
How to Break Microsoft Rights Management Services

Martin Grothe
Ruhr-University Bochum

Christian Mainka
Ruhr-University Bochum

Paul Rösler
Ruhr-University Bochum

Jörg Schwenk
Ruhr-University Bochum

Abstract
Rights Management Services (RMS) are used to enforce
access control in a distributed environment, and to cryp-
tographically protect companies’ assets by restricting ac-
cess rights, for example, to view-only, edit, print, etc.,
on a per-document basis. One of the most prominent
RMS implementations is Microsoft RMS. It can be found
in Active Directory (AD) and Azure. Previous research
concentrated on generic weaknesses of RMS, but did not
present attacks on real world systems.

We provide a security analysis of Microsoft RMS and
present two working attacks: (1.) We completely remove
the RMS protection of a Word document on which we
only have a view-only permission, without having the
right to edit it. This shows that in contrast to claims
made by Microsoft, Microsoft RMS can only be used to
enforce all-or-nothing access. (2.) We extend this attack
to be stealthy in the following sense: We show how to
modify the content of an RMS write-protected Word doc-
ument issued by our victim. The resulting document still
claims to be write protected, and that the modified con-
tent was generated by the victim. We show that these at-
tacks are not limited to local instances of Microsoft AD,
and can be extended to Azure RMS and Office 365.

We responsibly disclosed our findings to Microsoft.
They acknowledged our findings (MSRC Case 33210).

1 Introduction

Access control in distributed environments. Access
control (discretionary or role-based) can be enforced in
closed environments, for example, on files controlled by
an operating system. Once a file leaves this closed envi-
ronment, the file becomes freely accessible. This prob-
lem is well known as data leakage, and data leakage pre-
vention (DLP) is a major security goal in each company.

One major class of DLP tools are Digital Rights Man-
agement (DRM) systems, which are often called Enter-

prise Rights Management (ERM) systems when applied
to company data. DRM/ERM systems protect data by
encrypting and digitally signing it, together with access
rights, before transferring them over an unprotected net-
work, for example the Internet. This protects data against
unauthorized read and write access.

Modern ERM systems enforce a complex access con-
trol methodology (rights to read, write to, print, ex-
tend rights to other entities, etc.) through a combi-
nation of document encryption and signing, key man-
agement and rights-enforcing applications. Previous re-
search [11, 43, 48] has concentrated on generic weak-
nesses of this concept, but no attacks on industry-grade
ERM systems have been published to date.

Microsoft RMS in Active Directory and Azure. Rights
Management Services (RMS) is deployed in Active Di-
rectory Rights Management Services (AD RMS) and
since Version 2008, it is a core part of Windows Server.
In recent years, Microsoft has adapted RMS to their new
cloud platform Azure, making Azure RMS available on
mobile platforms (iOS, Android, Windows Phone) as
well. RMS is maybe the most widely used ERM im-
plementation and integrated into banking business [8],
enterprise information management [41], and hardware
security modules (HSMs) [47]. The UK Ministry of
Defence is currently integrating RMS as a part of their
Defence-as-a-Platform [50]. Its wide integration makes
RMS an important target for attacks.

Microsoft RMS can be used to protect Microsoft Of-
fice documents (rights enforcement is integrated into the
Microsoft Word, Excel and Powerpoint clients), and can
be integrated in other company applications via a dedi-
cated RMS API. Both application areas cannot be mixed:
Especially, the RMS API cannot be used to manipulate
ERM rights enforced on Microsoft Office documents.

Breaking Microsoft RMS. Building a demonstrator to
show that the RMS API is essentially limited to all-or-
nothing ERM protection is relatively easy. Much more

1



challenging is the task to reverse-engineer the use of the
rights enforcing API by Microsoft Office applications
and this way bypass the countermeasures implemented
by Microsoft.

In the paper we describe two different attacks on Mi-
crosoft Active Directory (AD) RMS for Microsoft Of-
fice. (1.) Removing the RMS protection from a protected
Word document resulting in a completely unprotected
document. (2.) Stealthy content modification of an RMS
protected Word document. Both attacks only require the
view access right on the RMS protected file. This is the
minimal right, which can be assigned to a group or users
in the Microsoft RMS environment.

These attacks have a severe impact on real-world com-
panies which rely on the RMS protection. While in prin-
ciple it is always possible to leak data from a read-only
document by making screenshots or photos, this in prac-
tice prevents large-scale data leakage. The attacks pre-
sented in this paper make large-volume data leakage of
Microsoft RMS protected documents feasible.

Moreover, the stealthy version of our attack may en-
able new scenarios, for example, in spear phishing or in-
dustrial espionage. If an attacker, having only read ac-
cess (e.g. an ordinary employee), may arbitrarily change
the content of a document issued by the CEO of a com-
pany, this could be used to trick other employees on per-
forming illegal actions.

Due to the efforts by Microsoft making the RMS sys-
tem as much platform independent as possible, our at-
tacks are also applicable on Microsoft’s cloud platform
Azure and Office 365 [5], leading to a real extension in
the attack surface.

We have implemented our attacks as a proof-of-
concept and communicated our results with Microsoft.

Contributions. We make the following contributions:
I We describe in-depth Microsoft RMS for AD RMS

and Azure RMS, including the PKI infrastructure
and the used file format.

I We describe and implement two novel attacks on
Microsoft RMS:

(1.) removing the protection of an arbitrary file,
granting full access to the attacker.

(2.) stealthily breaking the integrity of an RMS
protected file and allowing modifications of
the content. The resulting file looks as if it
has been created by another person.

I We implemented both attacks in a tool called Dis-
abeling Attacks on Rights Management Services
(DisARMS).1 We used DisARMS to evaluate our at-
tacks against Microsoft AD RMS with Office 2013

1https://github.com/RUB-NDS/MS-RMS-Attacks

and Azure with Office 365. We then communicated
our results with Microsoft (MSRC Case 33210).

I We provide possible countermeasures. Due to the
current design of RMS, finding sufficient counter-
measures are not trivial.

2 From classical DRM to modern ERM

Classical access control, with its two most popular
paradigms Discretionary Access Control (DAC) and
Role Based Access Control (RBAC), can directly by
enforced in closed systems like operating systems or
databases. DAC is an entity-based access control con-
cept. Access to ressources (e.g., files, directories, de-
vices, ...) is granted to single or multiple entities. In
RBAC [1], access control decisions are based on roles.
Each entity is assigned one or more roles. A typical ex-
ample for this concept is AD from Microsoft.

