
Breaking and Fixing Gridcoin

Martin Grothe, Tobias Niemann, Juraj Somorovsky, Jörg Schwenk
Horst Görtz Institute for IT Security, Ruhr University Bochum

{firstname.lastname}@rub.de

Abstract
Bitcoin has been hailed as a new payment mechanism,
and is currently accepted by millions of users. One of
the major drawbacks of Bitcoin is the resource intensive
Proof-of-Work computation. Proof-of-Work is used to
establish the blockchain but does not bring any benefits,
and arguably is a waste of energy. To use these available
resources in a more meaningful way, several alternative
cryptocurrencies have been presented. One of them is
Gridcoin, which rewards the users for solving BOINC
problems. Gridcoin currently possesses a market capital-
ization of $ 23,423,115.

In our work we conducted the first security analysis of
Gridcoin. We identified two critical security issues. The
first issue allows an attacker to reveal all email addresses
of the registered Gridcoin users. Even worse, the second
issue gives an attacker the ability to steal the work per-
formed by a BOINC user, and thus effectively steal his
Gridcoins. These attacks have severe consequences and
completely break the Gridcoin cryptocurrency.

We evaluated and confirmed both attacks in practice,
and responsibly disclosed them to the Gridcoin maintain-
ers. We developed backwards compatible design changes
for the Gridcoin system, in order to protect users’ trust
into this promising approach.

Keywords: Gridcoin, Attack, BOINC, Proof-of-
Stake, Meaningful Cryptocurrency

1 Introduction

Since the launch of Bitcoin in 2009 [18, 10], the new
peer-to-peer electronic cash system grew to be one of
the few widely accepted payment methods in both online
and retail shopping. The release of the official Bitcoin
Core client, developed by the Bitcoin inventor Satoshi
Nakamoto as open source software, allowed users to fork
the project and apply their own design changes. Hence
we could observe emergence of many new Bitcoin based

cryptocurrencies, so called Altcoins. These Altcoins at-
tempt to establish new user communities by advertising
different technology improvements or tweaks. Nowa-
days, approximately 700 Bitcoin based cryptocurrencies
exist [4].

Wasteful computation. One of the main drawbacks of
Bitcoin (and other Bitcoin based cryptocurrencies) is the
resource expensive Proof-of-Work computation. Proof-
of-Work is used to establish the blockchain, which con-
tains blocks with Bitcoin transactions. In order to con-
struct a new valid block, the so called miners collect
Bitcoin transactions. They attempt to hash data from
the previous block, together with the transactions, and
some randomness so that the resulting SHA-256 value
lies below a specific boundary (i.e., the hash value starts
with a specific number of zeros). The search for a valid
block results in many SHA-256 computations, and thus
requires a huge amount of energy. High rewards for the
block computations, however, motivate many users to
participate in the mining process. While on one hand this
increases the overall security, on the other a study from
2014 suggests that Bitcoin’s total electrical footprint is
comparable with the Irish national electrical energy con-
sumption [19].

Cryptocurrencies with meaningful computations.
The energy spent for Bitcoin mining is arguably waste-
ful since it results in meaningless hash computations.
This fact has motivated many developers to establish
new Altcoins. Primecoin introduces a new Proof-
of-Work scheme based on the computation of prime
number chains – Cunningham chains [1]. Filecoin
and Permacoin introduce a concept based on proof-of-
retrievability [5, 6] which rewards users for providing
data storage. This way it is possible to create a dis-
tributed file storage systems. Wustrow and Vander-
Sloot showed that it is possible to create a cryptocur-
rency based on a malicious Proof-of-Work [31]. Their



DDoSCoin concept rewards miners for contributing to
a distributed Denial-of-Service (DoS) attack. Neverthe-
less, these Altcoins only attempt to solve specific prob-
lems and their concepts are not applicable in general.

Gridcoin. Gridcoin is an Altcoin, which is in active
development since 2013. It claims to provide a high
sustainability, as it has very low energy requirements in
comparison to Bitcoin. It rewards users for contributing
computation power to scientific projects, published on
the BOINC project platform. Although Gridcoin is not
as widespread as Bitcoin, its draft is very appealing as
it attempts to eliminate Bitcoin’s core problems. It pos-
sesses a market capitalization of $ 23,423,115 [3] (11th
of May 2017) and its users contributed approximately
5% of the total scientific BOINC work done before Oc-
tober, 2016 [2]. This motivates for the analysis of this
relatively new cryptocurrency.

Security analysis of Gridcoin. In this paper we ana-
lyze the security of Gridcoin. We first give an overview
of the Gridcoin core security functionalities and its con-
nection to the BOINC network. In particular, Gridcoin
uses the BOINC statistical servers to reward BOINC
users for their computational contributions to solving
meaningful problems. The first general issue arises when
considering the trust into the statistical server. If the at-
tacker is able to take control over this server, he is able
to create an arbitrary number of Gridcoins. However, it
is not necessary to have such a powerful attacker with
server administration rights to execute practical attacks
on Gridcoin. In this paper we demonstrate a critical vul-
nerability in Gridcoin, which puts the currencies market
capitalization at risk. Our attacker is able to steal Grid-
coins from legitimate Gridcoin users. We provide a proof
of concept exploit implementation which makes it possi-
ble to generate illegitimate Gridcoins. Our findings break
the Altcoin Gridcoin in the state of version 3.5.8.6 and
thereby affect all Gridcoin users and exchanges.

Contributions. This work makes the following contri-
butions:
• We give the first in depth description of the Gridcoin

architecture and functionality.
• We analyze the security of Gridcoin and discuss the

trust issues of this cryptocurrency.
• We present two feasible attacks on Gridcoin. First,

our attacker can affect Gridcoin privacy and extract
all email addresses of registered users. Second,
our attacker can even steal computation power per-
formed by Gridcoin users, and thus steal their Grid-
coins.

• We developed backwards compatible design
changes against the presented attacks.

Responsible disclosure. We responsibly disclosed our
security findings to the Gridcoin maintainers on the 16th
of September 2016 together with our proposed coun-
termeasures. They responded to us that they are going
to fix the vulnerabilities. Unfortunately, our proposals
were not implemented correctly and further security is-
sues were introduced with the new releases of Gridcoin.
We contacted the maintainers again in order to help them
fix the issues, but they did not respond to our following
contact attempts. Thus, the current mandatory release
3.5.9.6 still contains several security vulnerabilities.1

2 BOINC

To solve general scientific meaningful problems, Grid-
coin draws on the well known Berkeley Open Infras-
tructure for Network Computing (BOINC). It is a soft-
ware platform for volunteer computing, initially released
in 2002 and developed by the University of California,
Berkeley. It is an open source software licensed under
the GNU Lesser General Public License. The platform
enables professionals in need for computation power to
distribute their tasks to volunteers. Nowadays it is widely
used by researchers with limited resources to solve sci-
entific problems, for example, healing cancer, investi-
gate global warming, finding extraterrestrial intelligence
in radio signals and finding larger prime numbers.

