaluation of a sample of websites, which currently use MathML, supports
our claim that the relation between MathML and security implications is not obvious to
developers yet. We found one reflected and one DOM-based XSS vulnerability.
In summary, we deliver the following contributions.
•We developed a semi-automatic test tool to investigate the security of MathML regarding
Script Execution, XML (DTD) and XSLT processing.
•We found two novel XSS vectors and a scriptless Status Line Manipulation attack.
•We extend our analysis to Content-Types and demonstrate that XSLT can be processed
within MathML and cookie access is possible.
• Our evaluation shows that our identified attacks can be used to bypass state-of-the-art
sanitizers.

2 https://www.blogger.com
3 http://www.wolframalpha.com/
4 http://fmath.info/
5 https://www.mathjax.org/
6 http://www.mathmlcentral.com/

120 Christopher Späth

Is MathML dangerous? 107

2 Technical Background

2.1 MathML

MathML is a markup language to express mathematical statements. MathML can be
embedded within XML (XHTML) or HTML. Therefore, it is processed by an XML or
HTML parser which transforms the input ”tag soup” to a structured output. Also HTML and
XHTML - as well as other languages - can be embedded into MathML. Currently, MathML
is officially supported by Firefox and Safari [ca17].

The Presentation Markup is used to construct mathematical expressions which can
be rendered and displayed on screen. Token elements represent the smallest unit of an
expression and are, for example, combined in layout elements, such as a fraction. Consider
for example List. 1 which shows how a fraction would be constructed in MathML.

1 <math>

2 <mfrac>

3 <mn>2</mn>

4 <mn>3</mn>

5 </mfrac>

6 </math>

List. 1: Example of Presentation
Markup

1 <math>

2 <apply>

3 <csymbol>times</csymbol>

4 <ci>a</ci>

5 <ci>b</ci>

6 </apply>

List. 2: Example of Content Markup

The element mfrac starts a fraction and expects exactly two arguments - a numerator and a
denominator. The rendering of this markup would be similar to 2

3 . Of course there are a lot
more expressions available, such as root (

√
2), sub- (i1) and superscript (23).

The Content Markup is used to describe mathematical semantics unambiguously. Consider
for example the multiplication of two operands. These could be represented as a x b, a*b or
simply ab. A human reader familiar with common mathematical notations can probably
infer the meaning from the context. However, a machine can not do so. Therefore, Content
Markup offers a way to represent the semantics of a mathematical expression. The example
in List. 2 demonstrates how to express a product in MathML.

The element apply expects as its first parameter an operator which is the multiplication-
operator in this case. Depending on the chosen operator one or two additional parameters
are expected - in this case at least two coefficients are needed.

MathML attributes can be of 18 different types, such as string, number, color or URI
[Au14]. These can be applied to either Presentation, Content Markup or both, depending on
the attribute. They influence, for example, the display of MathML (such as spacing, font),
reference additional semantic resources for the elements or link ressources.

Is MathML dangerous? 121

108 Christopher Späth

2.2 Cross-Site Scripting

Web-Applications are written to interact with the user. This interaction on the client-side is
mainly achieved by the use of JavaScript, which can be used to read and write values of
elements and properties. The JavaScript is scoped to an origin, which is a tuple of protocol,
domain and port. Cross-Site Scripting (XSS) is a code injection attack, where an attacker
can make the Web-Application execute his code. Thereby, this can lead to the unwanted
modification of the website or theft of authentication tokens (e.g. cookies).

3 Methodology

We executed the tests for Firefox (55.0.3), Chrome (61.0), Internet Explorer (11) on Windows
7. The tests for Safari (10.1.1) were executed on a MacBook Pro Retina with OS X (10.12.6).
On the server-side an Ubuntu 16.04 with Apache 2.4.18 was used in the default configuration.

3.1 Threat Model

We refer to the Web Attacker model [Ak10] and assume that the attacker can interact with
any web application on the Internet (e.g. upload files, create posts) or host its own website.
He cannot intercept or inject traffic into the victim’s network connection. Web Applications
may be protected by Web Application Firewalls or Sanitizers. The victim will freely interact
with these web applications. An attack is considered successful if an attacker can bypass the
security measures and execute scripts in the originating domain.