Digital Rights Management. In the 1990s, companies
like Microsoft and Real Networks introduced consumer-
market DRM implementations to protect digital audio
and video distribution. In 1998, the Digital Millenium
Copyright Act (DMCA) made it illegal to circumvent
DRM systems, regardless of their security. DMCA was
first used in a lawsuit against dozens of systems admin-
istrators in 1999 in an attempt to limit the distribution of
the DVD decyption software deCSS.

Microsoft used DRM in Windows Media Player [10]
to protect multimedia files, and Real Networks imple-
mented it in Real Player. Adobe released their own DRM
systems to protect e.g. PDF files. Most of these sys-
tems could be broken generically, by just playing and re-
recording (“ripping”) the multimedia content.

With DRMv2, Microsoft introduced the Windows Me-
dia Rights Manager 7 SDK, allowing to manage the
rights of given multimedia files (e.g., the total number
of allowed plays). DRMv2 separated the use licenses for
costumers from the protected file, previously both were
stored in one file. This concept is similar to modern RMS
implementations [10].

Enterprise Rights Management. In June 2003 Mi-
crosoft introduced its evolved DRMv2 system named
Rights Management Services as an Add-on for the Win-
dows Server 2003 operating system. It was now named
Enterprise Rights Management to highlight that it was
targeted especially to the corporate market [38].

With Windows Server 2008, RMS was fully inte-
grated as a new server role of the Active Directory
server [17, 28]. In 2013 Microsoft introduced ERM for
its cloud platform Azure under the name Azure RMS
[42]. Sometimes Information Rights Management (IRM)

2

https://github.com/RUB-NDS/MS-RMS-Attacks


is used as a synonym for ERM (e.g. by EMC’s in Docu-
mentum IRM [7]).

Microsoft AD RMS. Microsoft Active Directory Rights
Management Services [13] are an on-premise ERM sys-
tem by Microsoft and part of current Windows Server
operating systems. They give employees of a company
the ability to fine-grained set rights on files they cre-
ate. Windows Server is a basic system with different
enhancements, so called server roles. These roles can
be added separately. RMS is one of these server roles
which works together with another server role, the Ac-
tive Directory Domain Services (AD DS). That role is
an administration tool whereby users, groups, server’s,
and other objects of a companies’ infrastructure can be
controlled. The RMS then adds a special Public Key In-
frastructure (PKI) to the AD DS. By this means, users
of the AD which are the employees of a company can
control the access to files they create.

Microsoft Azure RMS. Azure RMS is part of Azure,
which is a cloud platform system for storage and infras-
tructure sharing in- and outside of companies. Azure
combines the advantages of a cloud system with those
of ERM and a DRM system. An Azure instance man-
ages company users and their software and data require-
ments. For this Azure requires an own AD within the
cloud. This AD is called Azure AD. Azure can be used
to create and work on a Virtual Machine (VM) or store
data in the cloud as well as to share those stored data
and manage the usage of documents with an integrated
RMS system. During our research we analyzed Azure
and Azure RMS and could successfully apply our find-
ings from AD RMS to Azure RMS.

Other ERM Implementations. RMS systems were also
implemented by companies like Adobe or SAP. Adobe
LiveCycle manages PDF documents comparable to Mi-
crosoft RMS for office documents.

3 Security Model

To access an ERM protected document, which contains
access conditions (either DAC or RBAC based), an entity
needs a license, which contains access rights bound to
this entity. The strength of this binding (and therefore the
strength of the ERM protection) depends on the enforce-
ment mechanism, which may be either implemented par-
tially in hardware (e.g. smart cards) or completely in
software.

Since ERM protected documents are often sent over
the Internet, our model provides the adversary with full
access to such documents. He also is allowed to acquire
a license with limited access rights (e.g. read-only).

The goal of the adversary is to get additional access

rights on the document (e.g. write, forward, print, ...),
without being legally entitled to get these. These ad-
vanced access rights may be acquired by interacting with
a rights management server, or without such interaction.
In the present paper we show how access rights can be
extended without any interaction.

Please note that we do not consider “ripping” attacks
(e.g. taking screenshots of protected documents and for-
ward these screenshots), as these attacks do not scale
well. We also argue that all software-based ERM sys-
tems could principally be broken by an attacker having
root access in the OS, where the enforcement mechanism
is running and the attacker have the view right on the doc-
ument. Instead, we give full working implementations,
running without root privileges, to extend read-only to
full access, both in direct and stealthy mode. Note, that
even with root privileges, but without view right on the
document, the RMS protection can not be bypassed.

4 Microsofts Rights Management Services

4.1 General Overview

AD RMS is an ERM solution developed by Microsoft
and available since Windows Server 2003. We ana-
lyzed the implementation in the stable version of Win-
dows Server 2012 R2. We activated the RMS features
by enabling the server role for AD RMS in the AD
DS [32]. This is an optional server role for companies
which already use the AD DS to manage their infras-
tructure on-premise. The role enables employees to cre-
ate protected documents with specific rights for selected
users or groups.

Microsoft further provides an RMS API. To develop
applications with the API, the RMS SDK is necessary.
Then applications can be created to protect generic files
via the AD RMS or Azure RMS. In general most of the
API functions can also be used to do legit edits on na-
tive protected Office files such as *.docx or *.pptx, but
therefore the correct rights are necessary. Also counter-
measures were implemented to prevent bypasses of the
RMS protection with the API functions (cf. Section 5.1).

4.2 Test Setup

For our evaluation we installed one Windows Server and
two Windows 7 Enterprise clients. All machines had ac-
cess to a dedicated network. We then configured the two
server roles: (1.) AD DS and (2.) AD RMS. In addition to
the server-side component, the Office Suite (Office 2013
Professional) by Microsoft was required on the clients.

Analysis. Before we could start testing different scenar-
ios on our clients we had to create different users for our

3



AD. We monitored the communication between client
computer and the AD RMS server with Wireshark. Then
we started work flows like they would happen in a real
company, such as domain join of a client, first login of
a user, creation of an AD RMS protected file and open-
ing a protected document. We used a set of users for this
action to examine the difference in the communication.
We disabled TLS, to eavesdrop the traffic. Note, that dis-
abling TLS has no impact on our attacks, they work the
same way with TLS enabled.