When launching a BOINC project, its maintainer is
required to setup his own BOINC server. Project vol-
unteers may then create accounts (by submitting a user-
name, a password and an email address) and work on
specific project tasks, called workunits. The volunteers
can process the project tasks and transfer their solutions
with a BOINC client. The BOINC client is controlled
via its RPC interface using either the GUI boincmgr or
the CLI boinccmd. The client offers a broad variety of
options to limit the shared resources, such as by timer or
processing unit workload, and thereby gives the volun-
teer a lot of control and the ability to run it seamlessly
in the background. The BOINC project server usually
deploys executables for Windows, Mac OS X, Linux or
Android systems on x86, x86_64 or ARMv7. To mea-
sure how much work a machine has done BOINC imple-
ments a computation credit system. This system enables
user competition and team establishment. The statistics
are retrievable from the BOINC project servers as XML
data. To streamline the process, BOINC Credit statis-
tical websites like boincstats.com2 gather statistics from

1For more details see: http://gridcoin-attacks.org
2http://boincstats.com/

http://boincstats.com/


all BOINC project servers and processes them for display
in HTML markup, including graphs and rankings [27].

2.1 BOINC Architecture

BOINC uses a client-server architecture to achieve its
rich feature set. The server component handles the client
requests for workunits and the problem solutions up-
loaded by the clients. The solutions are validated and
assimilated by the server component. All workunits are
created by the server component and each workunit rep-
resents a chunk of a scientific problem which is encapsu-
lated into an application. This application consists of one
or multiple in-/output files, containing binary or ASCII
encoded parameters. The BOINC server itself needs five
daemons to satisfy the BOINC workflow [20].

1. Scheduler processes request the BOINC clients
sends and estimates their computational power. It
assigns each client an appropriate amount of worku-
nits. All messages are formated in XML and trans-
mitted via HTTP or HTTPS.

2. Validator validates the received results and assigns
a respective amount of BOINC Credits, if the client
sends valid results.

3. Assimilator transfers the correct results into an ex-
ternal database or filesystem. If none of the clients
are able to compute a validating result, the assimi-
lator sends or writes error reports [20].

The description of the remaining two daemons is not
relevant to our attacks, interested readers are referred
to [20, 23].

2.2 BOINC Terminology

iCPID The BOINC project server creates the internal
Cross Project Identifier (iCPID) as a 16 byte long
random value during account creation. This value
is stored by the client and server. From this time,
the iCPID included in every request and response
between the client and server [22].

eCPID The external Cross Project Identifier (eCPID)
serves the purpose of identifying a volunteer across
different BOINC projects without revealing the cor-
responding email address. It is computed by apply-
ing the cryptographic hash function MD5 to (iCPID,
email) and thus has a length of 16 byte [22].

eCPID = MD5(iCPID‖email) (1)

Furthermore, BOINC uses internal and external host
identifiers which are not relevant for the Gridcoin archi-
tecture or our attacks.

2.3 BOINC Credit
BOINC credits are generated whenever a host submits a
solution to an assigned task. They are measured in Cob-
blestone, whereas one Cobblestone is equivalent to 1

200
of CPU time on a reference machine with 1,000 mega
floating point operations per second [21]. The served
statistical files contain the two credit measuring values
of the Total Credit and Recent Average Credit for each
participant, hosts, and team.

Total Credit: The value of Total Credits is the total
number of Cobblestones generated [21].

Recent Average Credit (RAC): RAC is defined as the
average number of Cobblestones per day generated
recently [21]. If an entire week passes, the value
is divided by two. Thus old credits are weakly
weighted. It is recalculated whenever a host gen-
erates credit [28].

RAC = RACold ·d(t)+(1−d(t)) · credit(new) (2)

Where d(t) is the decay function with t being the
time in seconds passed since the last RAC recalcu-
lation.

d(t) = e(− ln(2)·t/604800) (3)

TeamRAC The average cumulative RAC of a BOINC
team for a specific project.

3 Gridcoin-Research

Gridcoin was first introduced in 2013 as a fork of the
alternative cryptocurrency Litecoin. Its primary goal
was to reward reasonable scientific calculations per-
formed via BOINC with coins. Therefore, it replaced
the Proof-of-Work concept of Litecoin with its own ex-
tended hybrid Proof-of-Work concept called Proof-of-
BOINC [13]. The original Gridcoin project was retired
and forked due to massive changes in 2015. Besides
the project was renamed to Gridcoin-Classic [24]. Our
analysis focuses on Gridcoin-Research, the successor of
Gridcoin-Classic. In this paper we refer to Gridcoin-
Research as Gridcoin. The new fork introduced the
Proof-of-Research concept to convert BOINC project
contributions into extra currency shares.

3.1 Core Concepts
As a fork of Litecoin, Gridcoin-Research is a blockchain
based cryptocurrency and shares many concepts with
Bitcoin. While Bitcoin’s transaction data structure and
concept is used in an unmodified version, Gridcoin-
Research utilizes a slightly modified block structure,



which is shown abstractly in Figure 1. A Gridcoin-
Research block encapsulates a header and body. The
header contains needed meta information and the body
encloses transactions. Due to the hashPrevBlockHeader
field, which contains the hash of the previous block-
header, the blocks are linked and form the distributed
ledger, the blockchain.

Blocks in the blockchain are created by so called
minters. Each block stores a list of recent transactions
in its body and further metadata in its header. To ensure
that all transactions are confirmed in a decisive order,
each blockheader field contains a reference to the pre-
vious one. To regulate the rate in which new blocks are
appended to the blockchain and to reward BOINC contri-
bution, Gridcoin-Research implements another concept
called Proof-of-Research. Proof-of-Research is a com-
bination of a new overhauled Proof-of-BOINC concept,
which was originally designed for Gridcoin-Classic and
the improved Proof-of-Stake concept, inspired by alter-
native cryptocurrencies [29, 15].

3.2 Proof-of-Stake
Proof-of-Stake is a Proof-of-Work replacement, which
was first utilized by the cryptocurrency Peercoin in
2012 [15]. This alternative concept was developed to
showcase a working Bitcoin related currency with low
power consumption. Therefore the block generation
process has been overhauled. To create a new valid block
for the Gridcoin blockchain the following inequality
must be satisfied:

SHA256(SHA256(kernel))< Target ·UT XO Value+RSAWeight (4)

The kernel value represents the concatenation of the pa-
rameters listed in Table 2. The referenced unspent trans-
action output (UTXO) must be at least 16 hours old. The
so called RSAWeight is an input value to the kernel com-
putation, it’s indicates the average BOINC work, done
by a Gridcoin minter.

In direct comparison to Bitcoin’s Proof-of-Work con-
cept, it is notable that the hash of the previous block-
header is not part of the kernel. As a result, it is theo-
retically possible to create a block at any previous point
in time. To prevent this, Gridcoin-Research creates fixed
interval checkpoint blocks. Once a checkpoint block is
synchronized with the network, blocks with older times-
tamps become invalid. Considering the nature of the used
kernel fields, a client with only one UTXO is able to
perform a hash calculation each time nTime is updated.
This occurs every second, as nTime is a UNIX times-
tamp. To be able to change the txPrev fields and thereby
increase his hash rate, he needs to gain more UTXO by
purchasing coins. Note that high UTXO and RSAWeight
values mitigate the difficulty of the cryptographic puz-
zle, which increases the chance of finding a valid kernel.
RSAWeight is explained in Section 3.3. Once a sufficient

kernel has been found, the referenced UTXO is spent in
a transaction to the creator of the block and included in
the generated block. This consumes the old UTXO and
generates a new one with the age of zero.