3.2 Script Execution

According to Section 6.4.3 [Au14], MathML can be parsed by either an HTML or an XML
parser. Within certain MathML elements, such as mtext, mo, mn, mi, ms, annotation or
annotation-xml, HTML elements are allowed and processed. We verified these specification
guidelines in all browsers and particularly checked for script execution, XSLT and XML
processing.

We investigated all 41 elements of the Presentation and eleven basic elements from
the Content Markup. Additionally, we included the elements semantics, annotation and
annotation-xml, which belong to both the Presentation and Content markup. We supplied
JavaScript code (called %vector) as content of a MathML element as shown in List. 3.

The selection process for attributes was way more complex because of the exhaustive number
of attributes and attribute data types available. Some attributes are available for all elements
(both Presentation and Content Markup), some are only available for either one of those and

122 Christopher Späth

Is MathML dangerous? 109

some may only be available for selected elements. Therefore, we considered it appropriate to
first analyze the attribute data types. Regarding script execution we primarily focused on the
ones of type URI. This decision is based on the fact that this type is analogous to the URI
type of HTML elements (e.g. <a href=...). We verified that href (and xlink:href respectively)
can be used for script execution. Other attributes of type URI (math: (altimg | cdgroup |
macros); mglyph: src; annotation: (definitionURL | src)) are currently not implemened by
any of the browsers. To test URI attributes we supplied the vector javascript:alert(1) into
the attribute value, as shown in List. 4. Then we clicked on the link. If an alert window
opens we consider the attribute to have scripting capabilities. Plese refer to Table 1 for the
list of elements and attributes which were found to be susceptible to script execution. The
complete listing can be found in the extended version7.

The element maction can bind an action to an expression. It has an attribute actiontype with
the values: toggle, statusline, tooltip and input. We checked all of these values and will
elaborate on the results in section 7. The elements semantics, annotation and annotation-xml
facilitate the insertion of supplementary information for a mathematical expression. Each of
these elements can declare the encoding of its content by using an eponymous attribute.
Since MathML can be embedded in HTML and XML contexts, we focused our investigation
on related Content-Types. We assigned the attribute encoding the values ”text/html”,
”application/xml” and ”application/xhtml+xml”. To cross-reference the implications with
the chosen Content-Type of the containing document, we embedded each attribute value
combination into an .html, .xml and .xhtml file to observe differences. This is shown in
List. 7 (c.f. Appendix).

1 <math>

2 <mi>2 %vector </mi>

3 <math>

List. 3: Test Methodology for
Elements

1 <math>

2 <mi href="%vector">2</mi>

3 <math>

List. 4: Test Methodology for
Attributes

3.3 Content-Types

Although several browser vendors provide online documentation about how the browser
treats certain MIME types [Mo08, Mi, We] these resources do not reflect important
details. For our evaluation we take the file extension, HTTP Content-Type Header and
selected elements and namespaces into account. In more detail, we check the file extensions
.html, .xml, .xhtml and .mml. We evaluate if the file extension or the Content-Type header
(application/xml, application/xml+xhtml, text/html) has precedence. To make sure the results
are not influenced by the content of the file, we create one version with a random element
(e.g. <greeting>) and one with an HTML element (). Additionally, we observe the

7 https://goo.gl/vqyY2i

Is MathML dangerous? 123

110 Christopher Späth

impact of the XHTML namespace on XML-based Content-Types. Our results are described
in section 4.

Limitations. We leave the investigation of mobile browsers with MathML support, such
as UC Browser for Android, iOS Safari, Blackberry and Opera Mini as future work. We
focused on Content-Types of technologies closely related to MathML and did not consider
the remaining majority of available Content-Types, since we believe that this is a research
paper on its own.

4 Content-Type Handling

As elaborated in section 2 MathML can either be processed by an HTML or XML parser.
In order to understand MathML’s processing, it is important to first understand the general
processing heuristics of HTML and XML in web browsers. Furthermore, we then apply our
results to the processing of MathML. We consider the file extension (.html, .xml, .mml),
the Content-Type (text/html, application/xml, application/xml+xhtml, text/mathml) and the
MathML namespace (http://www.w3.org/1998/Math/MathML)