Attack. Based on the information gathered in the analy-
sis phase, we were able to verify and extend the informa-
tion extracted from Microsoft documentation and con-
struct our attacks. Our attacks work in every network
which uses Microsoft AD DS or Azure AD with enabled
RMS server role (AD RMS or Azure RMS). Further in
every situation Office 365 is used together with Azure
RMS to protect documents. DisARMS takes a simple
ERM protected document as input, with read-only rights.

Figure 1: Certificates of the AD RMS PKI.

4.3 The Active Directory Rights Manage-
ment Services in detail

AD RMS PKI. The fundamental concept of the AD
RMS is a complex PKI (see Figure 1). Each certifi-
cate contains an RSA public key. This PKI consists of
certificates and licenses. The certificates and licenses
are stored in the Extensible Rights Markup Language
(XrML) [37]. Certificates and Licenses are mainly struc-
tured in three parts: (1.) Issuer (2.) Key (3.) Signature
[19, 26, 29, 31, 36]. Additional certificates are located
between the root certificate and the Server Licensor Cer-
tificate (SLC) respectively the Security Processor Certifi-
cate (SPC), but they are not necessary to understand this
ERM solution.

The SPC [31] contains the identity of a computer, but
it is also bound to a certain user: Its private key is en-
crypted with the login password of the user and the Data
Protection Application Programming Interface (DPAPI)

[16]. The SLC contains the identity of the rights man-
agement server, and is used to verify user identities and
to grant user’s access to protected files.

A user identity consists of two certificates, the Rights
Account Certificate (RAC) and the Client Licensor Cer-
tificate (CLC), which are issued by the SLC. Both RAC
and CLC contain a whole key pair.2 The CLC is used
to protect files and the RAC is used to get access to pro-
tected files [19, 29]. The private key of the CLC is en-
crypted with the public key of the RAC. The private key
of the RAC is encrypted with the public key of the SPC.

AD RMS Licenses. A Publishing License (PL) con-
tains the name of the author (alice@company.com), a
list with pre-configured access rights for different users
or groups (hr@company.com), and the content key [26].
Examples for preconfigured access rights are view, edit
or print [15, 20]. Once the PL is created, it is encrypted
with the public key of the SLC. The content of the PL is
signed by the author’s (Alice’s) CLC private key.

The Use License (UL) contains all ERM-related in-
formation for one specific user, for example, a list with
pre-configured rights for this specific user, the name of
the author, and the content key [36]. Every data in the
UL is encrypted with the public key of the RAC of the
UL requesting user and signed by the servers SLC pri-
vate key.

Figure 2: AD RMS protected Word-File. The encrypted
content key is contained in the PL, which itself is en-
crypted with the SLC public key and signed with the pri-
vate key of the author’s CLC.

Protecting Documents. For the creation of a protected
Office document (Figure 2) four steps are executed lo-
cally on the author’s machine [27]:

(1.) Alice’s client software (e.g., Word) generates a ran-
dom content key and uses it to encrypt the whole

2Although a private key is in these data structures, Microsoft docu-
mentations nevertheless refer to them as certificates.

4



Figure 3: Accessing protected Word-File in AD.

existing document file.

(2.) Alice generates a PL, and

(3.) a UL for herself.

(4.) The protected word document consists of the PL for
the server, the author’s public part of the CLC, and
the encrypted document.

The protected files can then be distributed over a net-
work share folder, via E-Mail or by copying the file to an
external storage.

Accessing Protected Documents. Once Bob wants to
access the protected document, he uses his RAC to re-
quest a UL from the server [12]. The process is depicted
in Figure 3:

(1.) The client software extracts the PL and CLC of the
author (alice@company.com) from the Word docu-
ment and sends it together with the public part of
the locally stored RAC of the requesting user to the
server.

(2.) The server uses its SLC to decrypt the content key
from the PL.

(3.) Afterwards the server extracts the access rights from
the PL and validates whether the requesting user
(bob@company.com) is allowed to access the file.

(4.) In case the validation ended successfully the server
generates a new UL for the user (with content key
and access rights) and sends it to the client software.

(5.) The UL is encrypted with the public key of the
user’s RAC.

(6.) The client software receives the UL.

(7.) The private key of the user’s RAC is decrypted via
the private key of the SPC.

(8.) The UL gets decrypted by the private key of the
user’s RAC.

(9.) Access rights and content key get extracted and are
used to

(10.) Decrypt and open the document in a protected
environment. There the rights are enforced by deac-
tivating options like printing or copying the content.

Opening a protected document for the first time always
requires a connection to the AD RMS server. After this
initial connection the UL can be stored in the cache of
the client. The expiration time (from 1 day to never)
of caching a UL can be adjusted in the PL of the pro-
tected document or in the template used to create the
document. [40].

4.4 The Azure RMS in detail
Azure Rights Management Services is part of Azure Ac-
tive Directory and enables its users to share files, for ex-
ample, Office documents, with other users and preserve
the control over the content and its distribution. In com-
parison to the classical AD RMS, Azure RMS client soft-
ware is available on all modern platforms (Android, iOS,
Linux, Mac OS, Windows) [18]. Therefore, protected
content can be consumed on mobile devices, laptops and
computers.

The work flow behind Azure RMS is similar to AD
RMS, when it comes to the creation of protected docu-
ments or processing those documents. Both use the same
client software (Office 2010-2016) to create protected
documents, Azure RMS also uses the same certificates
(RAC, SPC, etc.) and licenses (UL and PL). Further the
PKI behind Azure RMS is smaller than for AD RMS.
In contrast to the AD RMS, the authentication is done
against an Azure AD instance and not the AD DS. The
authentication process requires a valid Azure account. In
case the authentication procedure was finished success-
fully, the Azure AD server sends back a token, the client
software can use to communicate with the Azure RMS
instance. The user is then able to consume or create a
protected document via the client software [21].