The Gridcoin-Research concept does not require much
electrical power, because the maximum hash rate of an
entity is limited by its owned amount of UTXOs with a
suitable age. Nevertheless, a 51% Attack, which is pos-
sible in Bitcoin [26], is still possible in Gridcoin. For this
an adversary would need to be in possession of 51% of
all coins [25].

3.3 Proof-of-Research

Minters relying solely on the Proof-of-Stake rewards are
called Investors. In addition to Proof-of-Stake, Grid-
coin gives minters a possibility to increase their income
with Proof-of-Research rewards. The Proof-of-Research
concept implemented in Gridcoin-Research allows the
minters to highly increase their block reward by utiliz-
ing their BOINC Credits. In this case the minter is called
a Researcher.

To reward BOINC contribution, relevant BOINC data
needs to be stored in each minted block. Therefore, the
software uses the BOINCHash data structure, which
is encapsulated in the first transaction of each block.
The structure encloses the fields listed in Table 6. The
minting and verification process is shown in Figure 3
and works as follows:

1. A minter (Researcher) participates in a BOINC
project A and performs computational work for it.
In return the project server increases the users Total
Credit value on the server. The server also stores the
minter’s email address, iCPID, eCPID and RAC.

2. Statistical websites contact project server and
download the statistics for all users from the project
server (A).

3. After the user earns credits, his RAC increases.
Consequently, this eases the finding of a solution
for the Proof-of-Stake cryptographic puzzle, and the
user is able to create (mint) a block and broadcast it
to the Gridcoin network.

4. Another minter (Investor or Researcher) will re-
ceive the block and validate it. Therefore, he ex-
tracts the values from the BOINCHash data struc-
ture inside the block.

5. The minter uses the eCPID from the BOINCHash
to request the RAC and other needed values from a
statistics website and compares them to the data ex-
tracted from the BOINCHash structure, in the event
that they are equal and the block solves the crypto-
graphic puzzle, the block is accepted.



Figure 1: Gridcoin-Research block structure. Note that only a few header fields go into the kernel computation.

Field Description
RSAWeight Research Savings Account Weight
txPrev.block.nTime block time of referenced tx
txPrev.nTime timestamp of referenced tx
txPrev.vout.hash hash of referenced tx output
txPrev.vout.n index of refenced tx output
nTime current UNIX timestamp

Figure 2: Gridcoin Kernel Parameter

The following parameters, included in each BOIN-
CHash, are relevant to our paper:

eCPID Identifier value of the researcher used in
BOINC.

GRCAddress contains the payment address of the
minter.

ResearchMagnitudeUnit contains the Magnitude Unit.
This parameter is calculated and used to keep a
stable Proof-of-Research coin generation rate of
50,000 coins per 1,000 blocks [25].

AverageMagnitude is the sum of project Magnitudes
of an eCPID and represents the minters relative
BOINC contribution. The project Magnitude is cal-
culated with the following equation for every active
BOINC project.

pMagnitude =
RAC

TeamRAC ·#WhitelistedPro jects
(5)

ResearchAge is defined as the time span between the
creation time of the last Proof-of-Research gener-
ated block with the user’s eCPID and the time stamp
of the last block in the chain measured in days.

ResearchAge = LastBlocknTime−LastPaymentTime (6)

RSAWeight estimates the user’s Gridcoin gain for the
next two weeks, based on the BOINC contribution
of the past two weeks.

ResearchSubsidy2 contains the calculated Proof-of-
Research reward for the solved block.

InterestSubsidy encloses the computed Proof-of-Stake
reward for the solved block.

CPIDv2 contains a checksum to prove that the minter is
the owner of the used eCPID. We fully describe the
content of this field in Section 6.

3.4 Reward Calculation
The total reward for a solved block is called the Subsidy
and is computed as the sum of the Proof-of-Research and
the Proof-of-Stake reward. The Proof-of-Stake reward is
calculated with the following formula3:

PoSReward =
Coinage ·33 ·AnnualInterest

365 ·33+8
(7)

where CoinAge is the age of the referenced UTXO.

If a minter operates as an Investor (without BOINC con-
tribution), the eCPID is set to the string Investor and all
other fields of the BOINCHash are zeroed. An Investor
receives only a relatively small Proof-of-Stake reward.

The profitable Proof-of-Research reward is computed
as:

PoRReward = ResearchAge ·AverageMagnitude ·ResearchMagnitudeUnit (8)

Because the Proof-of-Research reward is much higher
than its Proof-of-Stake counterpart, contributing to
BOINC projects is more worth the effort.

4 Trust Issues and Threats

One critical aspect of cryptocurrencies is trust. For ex-
ample, if a central exchange place (e.g., Mt. Gox) for a
cryptocurrency is taken over, the exchange rate signifi-
cantly decreases [17] and as a result, the currency loses
many of its users. This can also happen if a vulnerability

3Explanation of the numbers: http://wiki.gridcoin.us/Proof-of-
Research#Proof-of-Research_Reward_Calculation



Gridcoin users

Gridcoin blockchain

BOINC / Gridcoin
infrastructure

Block(i-1) Block(i+1)

Researcher /
Minter 

Gridcoin
Verifier

Statistics WebsiteBOINC Project A
User entry
email: john@mail.com
iCPID: DEADBEAF
eCPID: MD5(iCPID||email)
Credit: 100,000
RAC: 100

Block(i)Blockheader
Kernel parameters

BOINCHash
eCPID: MD5(iCPID||email)
RAC: 100
…
CPIDv2: obfusc(iCPID, email, H(Block(i-1)))

1. Performs
BOINC work

2. Sync

3. Creates
block

4. Verifies
block

5. Request eCPID
information

User entry
eCPID: 298ABC…
Project: A
Credit: 100,000
RAC: 100

Figure 3: Gridcoin-Research architecture

in the cryptocurrency is found. Ethereum’s market capi-
talization decreased from $ 1.742 Billion US to $ 0.865
billion US, after two vulnerabilities were exploited by at-
tackers on the 16th of June, 2016.

In this section we show that aside from the security
flaws there are two major trust issues in Gridcoin which
the user should be aware of.

4.1 Statistics Websites
In Section 2 the core concept behind BOINC was de-
scribed. One functionality is the creation of BOINC
Credits for users, who perform computational work
for the project server. This increases the competi-
tion between BOINC users and therefore has a pos-
itive effect on the amount of computational work
which users commit. Different websites4 collect
credit information of BOINC users from known project
servers and present them online. The Gridcoin client
compares the RAC and total credit values stored
in a new minted block with the values stored on
cpid.gridcoin.us:5000/get_user.php?cpid=eCPID where
eCPID is the actual value. If there are differences, the
client declines the block. In short, statistical websites are
used as control instance for Gridcoin. It is obvious that
gridcoin.us administrators are able to modify values of

4http://boincstats.com, boinc.netsoft-online.com

any user. Thus, they are able to manipulate the amount
of Gridcoins a minter gets for his computational work.
This is crucial for the trust level and undermines the gen-
eral decentralized structure of a crypto currency.