Our results show that the HTTP Content-Type header always takes precedence over the file
extension. Generally speaking, if the Content-Type is set to text/html the browser processes
the contents in an HTML context. The standard file extension for MathML .mml is associated
with Content-Type text/mathml. It is quite surprising that none of the browsers render this
Content-Type but rather offer to download the document with the Download Manager. We
will now elaborate on the different browser behaviors when the Content-Type is either
unknown or application/xml(+xhtml).
When the Content-Type is unknown (no HTTP Header, file extension, known elements)
Firefox displays the content as tree-view, Chrome/Safari output the content of the file as
plaintext within pre tags, Internet Explorer interprets the content as HTML (not placed in
pre tags).
By default, all browsers display a document with Content-Type application/xml as a tree-view
(XML-context). Also, it is common knowledge that the Content-Type application/xml+xhtml
is associated with XHTML [We] and therefore facilitates script execution.
When a not well-formed XML document is delivered, Firefox will raise an error and abort
the processing, Chrome/Safari will raise an error but output the content of the document
until the first error occurs, Internet Explorer outputs the content of the element as text.
We found out that all browsers upgrade an XML document to an HTML context, if an
XHTML namespace is added. This facilitates the execution of JavaScript code. In Chrome,
Safari and Internet Explorer this is even more problematic as this allows access to properties
such as document.cookie. This way an attacker could steal authentication tokens from the
victim.

124 Christopher Späth

Is MathML dangerous? 111

Attack Scenario: Script Execution in XML. For illustration purposes, consider a web-
application which accepts .xml files for upload. If a user accesses this file, it is delivered with
Content-Type application/xml and displayed as tree view. Assuming an attacker includes an
XHTML namespace, this can lead to XSS and cookie theft.

5 XSLT Processing

We investigated if an XML and/or HTML parser process XSLT. We found that XSLT
processing is only possible, when a document is processed by an XML Parser. In our study,
this is fulfilled when the Content-Type is set to application/xml or application/xhtml+xml.
XSLT execution is not possible in documents which are delivered as Content-Type text/html.
Our studies show that a downloaded .mml file which is subsequently opened in Firefox, also
has XSLT processing capabilities.
Furthermore it is interesting to consider how an XSLT interacts with the Same-Origin
Policy. Our tests show that all major browsers allow the reference of an same-origin XSLT
stylesheet. None of the browsers, however, allows the inclusion of an XSLT from a foreign
origin. Firefox is the only browser to process an inline XSLT styelesheet. In the past [He11b]
this could be used to create an SVG Chamaeleon. A similar attack is possible with MathML,
as shown in List. 8.

6 Script Execution in MathML

We checked which elements of MathML support scripting capabilities and should therefore
be considered potentially dangerous. The complete results are listed in the extended version.

All Browsers. Our investigation shows that the elements mn, mi, mo, ms and mtext (not in IE)
have scripting capabilities. It should be noted that this does not apply if the script element is
a child of the parent math element. This insight applies to all browsers - even those which
do not officially implement MathML. We can conclude from this fact, that also browsers,
such as Chrome and Internet Explorer, already implement the processing of MathML as
part of HTML5. It should also be taken into account that the parsing context switches to
HTML if an HTML element is found outside the previously mentioned MathML elements.
Hence, all further MathML elements are no more in the MathML scope. Therefore, this
could also be used to trigger script execution.

Our investigation shows that the href and xlink:href [He11b] attribute is susceptible for script
execution - for example by using the well-known javascript: pseudo-protocol. Additionally,
we adapted a vector from [Ma17] using an xml:base and href attribute for the use with
MathML. The vectors are provided in List. 5.

Is MathML dangerous? 125

112 Christopher Späth

1 <math href="javascript:alert(1)"> <mi>2</mi></math>

2 <math><mi xml:base="javascript:alert(1)//" href="#">2</mi></math>

List. 5: An Vector Based on xml:base which can be used to test for XSS

Script Execution in annotation, annotation-xml and semantics depends on the value of the
encoding attribute and on the Content-Type of the document. Our evaluation shows that
1. script execution is largely not possible within an HTML document. There are two excepti-
ons: When the attribute encoding has either the value text/html or application/xhtml+xml.
2. if the Content-Type of the host document is application/xml or application/xhtml+xml
scripts are executed in all of the elements irregardless of the chosen value for the attribute
encoding. This is quite surprising, as one would expect that JavaScript code is executed
within an HTML document.

No combination of a document’s Content-Type and the value of the encoding attribute can
be used to trigger XML Entity Attacks or the processing of a XSLT, which is supplied as
the child element of the elements annotation, annotation-xml and semantics.