Accessing Protected Documents. This process is shown
in Figure 4. We assume that the user is already authenti-
cated to the Azure AD and that the RAC is already stored
on the client device. (1.) The client software sends the
PL that is contained in the protected file, as well as the

5



RAC, of the user, to the Azure RMS instance. (2.) Azure
RMS decrypts those elements with its private key of the
SLC. (3.) A list of access rights for the requesting user is
created by the Azure RMS instance, according to the pol-
icy. (4.) The content key is extracted from the decrypted
policy. (5.) A UL is created from the content key and
the access right list. The UL is encrypted with the RAC
public key of the requesting user. (6.) Afterwards the
UL is sent to the Azure RMS client. (7.) The client soft-
ware decrypts the UL with the private key of the user’s
RAC. (8.) The protected document is decrypted with the
symmetric content key from the UL. (9.) The opening
software (e.g., Microsoft Word) gets the decrypted doc-
ument with a list of rights from the RMS plugin. The
listed rights are enforced by Word [49].

Figure 4: Accessing a protected Word file in Azure.

5 Attacking Microsoft RMS

As described previously attacking a DRM or an ERM
system and removing the protection is pretty easy to ac-
complish, in case the attacker has control over the un-
derlying operating system. This normally requires some
kind of advanced user privileges. This is an unrealistic
scenario for most employees in modern companies. Our
goal was to show that this attack is also possible, when
a user just has very limited rights on the client operating
system. Further we never attack the operating system,
instead DisARMS exploits design flaws in AD RMS and
Azure RMS. Further we extended the previous attack and
enable the user, with the same client privileges as before,
to modify protected content without leaving evidence of
the modification to other users or administrators.

5.1 Attack Challenges
The goal of our first attack is to completely remove the
protection of a given protected document, in case the user

has at least the view right. We therefore tried to use the
RMS API in order to decrypt the encrypted content of a
protected office document. Before we could implement
our first attack we encountered the first challenge.

Pre-production Hierarchy. In the How-to use guide of
the RMS SDK it is stated out, that the development of an
AD RMS application should be done in a pre-production
development environment [33]. After we switched our
client and server to this environment we were not able
to open any previously protected file anymore. This
was caused by the pre-production hierarchy, which re-
places the original AD RMS PKI with a development
PKI. Though, we switched back to the productive envi-
ronment and started the development of DisARMS.

Bypassing RMS API Countermeasures. Microsoft AD
RMS implementation provides several API functions and
data structures [25], which can be used by developers to
implement their own RMS application. First it looked
straightforward to implement an application which de-
crypts or encrypts an office file using the available RMS
API functions. Examples for these functions are IpcfDe-
cryptFile or IpcfEncryptFileStream. As a countermea-
sure for this method Microsoft checks whether the user,
who tries to process the protected document, has the
access right to export a document to another, poten-
tially unprotected file format. If the user does not have
the export right, the Ipc-functions simply return NULL
instead of the decrypted/encrypted document. To by-
pass this restriction, we had to avoid those IpcfDecrypt-
File/IpcfEncryptFile functions. We therefore emulate
these functions by implementing our own, custom en-
crypt/decrypt functions (Appendix Listing 1 line 42 - 78)
that rely on low level crypto library functions offered by
the RMS API. 3

Reproduce the Office Work-Flow. To successfully ex-
ecute our custom decrypt/encrypt function we had to re-
produce the work-flow from Figure 4 via RMS API func-
tion calls. In total the RMS API offers 48 functions [30].
So we had to find the right functions to reproduce the
work-flow (as described in Section 5.2 and Section 5.3)

Reverse Engineering the Correct License Structure.
The IpcEncrypt/IpcDecrypt function requires a valid key
handle to get executed. This is accomplished via the
function IpcGetKey of the RMS API. Instead of the ex-
pected key handle, the value NULL was returned by the
function. After eliminating all other causes of error, we
analyzed the binary structure of some licenses generated
by the RMS Sample application [23]. The encrypted
data created by the Sample application, when content
was protected, revealed that this program stores 3 static

3E.g., we could only decrypt one block and had to implement the
cipher mode manually (AES-ECB)

6



bytes in front of the actual license data (Appendix List-
ing 1 line 4). This was never observed by the original
Office client software. This requirement is further not
documented by Microsoft nor described online. After
we prepended these bytes to our license structure we re-
ceived the valid key-handle to the content key of a our
native protected document.

Code Signing in Production Environments. Microsoft
states out in their How-to use guide, that productive ap-
plications need to be signed in order to get executed on
client machines [34]. Therefore the application must be
signed via a Production License Agreement requested
via Microsoft, but surprisingly this was not necessary and
we could execute DisARMS without any signing.

Finding the Correct Padding Scheme. For the second
attack we need to re-encrypt our modified data. Mi-
crosoft has two symmetric algorithms (AES-ECB and
AES-CBC-4k) for content encryption [24] and offers two
different cryptography modes to secure the licenses and
certificates [14]. They distinguish between the protec-
tion offered by their own implementations (native) and
third party applications (generic) [35]. This results in
a different selection of the content encryption algorithm.
All analyzed Microsoft RMS products use the AES-ECB
mode, instead of the proprietary CBC-4k mode of oper-
ation, which leads to a weaker level of security. If the
CBC-4k mode of operation is used the padding is done
by the API function IpcDecrypt and IpcEncrypt automat-
ically. For the ECB mode we needed to reverse engineer
the padding scheme. As described in Figure 2 every pro-
tected file has an encrypted content part. The first 8 bytes
of this part contain the length of the content after it got
decrypted. This way the padded bytes can be random
data, which are ignored by the client software after it de-
crypts the encrypted content part.

5.2 DisARMS Attack #1: How to Remove
RMS Protection

The goal of this attack is to completely remove the pro-
tection of a given protected document, in case the user
has at least the view right. DisARMS requires the RMS
Clients 2.1 software, as well as the C++ Redistributable
2015 to be installed on the client computer where the
view right is valid. The attack proceeds as follows (cf.
Figure 5):

(1.) Charlie (who has view rights on the document) re-
trieves the protected document.

(2.) DisARMS splits the protected document into the
following parts: (a) the encrypted content, (b) the
Publishing License (PL), (c) and the author’s CLC.

(3.) The PL and the CLC are read and parsed, and this
information is used for requesting a UL via Mi-
crosoft’s RMS library, which either requests it from
the AD RMS server or uses a previously requested
UL from the machine’s local cache.

(a) If a request to the AD RMS server is used,
it contains the public part of Charlie’s locally
stored RAC and the PL. The server then de-
crypts the PL in order to determine the access
rights. In this scenario, Charlie has only the
view right and the AD RMS server success-
fully validates that Charlie is allowed to access
the protected document.