4.2 Project Servers
Gridcoin utilizes BOINC projects to outsource mean-
ingful computation tasks from the currency. For many
known meaningful problems there exist project servers5

that validate solutions submitted by users,6 and decide
how many credits the users receive for their solutions.
Therefore, the project servers can indirectly control the
amount of Gridcoins a minter gets for his minted block
via the total credit value. As a result, a Gridcoin user also
needs to trust the project administrators. This is very crit-
ical since there is no transparency in the credit system of
project server.

Centralization. There are several obstacles which
makes it hard to simply decentralize project server. For
one, it would be necessary to have an authentic dis-
tributed database of all users which guarantees that the
entries are only changed by the owner of user account.

5https://gridcoin.us/Guides/whitelist.htm
6https://boinc.berkeley.edu/trac/wiki/

ValidationSummary

http://boincstats.com
boinc.netsoft-online.com
https://gridcoin.us/Guides/whitelist.htm
https://boinc.berkeley.edu/trac/wiki/ValidationSummary
https://boinc.berkeley.edu/trac/wiki/ValidationSummary


For SETI@Home, one of the scientific experiments of
UC Berkeley, this would require 1,683,717 entries7 and
524 megabytes on a single computer (in case it is stored
in XML). BOINC also keeps track of the computer solv-
ing scientific problems for the projects. SETI@Home
currently has 4,157,578 entries8. This requires 4.5 gi-
gabytes of disk space on one computer. All of these
data needs to be transferred to all peers. We are not
including the overhead for error detection and correc-
tion in the event that one host goes offline. A signifi-
cant larger amount of space is needed for the raw scien-
tific data that each client processes. SETI@home dis-
tributes work units of 350 kbyte size to every volun-
teer computer [12], and every result of the processing is
roughly 1 kbyte in size. SETI@home distribute 79,254
tasks9 (workunits) to the volunteer computers per hour,
resulting in 1,902,096 workunits per day. This requires
667,635 Gbyte of space in the blockchain for a single
day, in order to allow other users to verify the results.
Therefore, it is not just easily possible to decentralize the
project servers.

5 Attacker Model

In addition to the trust issues identified in the previous
section, Gridcoin suffers from serious flaws which allow
the revelation of minter identities or even stealing coins.
Our attacks do not rely on the Gridcoin trust issues and
the attacker does not need to be in possession of specific
server administrative rights. We assume the following
two simple attackers with limited capability sets.

5.1 Blockchain Grabber
For our first attack we only need an attacker with the
capability to download the Gridcoin blockchain from an
Internet resource and run a program on the downloaded
data.

5.2 Gridcoin Minter
The attacker in our second attack is able to execute ev-
ery action that can be performed by a regular Gridcoin
user. This model has less capabilities than the Web At-
tacker model defined by Barth et al. [8]. In short, the user
can use the source code provided on Github,10 modify it,
and run the client. Due to Gridcoin’s peer-to-peer archi-
tecture, every active user is also a provider of resources

7https://setiathome.berkeley.edu/stats/user.gz
8https://setiathome.berkeley.edu/stats/host.gz
9Average value from the last 13 entries of Resultsreceivedinlasthour

@ http://setiathome.berkeley.edu:80/sah_status.html (hint wayback
machine)

10https://github.com/gridcoin/Gridcoin-Research

Last block hash iCPID ||  email

MD5

ROR

CPIDv2

Figure 4: Obfuscation function for CPIDv2

for the network, such as bandwidth (message transport)
and storage (blockchain blocks). As a result, every Grid-
coin user and our attacker has control over some data in
the network and can modify them. Furthermore, it is not
necessary to participate as a researcher to execute our
second attack. The attack can even be performed by a
Gridcoin investor.

6 Privacy Revealing Attack

In the following, we describe an attack on the privacy of
Gridcoin which allows an attacker to recover all email
addresses of Gridcoin Researchers. We consider a sim-
ple attacker model with a blockchain grabber, who is able
to download the Gridcoin blockchain.

6.1 Attack Concept

In order to protect the email addresses of Gridcoin Re-
searchers, neither BOINC project websites nor statistical
websites directly include these privacy critical data. The
statistical websites only include eCPID entries which
are used to reward Gridcoin Researchers. However, the
email addresses are hidden inside the computation of the
BOINCHash (see Figure 6). A BOINCHash is created
every time a Researcher mints a new block and includes
a CPIDv2 value. The CPIDv2 value contains an obfus-
cated email address with iCPID and a hash over the pre-
vious blockchain block.

By collecting the blockchain data and reversing the
obfuscation function (cf. Figure 4 and Listing 4), the
attacker gets all email addresses and iCPIDs ever used
by Gridcoin Researchers. See the reversed obfuscation
function in Figure 5 and Listing 4. The ROR function
used in these steps computes the sum of two byte arrays
(see Listing 3). ROL reverses this computation in an ob-
vious way.



Last block hash CPIDv2

MD5

ROL

iCPID ||  email

Figure 5: Deobfuscation function for CPIDv2

6.2 Evaluation
We implemented a deobfuscation function (Listing 4)
and executed it on the blockchain. This way, we were
able to retrieve all (2709) BOINC email addresses and
iCPIDs used by Gridcoin Researchers. This is a serious
privacy issue and we address it in Section 8.

7 Reward Forging Attack

The previous attack through deobfuscation allows us to
retrieve iCPID values and email addresses. Thus, we
have all values needed to create a new legitimate eCPID.
This is required because the CPIDv2 contains the last
block hash and requires a recomputation for every new
block it should be used in. We use this fact in the follow-
ing attack and show how to steal the computational work
from another legitimate Gridcoin Researcher by mining
a new Gridcoin block with forged BOINC information.
Throughout this section, we assume the Gridcoin Minter
attacker model where the attacker has a valid Gridcoin
account and can create new blocks. However, the at-
tacker does not perform any BOINC work.

7.1 Attack Concept
As stated in Section 7 the pre-image of the eCPID is
stored obfuscated in every Gridcoin block, which con-
tains a Proof-of-Research reward. We gathered one pre-
image from the minted blocks of our victim and deob-
fuscated it. Thus, we know the values of the iCPID, and
the email address of our victim. Subsequently, use the
hash of the last block created by the network and use
these three values to create a valid CPIDv2. Afterwards
we constructed a new block. In the block we also store
the current BOINC values of our victim, which we can
gather from the statistics websites. The final block is af-
terwards sent into the Gridcoin network. In case all val-
ues are computed correctly by the attacker, the network
will accept the block, and resulting in a higher reward
for the attacker, consisting of Proof-of-Stake and Proof-
of-Research reward.