7 Status Line Manipulation Attack

The maction element has the attribute actiontype. This attribute can be assigned the values:
toggle, tooltip, input and statusline. The value toogle displays different subexpressions.
tooltip displays a tooltip when hovering over the expression and input facilitiates modification
of the expression. The value statusline modifies the browser’s status line with a stored text.
Before discussing any details of the attack, one should consider the implications of being
able to modify the status line. The status line is used to show the target of a hyperlink (i.e.
value of the attribute href). This provides the user with additional information, which action
the browser is going to take after clicking the link. Therefore, the correct display of the
value is clearly security relevant. Malicious websites may add a JavaScript event handler
(onClick), which executes a different action despite displaying the correct destination of
the link. This facilitates redirecting users to an arbitrary destination or executing unwanted
actions. Our attack differs from existing work in that no script execution is necessary but can
be achieved solely with MathML. A proof of concept code for Firefox is provided in List. 6.

1 <html> <body>

2 <math href="http://attacker.com/target.html">

3 <maction actiontype="statusline">

4 <mfrac><mn>1</mn><mn>2</mn></mfrac>

5 <mtext>http://www.w3.org/TR/MathML3/chapter3.html#presm.mfrac</mtext>

6 </maction>

7 </math></body></html>

List. 6: A Scriptless Status Line Manipulation Attack with the Element maction

126 Christopher Späth

Is MathML dangerous? 113

While the browser will display the value of the element mtext, implying a reasonable
resource as the target of the link, when clicking the link the user is redirected to attacker.com.
Execution of arbitrary JavaScript is also possible. by using the javascript: pseudo protocol.
This issue has been reported to Mozilla [Ch17].

8 Evaluation of Sanitizer and Web-Application Firewalls

To show the feasibilty of our attacks, we tested our vectors against a selected set of Web
Application Firewalls and PHP-based sanitizers. In detail we considered Modsecurity CRS,
RaptorWAF, HTMLPurifier and HTMLSafe. First of all, we checked if the inclusion of
JavaScript inside of MathML (e.g. <math><mi><script>...</script></mi></math>) can
be used to bypass any of the aforementioned sanitizers. Additionally, we tested the vectors
of List. 5 and List. 6. We excluded the testing of XSLT because sanitizing is usually applied
in an HTML context and the resulting page will be of Content-Type text/html, essentially
making the XSLT instructions void. Our tests show that including a script element inside
a MathML element does not yield any advantage in bypassing Sanitizers compared to
supplying the vectors in plain.

HTMLSafe [Go10] is a sanitizer available for PHP. It implements a combination of black-
and whitelists. According to our source code analysis and tests, HTMLSafe blacklists the
javascript protocol and does not whitelist the xml:base attribute by default. Therefore both
XSS vectors are blocked. However, the Status Line Manipulation attack passes.
HTMLPurifier [ht17] is one of the recommended ways for sanitizing HTML markup with
PHP and is a whitelist based sanitizer. Albeit, MathML is currently not implemented in the
whitelist. Therefore, by default, even benign MathML is blocked and of course our vectors.
To investigate the possible implications of allowing arbitrary MathML elements, we created
a prototype which whitelists the elements math, mn, mfrac, mi and maction. We did not do
any further modifications to the source code. Additionally, we whitelisted the attribute href
for the element math. Our tests show that if the attribute href is whitelisted as data type
CDATA, HTMLPurifier does not sanitize the value and a bypass is possible. In order to do
sanitization correctly, the attribute href has to be of type URI.
RaptorWAF [Co17] is a Web-Application Firewall. It can be easily bypassed with both
vectors by supplying a HTML encoded version of the vectors. Additionally, certain keywords,
such as alert and script, must not be used or send with different spelling (i.e. SCRipt). The
Status Line Manipulation vector also passes.
Modsecurity with the Core Rule set [Mo17a] is a freely available Web-Application Firewall.
It has to be modified8 in order to allow benign MathML. Both XSS vectors are blocked.
However, the Status Line Manipulation vector passes.