(b) Since the previous validation step is success-
ful, the AD RMS server uses its SLC to de-
crypt the content key from the PL.

(c) The server generates a new UL containing the
content key encrypted with the public key of
Charlie’s RAC and the previously extracted
access rights. The UL is then sent back to
Charlie’s client.

(d) If the UL is cached, steps (a-c) are omitted.

(4.) To retrieve the private key of his RAC, Charlie has
to decrypt it with the private key of the machine
SPC.4

(5.) Charlie decrypts the UL by using the private key
of his RAC and extracts the content key plus the
access rights (i.e., view).

(6.) Charlie then decrypts the document by using this
content key and saves the plaintext of the un-
protected Word document into a new file (de-
crypted.docx), ignoring the view right.

In the end, Charlie gets the unprotected version of the
original file, containing all content, pictures, tables, and
formatting. For a third person, there is no possibility to
see, whether this file was originally protected or not.

Please note that this attack breaks the general concept
of RMS protection: an attacker can get access to the
whole file by only using the minimal access right. Al-
though this attack seems to be straight forward (the at-
tacker has access to the content key), there were lot of
difficulties to obtain this attack, see Section 5.1.

5.3 DisARMS Attack #2: How to Modify
RMS Protected Content

The previously described attack completely removes the
RMS protection of a given file if the view right is granted

4This step cryptographically binds Charlie’s RAC to a specific ma-
chine.

7



Figure 5: DisARMS Attack #1 – Decrypting a protected Word-File

to the attacker. In this section, we describe an attack that
goes one step further: The attacker (Charlie) again has
view access on a given file (created by Alice), but this
time, he modifies its content. In the end, the file looks
as if it has been created by the original author (Alice),
but Charlie can arbitrarily modify the protected contend
leaving the original access rights unchanged. For exam-
ple, he can add or remove text content of a protected
Word file, although Charlie has only the view right.

The attack is depicted in Figure 6 and described in the
following:

(1.) Charlie gets the RMS protected file, for example, a
Microsoft Word document and can remove the RMS
protection as described in the previous attack.

(2.) He can then arbitrarily modify the unprotected con-
tent. He can therefore use a common Word proces-
sor (e.g. Microsoft Word) or edit the content di-
rectly by extracting the content.xml contained in the
*.docx file. If Charlie decides to use a full-fledged

Word processor, he has to take care of some auto-
matically generated metadata indicating his edit, for
example, the time of the last edit, and his name. To
prevent this, he could change his name in the Word
processor settings to Alice.

(3.) He then uses again the RMS library to encrypt the
modified document using the same content key as
used for the decryption. (Steps 3.1 - 3.4 are equal to
steps 4 - 6 of the Protection Removal Attack)

(4.) Finally, he exchanges the encrypted content of the
original file with the encrypted modified content.

If Charlie then opens the tampered file with a common
word processor, he cannot modify it – he has only the
right to view it. By inspecting the last modification infor-
mation, Alice’s name appears, but the content of Char-
lie’s choice is shown.

We were quite surprised that this attack works. Since
Microsoft RMS heavily uses asymmetric cryptography
for signing all licenses and certificates (UL, PL, RAC,

Figure 6: DisARMS Attack #2 – Modifying a protected Word-File

8



CLC, etc.), we expected to be hindered modifying the
content by a signature. This was not the case. Even more
surprisingly, Microsoft’s RMS library allowed us to use
the content key to encrypt data, although we only had
the view right. The encryption method of the RMS li-
brary can only be called with a key identifier, we never
get access to the raw key bytes so that we implement our
own encryption method. We therefore expected the RMS
library to verify our access rights, but this is not the case.

6 Attacking Azure RMS

On a technical level, both, the process of opening an
AD RMS protected document and the process of open-
ing an Azure RMS protected document, look very simi-
lar. An end-user will probably never see a difference on
the client side. We therefore thought it would be very
likely that our attacks also work with Azure RMS. Our
test setup was comparable to the previous attacks. We
set up two client machines. With the first user (Alice),
we create the protected document and the second user
(Charlie) consumes it. We rented an Azure AD instance
and activated the Azure RMS role. Both users had an ac-
count at the Azure AD. Analogous to our attacks on AD
RMS, we gave Charlie the view access right. We then
executed the Protection Removal Attack and it worked
out of the box, thanks to Microsoft efforts abstracting the
RMS API functions, from the underlying workflow. The
Protection Manipulation Attack also worked without any
problems.

All attacks, regardless whether they targeted on
the AD RMS or Azure RMS, used Microsoft Office
2013, as a client software. With the recent version Of-
fice 365, it is even possible to use the Azure RMS feature
without administrating an Azure AD and we therefore
investigated also this implementation.

7 Attacking Office 365

Office 365 is the latest version of Microsoft’s office
software. Most of the available features are imple-
mented in Azure instances. One of these features is
the Azure RMS module and available in the Enterprise
version of Office 365. The workflow of accessing a pro-
tected office document is as follows: (1.) Both users
are logged in with their Azure account, for example
alice@rmstest.onmicrosoft.com. (2.) Alice creates
a document and wants to share it with bob@rmstest.
onmicrosoft.com. (3.) An email is automatically gen-
erated by Microsoft Outlook and the document is at-
tached to it. (4.) Once Bob opens the attachment, Office
365 is used to display the document. It decrypts it and
enforces the view only right.

We found out that the Office 365 RMS integration works
comparable to Office 2013 with Azure RMS. The main
difference is that instead of sharing the documents via
network drives or cloud storage, the documents are at-
tached to an email and sent to the recipient. Therefore,
we were able to launch both attacks again successfully
on view only right protected documents.

8 Countermeasure

In this section, we discuss countermeasures to prevent
our attacks, beginning with the modification attacks for
didactic reasons.