As stated in Section 7, the pre-image of the eCPID
is stored obfuscated in every Gridcoin block which con-
tains a Proof-of-Research reward. Therefore, one ob-
fuscated image from the minted blocks of the victim
was gathered and deobfuscated. Thus, the values of the
iCPID and email address of the victim are known. Sub-
sequently, the hash of the last block, which created by
the network, is used as the third component to create a
valid CPIDv2. Afterwards, a new block is constructed,
where the current BOINC values of the victim are stored,
which are gathered from the statistical websites. The fi-
nal constructed block and block header are then sent into
the Gridcoin network. In the event that all values are
correctly computed by the attacker, the network will ac-
cept the block, thus resulting in a higher reward for the
attacker, consisting of both the Proof-of-Stake and Proof-
of-Research reward.

7.2 Evaluation

In order to verify our attacks practically, we created two
virtual machines (R and A), both running Ubuntu 14.04.3
LTS. The virtual machine R contained a legit BOINC
and Gridcoin instance. It represented the setup of a nor-
mal Gridcoin Researcher. The second machine A con-
tained a modified Gridcoin-Research client 3.5.6.8 ver-
sion, which tried to steal the Proof-of-Research reward
of virtual machine R. Thus, we did not steal reward of
other legitimate users.

The victim BOINC client was attached to
the SETI@home project11 with the eCPID
9f502770e61fc03d23d8e51adf7c6291. The victim
and the attacker were in possession of Gridcoins, en-
abling them to stake currency and to create new blocks.
Initially both Gridcoin-Research clients retrieved the
blockchain from other Gridcoin nodes in the Gridcoin
network.

The Gridcoin attack client made it possible to spec-
ify the victim email address, iCPID and target project.
All these values can be retrieved from the down-
loaded blockchain and our previous attack via the
reverseCPIDv2 function as shown in Listing 4.

The attack client read the iCPID and email address
of the victim from a modified configuration file. All
other values, for example, RAC or ResearchAge, were
pulled from http://cpid.gridcoin.us:5000/get_
user.php?cpid=. As soon as all values were received,
the client attempted to create a new valid block.

Once a block had been created and confirmed, the
attacker received the increased coin reward with zero
BOINC contribution done. The attack could only be
detected by its victims because an outside user did not

11http://setiathome.berkeley.edu

http://cpid.gridcoin.us:5000/get_user.php?cpid=
http://cpid.gridcoin.us:5000/get_user.php?cpid=
http://setiathome.berkeley.edu


Block Time PoR PoS
632862 2016-08-11 21:09:52 4,84 0
631002 2016-08-09 20:45:20 2,91 1,48
630000 2016-08-08 18:50:56 0,87 0
629677 2016-08-08 10:49:52 0,43 0,01
629521 2016-08-08 07:05:04 18,95 0,19
622658 2016-08-01 00:07:12 11 0,7
618716 2016-07-27 18:34:08 5,6 0,33
616844 2016-07-25 18:33:52 3,22 0,31
615810 2016-07-24 14:54:08 0,75 0
615570 2016-07-24 08:30:08 0,34 0
615461 2016-07-24 05:39:28 0,9 0
615189 2016-07-23 22:26:08 1,58 0,18
614715 2016-07-23 09:45:52 1,58 0,01
614249 2016-07-22 21:05:20 41,66 1,86
601680 2016-07-08 23:47:12 0,57 0
601504 2016-07-08 19:13:36 0,33 0,51
601408 2016-07-08 16:33:04 2,05 0
600769 2016-07-08 00:03:28 3,33 0
599717 2016-07-06 20:27:44 3,22 0
598773 2016-07-05 19:54:56 0,14 0,21

Table 1: Blocks minted with the victim’s
eCPID

know the legitimate Gridcoin addresses a Researcher
uses.

All blocks created with our victim’s eCPID are shown
in Table 1. Illegitimate blocks are highlighted. We
were able to mint multiple illegitimate blocks, and thus
stealing Research Age from our victim machine R. All
nine blocks constructed and send by the attacker passed
the Gridcoin block verification, and were confirmed
multiple times, and are part of the current Gridcoin
blockchain. During our testing timespan of approxi-
mately three weeks, the attacker machine was wrongfully
rewarded with 72.4 Proof-of-Research generated Grid-
coins, without any BOINC work. The results show that
the attack is not only theoretically possible, but also very
practical, feasible, and effective.

The attack results can be reproduced with our
Gridcoin-Research-Attack client.12

On the impossibility to identify previous attacks.
There are two possible values which can be checked in
a new block in order to identify previous attacks; the
Gridcoin address and the eCPID. The Gridcoin address
is changed every time a new private and public key pair
is created. This is a normal process to ensure privacy of
transactions. The eCPID is updated to a new value ev-
ery time the user participates in a new BOINC project or
adds a new computer (e.g., if the user adds SETI@Home
to his projects), so a change in the Gridcoin address
or eCPID is not necessarily an indicator for an attack
against a certain user. Therefore, it is not possible to
verify if previous attacks based on our reward stealing at-
tack were driven against the Gridcoin network. It would,
however, be possible to rent many virtual machines all
over the world and triangulate [30] the active minter in
the Gridcoin network in order to see if a specific eCPID

12http://bit.ly/Gridcoin-Attacks

was used from very different locations. This would hint
that there is an ongoing attack.

8 Proposed Countermeasures

In order to fix the security issue, we found one solution
which does not require any changes to the BOINC source
code nor the infrastructure. It is sufficient to change
some parts of the already existing Gridcoin Beacon sys-
tem. Thus, our solution is backwards compatible.

The current Gridcoin client utilizes so called Beacons
to register new eCPIDs and stores them as a transac-
tion of 0.0001 Gridcoins in a Superblock which is cre-
ated every 24 hours. A Beacon encloses the user’s per-
sonal eCPIDs, a corresponding unused (but irreversible)
CPIDv2, and the wallet’s main Gridcoin payment ad-
dress. Once the Superblock is created, the eCPIDs is
bound to one Gridcoin payment address. During the
block verification process this bond is unfortunately not
checked. Furthermore, the existing Beacon system does
not use any strong asymmetric cryptography to ensure
authenticity and integrity of the broadcasted data.

We propose to extend the Beacon system with public
key cryptography. In detail, we suggest that a user binds
his fresh public key PK1 to a newly generated eCPID by
storing them together in a Superblock. An initial Bea-
con would therefore contain a hashed (e.g. SHA-256)
eCPID, the public key, a Nonce, and a cryptographic sig-
nature created with the corresponding secret key SK1 of
the public key. This allows only the owner of the secret
key to create valid signatures over blocks created with his
eCPID. Thus, an adversary first needs to forge a crypto-
graphic signature before he can claim Proof-of-Research
work of another Gridcoin user.

Nonce $←{0,1}128 (9)
Input :=H(eCPID) || PK1 || Nonce (10)

FirstBeacon := SignSK1
(Input) || Input (11)

For verification purposes, nodes fetch the correspond-
ing latest public key from one of the Superblocks. Fur-
thermore, this Beacon structure allows a user to replace
his previous public key associated with his eCPID. This
is realized by submitting a new Beacon with a new public
key PK2, signed with his old secret key.