We conducted a small sample of tests with our vectors on websites which currently use
MathML. We found that both the live demo on mathjax.org and MathJax Sandbox 9 are
8 Disable rules: 950901, 981173, 900048
9 http://jbergknoff.github.io/mathjax-sandbox/

Is MathML dangerous? 127

114 Christopher Späth

susceptible to script execution by using vector 1 from List. 5. While the former is not
exploitable, the latter has a DOM-XSS vulnerability. MathMLCentral 10 processes an
uploaded file without sanitation. It is vulnerable to reflected XSS, which can exploited
with all vectors. Google Blogger11 supports the usage of MathML markup. While both
XSS vectors would only lead to ”Self-XSS” a malicious blogger could use the Status Line
Manipulation attack to redirect users to unwanted locations.

9 Related Work

To our knowledge there is no academic publication available dealing with the security of
MathML. Heiderich et al. [He11b] have investigated the dangers of SVGs which motivated
this work and some attacks could be directly applied. Heiderich has also reported on scriptless
attacks by abusing Cascading Style Sheets [He12] Barth et al. [BCS09] have reported
on the dangers of MIME Sniffing in browsers. However, they have neither investigated
the precedence of file extensions, Content-Types and Namespaces. Various posts on the
Internet appeared in the past, discussing MathML-based XSS vectors [Pa17, ja17, Sp17, cu].
DOMPurify [HSS17] - a DOM-based Sanitizer - implements the sanitization of HTML,
SVG and MathML. Although these resources contribute to the public awareness of MathML
and its potential dangers, they do not provide a systematic and thorough investigation of
MathML.

10 Conclusion

Regarding our question if MathML is dangerous we can conclude with the following facts to
consider: MathML as a standard embedded in HTML5 is implemented by all major browsers.
Therefore any security issue found will affect a large user base. Due to the embedding of
MathML in a HTML context all elements can be used for script execution. Furthermore
XSLT execution might constitute a security issue. The scriptless manipulation of the status
line should also be taken into account. MathML is a novel threat, which should be taken
seriously. We encourage the community to extend our work and investigate the support of
MathML in other software, such as accessibility software and editors.

11 Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. This research
was supported by the German Ministry of research and Education (BMBF) as part of the
SyncEnc research project.

10 http://www.mathmlcentral.com/Tools/FromMathMLFile.jsp
11 https://www.blogger.com/

128 Christopher Späth

Is MathML dangerous? 115

References
[Ah16] Ahmady, Abdul: , Implementation of MathML DTD3. http://htmlpurifier.org/phorum/

read.php?5,8091, 2016.

[Ak10] Akhawe, Devdatta; Barth, Adam; Lam, Peifung E; Mitchell, John; Song, Dawn: Towards a
formal foundation of web security. In: Computer Security Foundations Symposium (CSF),
2010 23rd IEEE. IEEE, pp. 290–304, 2010.

[Au14] Ausbrooks, Ron: , Mathematical Markup Language (MathML) Version 3.0 2nd Edition.
https://www.w3.org/TR/2014/REC-MathML3-20140410/, 2014.

[BCS09] Barth, Adam; Caballero, Juan; Song, Dawn: Secure content sniffing for web browsers, or
how to stop papers from reviewing themselves. In: Security and Privacy, 2009 30th IEEE
Symposium on. IEEE, pp. 360–371, 2009.

[ca17] caniuse: , MathML. http://caniuse.com/mathml, 2017.

[Ch17] Christopher Späth: , MathML maction statusline - status bar text doesn’t accurately reflect
the target of the link. https://bugzilla.mozilla.org/show_bug.cgi?id=1392258, 2017.

[Co17] CoolerVoid: , Raptor - WAF - Web application firewall using DFA. https://github.com/
CoolerVoid/raptor_waf, 2017.

[cu] cure53: , HTML5 Security Cheatsheet. https://html5sec.org/.

[Da11] Dahlström, Erik: , Scalable Vector Graphics (SVG) 1.1 (Second Edition). https://www.w3.
org/TR/2011/REC-SVG11-20110816/, 2011.

[DW17] DW: , What does a HTML filter need to do, to protect against SVG attacks?,
2017. https://security.stackexchange.com/questions/26264/what-does-a-html-
filter-need-to-do-to-protect-against-svg-attacks/30390.

[Go10] Gocobachi, Miguel: , Package Information: HTML_Safe. https://pear.php.net/package/
HTML_Safe, 2010.

[He11a] Heiderich, Mario: , The image that called me, 2011. https://www.owasp.org/images/0/
03/Mario_Heiderich_OWASP_Sweden_The_image_that_called_me.pdf.