Preventing the Modification Attack. We propose to
sign the encrypted content of the RMS protected file.
Although an infrastructure for asymmetric cryptographic
operations is already deployed in the current RMS sys-
tem, it is not that easy to apply. In RMS, the author
signs the PL with his CLC private key (cf. Figure 2). He
can thus use this key to sign the encrypted content. The
problem appears, if another permitted editor modifies the
content: since only the author’s CLC is contained in the
protected file, we have to add the CLC public part of the
last editor of the document to the file as well. Then, this
CLC can be used to verify the signature of the encrypted
content by other users. For efficiency reasons, only the
signature and public CLC part of the last editor should
be stored in the file. As soon as a user opens a signed
protected document with his client software (e.g. Word),
it needs to verify that the last editor was allowed to mod-
ify the document. Therefore it sends a validation request
to the RMS server. The request contains the last editors
CLC, the users own RAC (public part) and the PL of the
document. This way, the request is similar to the work-
flow used to acquire a UL as shown in Figure 3 (Mes-
sages 1 and 3). We need the approach of also sending the
users own RAC to prevent information leakage, for in-
stance, who has access to a protected document. This is
reasoned by access rights in AD RMS and Azure RMS
being assigned to groups. Otherwise, an unauthorized
user could enumerate existing users in a group that are
allowed to modify the document. By adding the RAC the
server can verify, whether the user is allowed to request
the access rights.

In summary, our proposed countermeasure needs to
(1.) add the last editors CLC and the (2.) signature of
the encrypted content to the protected file. (3.) Addi-
tionally, the client software (e.g., Word) has to verify the
signature once the file is opened. (4.) The client soft-
ware verifies whether the modification by the last editor
for this document was legit by sending the editors CLC,
his own RAC, and the PL to the RMS server. Finally, the
client evaluates the response.

9

alice@rmstest.onmicrosoft.com
bob@rmstest.onmicrosoft.com
bob@rmstest.onmicrosoft.com


Preventing the Protection Removal Attack. The pre-
vention of our first attack is much more complex. Since
a person who is allowed to view the file needs somehow
access to the decrypted content, the attack is always pos-
sible. Thus, we only describe methods to reduce the at-
tack surface and make the attack much more difficult to
apply in practice.
I Microsoft stated out in their How-to use guide of the

RMS SDK that an application that should be used in
a production environment must be signed via a Pro-
duction License Agreement [34]. In reality this was
not necessary and never checked by the AD RMS
nor Azure RMS. So the first step should be that Mi-
crosoft verifies that the request is made by a valid
(signed) client application.

I The previous verification method could also be im-
plemented on the client side but would require some
sort of trusted computing base, which ensures that
only signed applications can access the RMS API.
For example, on mobile platforms such as Android
this is available via ARMs TrustZone [3], neverthe-
less it has its limitations [6].

I Microsoft states out in their RMS API documenta-
tion, that a user with rights for a document never can
call a function to get direct access to the decrypted
content key. Instead a key handle is returned when
the function IpcGetKey is called [22]. The key han-
dle also includes the access rights for the use, which
calls the function. A simple countermeasure would
be, to prevent the access to the IpcEncrypt function,
if a user just has the view right. This would elimi-
nate our second attack. [22].

Microsoft Response (MSRC Case 33210). We respon-
sibly disclosed our results to different people at Mi-
crosoft and its official security response center. They re-
sponded to our findings as follows:

From: Microsoft Security Response Center
<secure@microsoft.com>

“. . . The type of attack you present falls in
the category of policy enforcement limitations.
Policy enforcement capabilities, such as the
ability to prevent printing or modifying con-
tent to which the user has legitimate access,
are not guaranteed by cryptography or other
hard technical means . . . ”

While this is correct for the Protection Removal Attack,
the Modification Attack can be prevented by using digital
signatures on the content as described in this section.

9 Related Work

Prior to our work different analyses related to the topic
of this paper were conducted. They can be categorized as
follows: (1.) theoretic and practical research on AD and
ERM, (2.) risk assessment of cloud computing in gen-
eral and specifically of Azure and (3.) analyses of secure
cloud storage implementations.

Yu and Chiueh proposed a Display-Only File Server
[51]. They described requirements to ERM systems
and summarized three specific ERM implementations:
(1.) Microsoft RMS, (2.) Liquid Machines which was af-
terwards bought by Check Point [44] and (3.) Authen-
tica’s PageRecall which was afterwards bought by EMC
[45]. They argued that the effectiveness of an ERM sys-
tem is based on the security of the client software enforc-
ing the permissions. They assumed that once a protected
document is opened by a permitted attacker the content
can be extracted since the protection is processed on the
client. They finally proposed an ERM system shifting
all processes to the trusted server. The trusted server
processes document modification requests and responses
with the display image of the information. Thus plaintext
data cannot be revealed at the client.
Schrittwieser et. al. [46] describe techniques and guide-
lines how to analyze RMS and Adobe LiveCycle Rights
Management from the viewpoint of a digital forensic sci-
entist. They state, that the protection of RMS on a client
computer is vulnerable, in the case an attacker has access
to the computer’s memory.

Tajadod, Batten and Govinda compared confidential-
ity, integrity and availability of Microsoft Azure and
Amazon Web Services (AWS) [9]. They did not ana-
lyze ERM functionalities of the cloud services but eval-
uated the mechanisms which enable the mentioned se-
curity goals on storage level like encryption. They con-
cluded that both Microsoft Azure and AWS fulfill their
predefined expectations.

Borgmann et al. examined the security mechanisms
of several cloud storage services [39]. They gave an
overview on requirements of users, legal regulations re-
garding security, and state-of-the-art technical security
measurements.

The first implementation of Microsoft’s DRMv1 was
broken some short time after it’s release in 1999 by an
anonymous person. Another attack on DRMv2 was pub-
lished by a person under the pseudonym Beale Screamer
on the usenet group sci.crypt [4].

10 Conclusion

In this paper, we analyzed Microsoft RMS and identified
two novel attacks. Our attacks can remove the whole pro-
tection of a file or modify the content without breaking

10

secure@microsoft.com


its integrity, thus creating arbitrary files in the name of a
different user. Microsoft RMS is widely used in enter-
prise systems such as banks and HSMs. Since Microsoft
also includes it in its Azure platform, our attacks are even
more severe. We only applied the attacks on office docu-
ments, but the concept works on arbitrary files. The only
difference is the structure of the protected file, for exam-
ple, the place where the licences are stored.

Our analysis of the recent RMS implementation also
revealed that the security system behind RMS (with
some minor updates) is used under different names since
2001 [4, 38, 2, 10]. These systems are most likely still
deployed and potentially vulnerable as well. Apart from
Microsoft RMS, it is an open question if our attacks can
be ported to other ERM systems as well.

The attacks presented in this paper show that protect-
ing a company’s assets remains an open problem. Since
an employee who is allowed to view a file must be able
to decrypt it, additional security layers must be added to
prevent leaking the decrypted content. If layers such as
code signing or trusted hardware are enough remains an
open question.