Nonce $←{0,1}128 (12)
Input :=H(eCPID) || PK2 || Nonce (13)

U pdateBeacon := SignSK1
(Input) || Input (14)

All Beacons in the chain are verifiable and the latest
public key is always authentic. The Nonce provide fresh-
ness for the signature input, and therefore prevents replay

http://bit.ly/Gridcoin-Attacks


attacks against the Beacon system.
Note that the eCPID needs to be completely unknown
to the network, when sending the initial Beacon, for this
concept to work as intended. The hash function ensures,
that the Beacon does not reveal the fresh eCPID. As a
result, an attacker is unable to mint with a eCPID even
if he was able to intercept an initial Beacon and replaced
the public key and signature with his own parameters,
beforehand. This solution does not require any changes
in the BOINC source code or the project servers.

Sign block. In order to claim the Proof-of-Research re-
ward for a newly created block, the Gridcoin minter com-
putes a signature over the hash of the blockheader. Af-
terwards, he stores the resulting value at the end of the
corresponding block in a new field. The private key used
for the signature generation must correspond to the ad-
vertised public key by the user. It is important to note
that the signature value is not part of the Merkle tree,
and thus does not change the blockheader. In the end,
the signature can then be verified by every other Grid-
coin user via the advertised public key corresponding to
the eCPID of the Gridcoin minter.

9 Related Work

The problems of Gridcoins basis, Bitcoin, and its de-
sign have been extensively studied and analyzed by re-
searchers from different fields. Security relevant attacks
and design flaws were identified back in 2012 [7] and
2014 [11]. Further studies [9, 19] measure the energy
footprint and the future viability of Bitcoin’s Proof-of-
Work design concept. This research outlines the bound-
aries of Bitcoin and confirms the need for different de-
sign principles.

Apart from Gridcoin-Research various other Altcoins
attempt to resolve Bitcoin’s problems while retaining
its advantages. Today, however, only few of the im-
plemented design concepts have been analyzed suffi-
ciently. Only Altcoins which introduced relatively subtle
changes, like Litecoin [16], are well understood today.
Other cryptocurrencies with massive profound changes
and their own Proof-of-Works replacement include Peer-
coin [15], Blackcoin [29], Primecoin [14], Filecoin [5],
or Permacoin [6]. The risks and drawbacks of the
named Altcoins are uncharted and their analysis is there-
fore part of possible future work.

10 Conclusions

In the last couple of years, we have observed a huge in-
crease in Bitcoin’s popularity. This was accompanied
by the establishment of new alternative cryptocurrencies.

Maintainers of these alternative cryptocurrencies lured
new users to invest their money in these currencies and
thus became part of the community. These cryptocur-
rencies became a larger part of the payment system over
time, and still have market shares of several millions of
US dollars, even though their security is not well ana-
lyzed and they may be lacking basic security design prin-
ciples.

One of these cryptocurrencies is Gridcoin. It attempts
to gain new users with a promise of meaningful computa-
tion which helps to heal cancer or study global warming.
This is indeed a good purpose in comparison to Bitcoin-
like wasteful Proof-of-Work computations. However, as
we showed in our paper, in its current state the Gridcoin
design is completely broken and insecure, and allows an
attacker to steal Gridcoins from benign users.

We first conclude that future security research should
concentrate on the analysis of cryptocurrencies in gen-
eral. Given the amount of money transferred in Bitcoin-
like currencies, these would deserve thorough security
studies and audits. We also believe that one of the main
research goals should become the study of meaning-
ful computational problems for cryptocurrencies, so that
these problems are directly used in Proof-of-Work com-
putations. This is very challenging since the problems
used in a typical cryptocurrency have to posses three gen-
eral properties: It has to be (1) hard to solve, (2) verifi-
able (3), and the amount of reward has to be easily calcu-
lable. Analysis of meaningful problems with these prop-
erties and design of a secure cryptocurrency should also
be covered with in the future.

References

[1] http://primecoin.io/

[2] Boinc Stats: Team Gridcoin Details,
http://boincstats.com/en/stats/-1/
team/detail/118094994

[3] Gridcoin: Market Capitalization, https://
coinmarketcap.com/currencies/gridcoin/

[4] Map of Coins: Bitcoin, http://mapofcoins.
com/bitcoin, as of Monday 14th August, 2017

[5] Filecoin: A cryptocurrency operated file stor-
age network (2014), http://filecoin.io/
filecoin.pdf

[6] Andrew Miller, Ari Juels, E.S.B.P.J.K.: Permacoin:
Repurposing bitcoin work for data preservation. In:
Proceedings of the IEEE Symposium on Security
and Privacy. IEEE (May 2014)

http://primecoin.io/
http://boincstats.com/en/stats/-1/team/detail/118094994
http://boincstats.com/en/stats/-1/team/detail/118094994
https://coinmarketcap.com/currencies/gridcoin/
https://coinmarketcap.com/currencies/gridcoin/
http://mapofcoins.com/bitcoin
http://mapofcoins.com/bitcoin
http://filecoin.io/filecoin.pdf
http://filecoin.io/filecoin.pdf


[7] Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter
to better—how to make bitcoin a better currency.
In: International Conference on Financial Cryp-
tography and Data Security. pp. 399–414. Springer
(2012)

[8] Barth, A., Jackson, C., Mitchell, J.C.: Robust de-
fenses for cross-site request forgery. In: Proceed-
ings of the 15th ACM conference on Computer and
communications security. pp. 75–88. ACM (2008)

[9] Becker, J., Breuker, D., Heide, T., Holler, J., Rauer,
H.P., Böhme, R.: Can we afford integrity by proof-
of-work? scenarios inspired by the bitcoin cur-
rency. In: The Economics of Information Security
and Privacy, pp. 135–156. Springer (2013)

[10] Bonneau, J., Miller, A., Clark, J., Naryanan, A.,
Kroll, J.A., Felten, E.W.: SoK: Bitcoin and second-
generation cryptocurrencies. In: IEEE Security and
Privacy 2015 (May 2015)

[11] Eyal, I., Sirer, E.G.: Majority is not enough: Bit-
coin mining is vulnerable. In: International Confer-
ence on Financial Cryptography and Data Security.
pp. 436–454. Springer (2014)

[12] Gardner, M.K., Feng, W.c., Archuleta, J., Lin, H.,
Ma, X.: Parallel genomic sequence-searching on an
ad-hoc grid: experiences, lessons learned, and im-
plications. In: SC 2006 Conference, Proceedings of
the ACM/IEEE. pp. 22–22. IEEE (2006)

[13] Halford, R.: Gridcoin: Crypto-Currency using
Berkeley Open Infrastructure Network Computing
Grid as a Proof Of Work. self-published paper, May
23 (2014)

[14] King, S.: Primecoin: Cryptocurrency with prime
number proof-of-work. July 7th (2013)

[15] King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake. self-published paper,
August 19 (2012)

[16] Lee, C.: Litecoin (2011)

[17] Moore, T., Christin, N.: Beware the middleman:
Empirical analysis of bitcoin-exchange risk. In: In-
ternational Conference on Financial Cryptography
and Data Security. pp. 25–33. Springer (2013)

[18] Nakamoto, S.: Bitcoin: A peer-to-peer electronic
cash system. Consulted 1(2012), 28 (2008)

[19] O’Dwyer, K.J., Malone, D.: Bitcoin mining and its
energy footprint. In: Irish Signals & Systems Con-
ference 2014 and 2014 China-Ireland International