[He11b] Heiderich, Mario; Frosch, Tilman; Jensen, Meiko; Holz, Thorsten: Crouching tiger-hidden
payload: security risks of scalable vectors graphics. In: Proceedings of the 18th ACM
conference on Computer and communications security. ACM, pp. 239–250, 2011.

[He12] Heiderich, Mario; Niemietz, Marcus; Schuster, Felix; Holz, Thorsten; Schwenk, Jörg:
Scriptless attacks: stealing the pie without touching the sill. In: Proceedings of the 2012
ACM conference on Computer and communications security. ACM, pp. 760–771, 2012.

[HSS17] Heiderich, Mario; Späth, Christopher; Schwenk, Jörg: DOMPurify: Client-Side Protection
Against XSS and Markup Injection. In: European Symposium on Research in Computer
Security. Springer, pp. 116–134, 2017.

[ht17] htmlpurifier: , htmlpurifier. http://htmlpurifier.org, 2017.

[ja17] jackmasa: , Math. https://twitter.com/jackmasa/status/930096423168655361, 2017.

Is MathML dangerous? 129

http://htmlpurifier.org/phorum/read.php?5,8091
http://htmlpurifier.org/phorum/read.php?5,8091
https://www.w3.org/TR/2014/REC-MathML3-20140410/
http://caniuse.com/mathml
https://bugzilla.mozilla.org/show_bug.cgi?id=1392258
https://github.com/CoolerVoid/raptor_waf
https://github.com/CoolerVoid/raptor_waf
https://html5sec.org/
https://www.w3.org/TR/2011/REC-SVG11-20110816/
https://www.w3.org/TR/2011/REC-SVG11-20110816/
https://security.stackexchange.com/questions/26264/what-does-a-html-filter-need-to-do-to-protect-against-svg-attacks/30390
https://security.stackexchange.com/questions/26264/what-does-a-html-filter-need-to-do-to-protect-against-svg-attacks/30390
https://pear.php.net/package/HTML_Safe
https://pear.php.net/package/HTML_Safe
https://www.owasp.org/images/0/03/Mario_Heiderich_OWASP_Sweden_The_image_that_called_me.pdf
https://www.owasp.org/images/0/03/Mario_Heiderich_OWASP_Sweden_The_image_that_called_me.pdf
http://htmlpurifier.org
https://twitter.com/jackmasa/status/930096423168655361

116 Christopher Späth

[Ma17] Masato Kinugawa: , SVG xml base. https://twitter.com/kinugawamasato/status/
898950198826721280, 2017.

[Mi] Microsoft: , MIME-Handling Changes in Internet Explorer. Accessed: 31.01.2017.

[Mo08] Mozilla: , How Mozilla determines MIME Types. https://developer.mozilla.org/
en-US/docs/Mozilla/How_Mozilla_determines_MIME_Types, 2008. [Online; accessed
31-January-2018].

[Mo17a] Modsecurity: , ModSecurity. http://modsecurity.org/, 2017.

[Mo17b] Mozilla: , MathML. https://developer.mozilla.org/en-US/docs/Web/MathML, 2017.

[Pa17] Payloads, XSS: , Filter evasion. https://twitter.com/XssPayloads/status/
935051449670750209, 2017.

[Sp17] Späth, Christopher: , MathML xml base. https://secanalysis.wordpress.com/2017/08/
28/mathml-xmlbase/, 2017.

[Wa17] Wang, Frederic: , Review of Igalia’s Web Platform activities, 2017. http://frederic-wang.
fr/review-of-igalia-s-web-platform-activities-H1-2017.html.

[We] Webkit: , Understanding HTML, XML and XHTML. Accessed: 31.01.2017.

[wi15] wikimedia: , Consider opening up POST /media/math/format to external users. https:
//phabricator.wikimedia.org/T116147, 2015.

[Za12] Zalewski, Michal: The tangled Web: A guide to securing modern web applications. No
Starch Press, 2012.