Acknowledgements

The research was supported by the German Ministry of
research and Education (BMBF) as part of the VERTRAG
research project.

References

[1] et al., A.A.E.K.: Organization based access control.
In: Policies for Distributed Systems and Networks.
LAAS CRNS (2003)

[2] Amol Bhandarkar: Microsoft Rights Manage-
ment Solutions for the Enterprise: Persistent
Policy Expression and Enforcement for Dig-
ital Information (Online: 02 05 2016 2009),
https://blogs.technet.microsoft.com/
amolrb/2009/05/18/how-rms-works/

[3] ARM: TrustZone (Online: 12.05.2016), http:
//www.arm.com/products/processors/
technologies/trustzone/index.php

[4] Beale Screamer: Microsoft’s Digital Rights Man-
agement Scheme - Technical Details (Online: 02
05 2016 2001), http://cryptome.org/ms-drm.
htm

[5] Dan Plastina: Office 365 Information Protec-
tion using Azure Rights Management (Online:
02 05 2016 2013), https://blogs.msdn.
microsoft.com/rms/2013/11/19/office-

365-information-protection-using-
azure-rights-management/

[6] Di Shen: Exploiting Trustzone on An-
droid (Online: 12.05.2016), https://www.
blackhat.com/docs/us-15/materials/us-
15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf

[7] EMC Corporation: Documentum Information
Rights Management (Online: 12.05.2016),
http://www.emc.com/enterprise-
content-management/information-rights-
management.htm

[8] Firstpost: Bank Of India Deploys Microsoft
Active Directory Rights Mgmt Services (On-
line: 04.05.2016), http://www.firstpost.
com/business/biztech/bank-of-india-
deploys-microsoft-active-directory-
rights-mgmt-services-1889001.html

[9] Golnoosh Tajadod, Lynn Batten, K.: Microsoft and
amazon: A comparison of approaches to cloud se-
curity. In: 4th International Conference on Cloud
Computing Technology and Science. pp. 539–544.
IEEE (2012)

[10] Hauser, T., Wenz, C.: Drm under attack: weak-
nesses in existing systems. In: Digital Rights Man-
agement, pp. 206–223. Springer (2003)

[11] Liu, Q., Safavi-Naini, R., Sheppard, N.P.: Dig-
ital rights management for content distribution.
In: Proceedings of the Australasian Information
Security Workshop Conference on ACSW Fron-
tiers 2003 - Volume 21. pp. 49–58. ACSW Fron-
tiers ’03, Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia (2003), http://dl.
acm.org/citation.cfm?id=827987.827994

[12] Microsoft: Accessing Protected Infor-
mation Example (Online: 12.05.2016),
https://msdn.microsoft.com/en-
us/library/cc243192.aspx

[13] Microsoft: Active Directory Rights Manage-
ment Services Overview (Online: 14. 01.
2016), https://technet.microsoft.com/en-
us/library/hh831364.aspx

[14] Microsoft: Ad rms cryptographic modes (Online:
02. 05. 2016), https://technet.microsoft.
com/en-us/library/hh867439(v=ws.10)
.aspx

11

https://blogs.technet.microsoft.com/amolrb/2009/05/18/how-rms-works/
https://blogs.technet.microsoft.com/amolrb/2009/05/18/how-rms-works/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://cryptome.org/ms-drm.htm
http://cryptome.org/ms-drm.htm
https://blogs.msdn.microsoft.com/rms/2013/11/19/office-365-information-protection-using-azure-rights-management/
https://blogs.msdn.microsoft.com/rms/2013/11/19/office-365-information-protection-using-azure-rights-management/
https://blogs.msdn.microsoft.com/rms/2013/11/19/office-365-information-protection-using-azure-rights-management/
https://blogs.msdn.microsoft.com/rms/2013/11/19/office-365-information-protection-using-azure-rights-management/
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
http://www.emc.com/enterprise-content-management/information-rights-management.htm
http://www.emc.com/enterprise-content-management/information-rights-management.htm
http://www.emc.com/enterprise-content-management/information-rights-management.htm
http://www.firstpost.com/business/biztech/bank-of-india-deploys-microsoft-active-directory-rights-mgmt-services-1889001.html
http://www.firstpost.com/business/biztech/bank-of-india-deploys-microsoft-active-directory-rights-mgmt-services-1889001.html
http://www.firstpost.com/business/biztech/bank-of-india-deploys-microsoft-active-directory-rights-mgmt-services-1889001.html
http://www.firstpost.com/business/biztech/bank-of-india-deploys-microsoft-active-directory-rights-mgmt-services-1889001.html
http://dl.acm.org/citation.cfm?id=827987.827994
http://dl.acm.org/citation.cfm?id=827987.827994
https://msdn.microsoft.com/en-us/library/cc243192.aspx
https://msdn.microsoft.com/en-us/library/cc243192.aspx
https://technet.microsoft.com/en-us/library/hh831364.aspx
https://technet.microsoft.com/en-us/library/hh831364.aspx
https://technet.microsoft.com/en-us/library/hh867439(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/hh867439(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/hh867439(v=ws.10).aspx


[15] Microsoft: AD RMS Rights Translation: Policy
Template Rights vs Office Rights vs Share-
Point Permissions (Online: 13. 02. 2016),
http://social.technet.microsoft.com/
wiki/contents/articles/13163.ad-rms-
rights-translation-policy-template-
rights-vs-office-rights-vs-sharepoint-
permissions.aspx

[16] Microsoft: AD RMS under the hood: Client
bootstrapping (Online: 20. 01. 2016), http:
//blogs.technet.com/b/rms/archive/
2012/08/17/ad-rms-under-the-hood-
client-bootstrapping-part-1-of-2.aspx

[17] Microsoft: Appendix B: Product Behavior (On-
line: 12.05.2016), https://msdn.microsoft.
com/en-us/library/cc243421.aspx

[18] Microsoft: Client devices that support Azure
RMS (Online: 05. 03. 2016), https:
//technet.microsoft.com/en-us/library/
dn655136.aspx#BKMK_SupportedDevices

[19] Microsoft: Client Licensor Certificate Ex-
ample (Online: 12.05.2016), https:
//msdn.microsoft.com/en-us/library/
ff842490.aspx