Conference on Information and Communications
Technologies (ISSC 2014/CIICT 2014). 25th IET.
pp. 280–285. IET (2013)

[20] Ries, C.B.: UML for BOINC: A Modelling Lan-
guage Approach for the Development of Dis-
tributed Applications based on the Berkeley Open
Infrastructure for Network Computing. Ph.D. the-
sis, Glynd^wr University (2013)

[21] Various: Boinc credit computation, http:
//boinc.berkeley.edu/wiki/computation_
credit

[22] Various: Boinc icpid and ecpid creation policy,
http://boinc.berkeley.edu/trac/wiki/
CrossProjectUserId

[23] Various: Boincpapers, http://boinc.
berkeley.edu/trac/wiki/BoincPapers

[24] Various: Gridcoin classic wiki, http://wiki.
gridcoin.us/Gridcoin-Classic

[25] Various: Gridcoin wiki, http://wiki.
gridcoin.us/Proof-of-Research#
Proof-of-Research_Reward_Calculation

[26] Various authors: Bitcoin Glossary,
https://bitcoin.org/en/glossary/
51-percent-attack

[27] Various authors: BOINC Credit statistics web
sites and services, https://boinc.berkeley.
edu/trac/wiki/CreditStats

[28] Various authors: Computation of the Recent Av-
erage Credit, https://web.archive.org/web/
20120418125739/http://www.boinc-wiki.
info/Recent_Average_Credit

[29] Vasin, P.: Blackcoin’s proof-of-stake protocol v2

[30] Wang, Y., Burgener, D., Flores, M., Kuzmanovic,
A., Huang, C.: Towards street-level client-
independent ip geolocation. In: NSDI. vol. 11, pp.
27–27 (2011)

[31] Wustrow, E., VanderSloot, B.: Ddoscoin: Cryp-
tocurrency with a malicious proof-of-work.
In: 10th USENIX Workshop on Offensive
Technologies (WOOT 16). USENIX Asso-
ciation, Austin, TX (Aug 2016), https:
//www.usenix.org/conference/woot16/
workshop-program/presentation/wustrow

http://boinc.berkeley.edu/wiki/computation_credit
http://boinc.berkeley.edu/wiki/computation_credit
http://boinc.berkeley.edu/wiki/computation_credit
http://boinc.berkeley.edu/trac/wiki/CrossProjectUserId
http://boinc.berkeley.edu/trac/wiki/CrossProjectUserId
http://boinc.berkeley.edu/trac/wiki/BoincPapers
http://boinc.berkeley.edu/trac/wiki/BoincPapers
http://wiki.gridcoin.us/Gridcoin-Classic
http://wiki.gridcoin.us/Gridcoin-Classic
http://wiki.gridcoin.us/Proof-of-Research#Proof-of-Research_Reward_Calculation
http://wiki.gridcoin.us/Proof-of-Research#Proof-of-Research_Reward_Calculation
http://wiki.gridcoin.us/Proof-of-Research#Proof-of-Research_Reward_Calculation
https://bitcoin.org/en/glossary/51-percent-attack
https://bitcoin.org/en/glossary/51-percent-attack
https://boinc.berkeley.edu/trac/wiki/CreditStats
https://boinc.berkeley.edu/trac/wiki/CreditStats
https://web.archive.org/web/20120418125739/http://www.boinc-wiki.info/Recent_Average_Credit
https://web.archive.org/web/20120418125739/http://www.boinc-wiki.info/Recent_Average_Credit
https://web.archive.org/web/20120418125739/http://www.boinc-wiki.info/Recent_Average_Credit
https://www.usenix.org/conference/woot16/workshop-program/presentation/wustrow
https://www.usenix.org/conference/woot16/workshop-program/presentation/wustrow
https://www.usenix.org/conference/woot16/workshop-program/presentation/wustrow


A Appendix

A.1 Gridcoin Additional Parameters
Due to the page limitation and in order to give a com-
prehensive overview, some additional parameters used in
Gridcoin are described here.

Note: The following parameters are part of the BOIN-
CHash but are left blank in every Gridcoin block and
does not contain any data.

• pobdifficulty
• diffbytes
• enccpid
• encboincpublickey
• encaes
• nonce
• NetworkRAC
• Organization
• OrganizationKey
• NeuralHash
• superblock
• CurrentNeuralHash

A.2 Code
The following section provides a more detailed and code-
based description of the CPIDv2 calculation and the re-
version process initially described in Section 6. List-
ing 1 shows functions taken from the Gridcoin-Research
source code which are relevant for the CPIDv2 calcu-
lation. Note that these functions are obfuscated in the
official source code and a manual deobfuscation was re-
quired to follow the process. For comparison the original
code is shown in ??.13 Gridcoin-Research computes the
CPIDv2 from the user’s email address, the iCPID and the
previous blockhash. Initially the function HashHex com-
putes shash as the MD5 digest of the passed block_hash
and consecutively applies the ROR function to the con-
catenation of iCPID and email (boinc_hash_new). ROR
computes the sum of the ASCII values of the characters
at iPos in boinc_hash_new and shash and encodes the
result in hexadecimal (see Listing 3).

string ComputeCPIDv2(string email, string bpk, uint256 blockhash)
{

return CPID().CPID_V2(email, bpk, blockhash);
}

string CPID::CPID_V2(string email, string bpk, uint256 block_hash)
{
string non_finalized = HashKey(email, bpk);
string digest = Update6(non_finalized, block_hash);
return digest;

}

string CPID::Update6(string non_finalized, uint256 block_hash)
{
string boinc_hash_new=bpk1+email1;

13https://github.com/gridcoin/Gridcoin-Research/
blob/8ac1a8c7de9155b42bdef7852adae81700c42366/src/
cpid.cpp

string shash = HashHex(block_hash);
for ( int i = 0; i < ( int )boinc_hash_new.length(); i++)
{
non_finalized += ROR(shash, i, boinc_hash_new);

}
return non_finalized;