130 Christopher Späth

https://twitter.com/kinugawamasato/status/898950198826721280
https://twitter.com/kinugawamasato/status/898950198826721280
https://developer.mozilla.org/en-US/docs/Mozilla/How_Mozilla_determines_MIME_Types
https://developer.mozilla.org/en-US/docs/Mozilla/How_Mozilla_determines_MIME_Types
http://modsecurity.org/
https://developer.mozilla.org/en-US/docs/Web/MathML
https://twitter.com/XssPayloads/status/935051449670750209
https://twitter.com/XssPayloads/status/935051449670750209
https://secanalysis.wordpress.com/2017/08/28/mathml-xmlbase/
https://secanalysis.wordpress.com/2017/08/28/mathml-xmlbase/
http://frederic-wang.fr/review-of-igalia-s-web-platform-activities-H1-2017.html
http://frederic-wang.fr/review-of-igalia-s-web-platform-activities-H1-2017.html
https://phabricator.wikimedia.org/T116147
https://phabricator.wikimedia.org/T116147

Is MathML dangerous? 117

A Results

A.1 Semantics, Annotation and Annotation-xml

1 <math xmlns="http://www.w3.org/1998/Math/MathML">
2 <semantics encoding="text/html">
3 <iframe xmlns=’http://www.w3.org/1999/xhtml’ src=’javascript:alert(1);’></iframe>
4 </semantics>
5 <semantics encoding="application/xml">
6 <iframe xmlns=’http://www.w3.org/1999/xhtml’ src=’javascript:alert(1);’></iframe>
7 </semantics>
8 <semantics encoding="application/xhtml+xml">
9 <iframe xmlns=’http://www.w3.org/1999/xhtml’ src=’javascript:alert(1);’></iframe>

10 </semantics>
11 </math>

List. 7: Script Execution Test for element semantics; tests for elements annotation and
annotation-xml are constructed analogous

A.2 MathML Chamaeleon

1 <?xml−stylesheet type="text/xml" href="#style1"?>
2 <math>
3 <mfrac><mi>2</mi><mi>3</mi></mfrac>
4 <xsl:stylesheet id="style1" version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/

Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format">
5 <xsl:template match="/">
6 <html xmlns="http://www.w3.org/1999/xhtml">
7 testing
8 </html>
9 </xsl:template>

10 <xsl:template match="xsl:stylesheet"></xsl:template>
11 </xsl:stylesheet>
12 </math>

List. 8: A MathML Chamaeleon

A.3 Dangerous Elements and Attributes

For all tables: A ”0” means "no script execution, while ”1” means ”script execution”.

Is MathML dangerous? 131

118 Christopher Späth

Tab. 1: Only elements are listed in which at least one element in a browser is susceptible to script
execution. Attributes are tested with attribute href;

Element Fi
re

fo
x

IE
11

Ch
ro

m
e

Sa
fa

ri

mi 1 1 1 1
mn 1 1 1 1
mo 1 1 1 1
mtext 1 0 1 1
ms 1 1 1 1
Attributes 1 1 1 1
cn 1 0 0 1
ci 1 0 0 1
csymbol 1 0 0 1
cs 1 0 0 1
apply 1 0 0 1
bind 1 0 0 1
bvar 1 0 0 1
share 0 0 0 0
semantics 1 0 0 1
cerror 1 0 0 1
cbytes 1 0 0 1

Attributes FF IE
11

CH SA

mglyph 1 0 0 0
mi 1 0 0 1
mn 1 0 0 1
mo 1 0 0 1
mtext 1 0 0 1
ms 1 0 0 1
mrow 1 0 0 1
mfrac 1 0 0 1
msqrt 1 0 0 1
mroot 1 0 0 1
mstyle 1 0 0 1
merror 1 0 0 1
mpadded 1 0 0 1
mfenced 1 0 0 1
msub 1 0 0 1
msup 1 0 0 1
msubsup 1 0 0 1
munder 1 0 0 1
mover 1 0 0 1
munderover 1 0 0 1
mmultiscripts 1 0 0 1
mprescripts* 0 0 0 1
none* 0 0 0 1
mtable 1 0 0 1
mtr 1 0 0 1
mlabeledtr 1 0 0 1
mtd 1 0 0 1
maligngroup 0 0 0 1
malignmark 0 0 0 1
mstack 1 0 0 1
mlongdiv 1 0 0 1
msgroup 1 0 0 1
msrow 1 0 0 1
mscarries 1 0 0 1
mscarry 1 0 0 1
msline 1 0 0 1
math 1 0 0 1
maction 1 0 0 0
semantics 1 0 0 1
annotation 1 0 0 0
annotation-xml 1 0 0 0

132 Christopher Späth