}

Listing 1: Deobfuscated CPIDv2 calculation

CPID::CPID(std::string text,int entropybit,uint256 hash_block){init();entropybit
++;update5(text,hash_block);finalize();}template<typename T>std::string
ByteToHex(T i){std::stringstream stream;stream<<std::setfill(
((char)(0xbac+70-0xbc2)))<<std::setw((0x1344+4775-0x25e9))<<std::hex<<i;return
stream.str();}std::string CPID::HashKey(std::string email1,std::string bpk1){
boost::algorithm::to_lower(bpk1);boost::algorithm::to_lower(email1);
boinc_hash_new=bpk1+email1;CPID c=CPID(boinc_hash_new);std::string non_finalized
="";non_finalized=c.hexdigest();return non_finalized;}int BitwiseCount(std::
string str,int pos){char ch;if(pos<(int)str.length()){ch=str.at(pos);int asc=(
int)ch;if(asc>(0x87c+6520-0x21c5)&&asc<(0x1597+4174-0x259e))asc=asc-
(0x4c5+8720-0x26a6);return asc;}return(0x8b0+1872-0xfff);}std::string HashHex(
uint256 blockhash){CPID c2=CPID(blockhash.GetHex());std::string shash=c2.
hexdigest();return shash;}std::string ROR(std::string blockhash,int iPos,std::
string hash){if(iPos<=(int)hash.length()-(0x1f5b+1342-0x2498)){int asc1=(int)
hash.at(iPos);int rorcount=BitwiseCount(blockhash,iPos);std::string hex=
ByteToHex(asc1+rorcount);return hex;}return"\x30\x30";}std::string CPID::CPID_V2
(std::string email1,std::string bpk1,uint256 block_hash){std::string
non_finalized=HashKey(email1,bpk1);std::string digest=Update6(non_finalized,
block_hash);
return digest;}
void CPID::init(){finalized=false;count[(0x88d+1394-0xdff)]=(0x1fe5+1717-0x269a)
;count[(0x373+6812-0x1e0e)]=(0x65b+2790-0x1141);
state[(0xc88+3077-0x188d)]=1732584193;state[(0x1230+1876-0x1983)]=4023233417;
state[(0xada+3060-0x16cc)]=2562383102;state[(0x8d+3707-0xf05)]=271733878;}

void CPID::decode(uint4 output[],const uint1 input[],size_type len){for(unsigned
int i=(0xbb+8818-0x232d),j=(0xcad+2297-0x15a6);j<len;i++,j+=
(0x150f+1818-0x1c25))output[i]=((uint4)input[j])|(((uint4)input[j+
(0x320+7218-0x1f51)])<<(0x1c36+2528-0x260e))|(((uint4)input[j+
(0x20c3+1239-0x2598)])<<(0x9d+5272-0x1525))|(((uint4)input[j+(0xbb7+2557-0x15b1)
])<<(0x131b+3426-0x2065));}

...

Listing 2: Original obfuscated CPID class responsible
for basic Gridcoin calculations contains many magic
numbers and is not formatted to hide the broken design.
label

string ROR(string blockhash, int iPos, string hash)
{

if (iPos <= ( int )hash.length()−1)
{

int asc1 = ( int )hash.at(iPos);
int rorcount = BitwiseCount(blockhash, iPos);
string hex = ByteToHex(asc1+rorcount);
return hex;

}
return "00";

}

Listing 3: Deobfuscated ROR calculation

As boinc_hash_new is merely rotated a known amount
of times, it is possible to reverse a CPIDv2, if the used
previous blockhash is known. Our new function rever-
seCPIDv2 shown in Listing 4 receives a CPIDv2 and
the used blockhash and calculates the respective email
and iCPIDs. The underlying function ROL subtracts the
corresponding ASCII value of shash from the supplied
CPIDv2 and thereby reverses the function ROR which
is applied during the calculation process. More specifi-
cally equation 15 applies:

https://github.com/gridcoin/Gridcoin-Research/blob/8ac1a8c7de9155b42bdef7852adae81700c42366/src/cpid.cpp
https://github.com/gridcoin/Gridcoin-Research/blob/8ac1a8c7de9155b42bdef7852adae81700c42366/src/cpid.cpp
https://github.com/gridcoin/Gridcoin-Research/blob/8ac1a8c7de9155b42bdef7852adae81700c42366/src/cpid.cpp


Field Description Public
cpid BOINC eCPID +
projectname BOINC project name +
rac BOINC RAC +
clientversion Gridcoin-Research client version
ResearchSubsidy equals ResearchSubsidy2 +
LastPaymentTime timestamp of last PoR generated block with same CPID +
RSAWeight estimates coin gain for next 14 days +
cpidv2 CPIDv2 -
Magnitude magnitude +
GRCAddress minters Gridcoin address
lastblockhash hash of last block +
InterestSubsidy Proof-of-Stake reward +
ResearchSubsidy2 Proof-of-Research reward +
ResearchAge Research Age used +
ResearchMagnitudeUnit magnitude unit (coin creation rate) +
ResearchAverageMagnitude average magnitude (average boinc work done by the researcher) +
LastPORBlockHash hash of last Proof-of-Research generated block +

The Public column indicates whether the field is available on BOINC statistics websites. A blank
cell indicates that the value can be freely selected and thus not relevant for our attacks.

Figure 6: BOINCHash structure contains fields that are of an attacker’s interest. For example, the CPIDv2 field is not
available in the official BOINC statistics websites, but is useful for reconstructing minters’ email addresses.

ROL(blockhash, iPos·2,ROR(blockhash, iPos,boinc_hash_new), iPos)

= boinc_hash_new.at(iPos) (15)

Hence our reverseCPIDv2 function iterates over all
relevant characters of the CPIDv2 to reveal the confiden-
tial user email and iCPID.

string ReverseCPIDv2(string longcpid,uint256 hash_block)
{
string shash = HashHex(hash_block);
int hexpos = 0;
string non_finalized = "";
longcpid = longcpid.substr(32, longcpid.length()−31);

for ( int i1 = 0; i1 < ( int )longcpid.length(); i1 = i1 + 2)
{
non_finalized += ROL(shash, i1, longcpid, hexpos);
hexpos++;

}
return (non_finalized);

}

Listing 4: CPIDv2 reversion

As the official source code inconveniently splits the
calculation process into different functions we provide
a simple and compact python implementation of the
CPIDv2 calculation and the corresponding reversion al-
gorithm. The code is shown in Listings 5 and 6.

import sys
import hashlib

# params: icpid , email , sha256 hash of previous block
def main(argv):

# icpid + email
userdata = argv[0] + argv[1]
blockhash = argv[2]

# md5(blockhash)
digest = hashlib.md5(blockhash.encode("ascii")).hexdigest()

cpidv2 = ""
for i, char in enumerate(userdata):

toAdd = ord(digest[i]) if i < len (digest) else 1
if 47 < toAdd < 71:

toAdd −= 47
cpidv2 += ’{:02x}’.format(ord(char) + toAdd)

print (cpidv2)

Listing 5: CPIDv2 calculation in python



import sys
import hashlib

# params: cpidv2, sha256 hash of respective previous block
def main(argv):

cpidv2 = bytes.fromhex(argv[0])
blockhash = argv[1]

# md5(blockhash)
digest = hashlib.md5(blockhash.encode("ascii")).hexdigest()
userdata = ""
for i, _ in enumerate(cpidv2):

toSubtract = ord(digest[i]) if i < len (digest) else 1
if 47 < toSubtract < 71:

toSubtract −= 47
userdata += chr(cpidv2[i] − toSubtract)

print (userdata)

Listing 6: CPIDv2 reversion in python


	Introduction
	*BOINC
	*BOINC Architecture
	*BOINC Terminology
	*BOINCC

	Gridcoin-Research
	Core Concepts
	Proof-of-Stake
	*por
	Reward Calculation

	Trust Issues and Threats
	Statistics Websites
	Project Servers

	Attacker Model
	Blockchain Grabber
	Gridcoin Minter

	Privacy Revealing Attack
	Attack Concept
	Evaluation

	Reward Forging Attack
	Attack Concept
	Evaluation

	Proposed Countermeasures
	Related Work
	Conclusions
	Appendix
	Gridcoin Additional Parameters
	Code