[20] Microsoft: Encrypted Rights Data Example (On-
line: 12.05.2016), https://msdn.microsoft.
com/en-us/library/ff958983.aspx

[21] Microsoft: How does Azure RMS work? (Online:
05. 03. 2016), https://technet.microsoft.
com/en-us/library/jj585026.aspx#BKMK_
HowRMSworks

[22] Microsoft: IpcGetKey function (Online:
12.05.2016), https://msdn.microsoft.
com/en-us/library/windows/desktop/
hh535263(v=vs.85).aspx

[23] Microsoft: Ipcnotepad sample (Online: 02. 05.
2016), https://code.msdn.microsoft.com/
IPCNotepad-Sample-f67dae80

[24] Microsoft: Ms rms encryption algorithms (On-
line: 02. 05. 2016), https://blogs.msdn.
microsoft.com/rms/2015/03/09/aes-256-
symmetric-key-encryption/

[25] Microsoft: Ms rms sdk 2.1 api reference (Online:
02. 05. 2016), https://msdn.microsoft.com/
en-us/library/hh535292(v=vs.85).aspx

[26] Microsoft: Publishing License Example (On-
line: 12.05.2016), https://msdn.microsoft.
com/en-us/library/ff842510.aspx

[27] Microsoft: Publishing Usage Policy Example (On-
line: 12.05.2016), https://msdn.microsoft.
com/en-us/library/cc243349.aspx

[28] Microsoft: Rights Management Services (RMS):
Client-to-Server Protocol (Online: 12.05.2016),
https://msdn.microsoft.com/en-
us/library/cc243191.aspx

[29] Microsoft: RMS Account Certificate Example (On-
line: 12.05.2016), https://msdn.microsoft.
com/en-us/library/ff842475.aspx

[30] Microsoft: RMS API Function Ref-
erence (Online: 12.05.2016), https:
//docs.microsoft.com/en-us/rights-
management/sdk/2.1/api/win/functions

[31] Microsoft: Security Processor Certifi-
cate Example (Online: 12.05.2016),
https://msdn.microsoft.com/en-
us/library/ff842500.aspx

[32] Microsoft: Server Roles and Technologies
in Windows Server 2012 R2 and Win-
dows Server 2012 (Online: 12.05.2016),
https://technet.microsoft.com/en-
us/library/hh831669.aspx

[33] Microsoft: Setting up the pre-production develop-
ment environment (Online: 12.05.2016), https:
//docs.microsoft.com/en-us/rights-
management/develop/how-to-set-up-the-
pre-production-development-environment

[34] Microsoft: Switching to the production en-
vironment (Online: 12.05.2016), https:
//docs.microsoft.com/en-us/rights-
management/develop/switching-to-the-
production-environment

[35] Microsoft: Technical overview for the microsoft
rights management sharing application (Online: 02.
05. 2016), https://docs.microsoft.com/en-
us/rights-management/rms-client/
sharing-app-admin-guide-technical

[36] Microsoft: Use License Example (Online:
12.05.2016), https://msdn.microsoft.com/
en-us/library/ff842520.aspx

[37] Microsoft: XrML Elements (Online: 14. 01.
2016), https://msdn.microsoft.com/en-us/
library/cc542560(v=vs.85).aspx

[38] microsoft: Microsoft Rights Management
Solutions for the Enterprise: Persistent
Policy Expression and Enforcement for

12

http://social.technet.microsoft.com/wiki/contents/articles/13163.ad-rms-rights-translation-policy-template-rights-vs-office-rights-vs-sharepoint-permissions.aspx
http://social.technet.microsoft.com/wiki/contents/articles/13163.ad-rms-rights-translation-policy-template-rights-vs-office-rights-vs-sharepoint-permissions.aspx
http://social.technet.microsoft.com/wiki/contents/articles/13163.ad-rms-rights-translation-policy-template-rights-vs-office-rights-vs-sharepoint-permissions.aspx
http://social.technet.microsoft.com/wiki/contents/articles/13163.ad-rms-rights-translation-policy-template-rights-vs-office-rights-vs-sharepoint-permissions.aspx
http://social.technet.microsoft.com/wiki/contents/articles/13163.ad-rms-rights-translation-policy-template-rights-vs-office-rights-vs-sharepoint-permissions.aspx
http://blogs.technet.com/b/rms/archive/2012/08/17/ad-rms-under-the-hood-client-bootstrapping-part-1-of-2.aspx
http://blogs.technet.com/b/rms/archive/2012/08/17/ad-rms-under-the-hood-client-bootstrapping-part-1-of-2.aspx
http://blogs.technet.com/b/rms/archive/2012/08/17/ad-rms-under-the-hood-client-bootstrapping-part-1-of-2.aspx
http://blogs.technet.com/b/rms/archive/2012/08/17/ad-rms-under-the-hood-client-bootstrapping-part-1-of-2.aspx
https://msdn.microsoft.com/en-us/library/cc243421.aspx
https://msdn.microsoft.com/en-us/library/cc243421.aspx
https://technet.microsoft.com/en-us/library/dn655136.aspx#BKMK_SupportedDevices
https://technet.microsoft.com/en-us/library/dn655136.aspx#BKMK_SupportedDevices
https://technet.microsoft.com/en-us/library/dn655136.aspx#BKMK_SupportedDevices
https://msdn.microsoft.com/en-us/library/ff842490.aspx
https://msdn.microsoft.com/en-us/library/ff842490.aspx
https://msdn.microsoft.com/en-us/library/ff842490.aspx
https://msdn.microsoft.com/en-us/library/ff958983.aspx
https://msdn.microsoft.com/en-us/library/ff958983.aspx
https://technet.microsoft.com/en-us/library/jj585026.aspx#BKMK_HowRMSworks
https://technet.microsoft.com/en-us/library/jj585026.aspx#BKMK_HowRMSworks
https://technet.microsoft.com/en-us/library/jj585026.aspx#BKMK_HowRMSworks
https://msdn.microsoft.com/en-us/library/windows/desktop/hh535263(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh535263(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh535263(v=vs.85).aspx
https://code.msdn.microsoft.com/IPCNotepad-Sample-f67dae80
https://code.msdn.microsoft.com/IPCNotepad-Sample-f67dae80
https://blogs.msdn.microsoft.com/rms/2015/03/09/aes-256-symmetric-key-encryption/
https://blogs.msdn.microsoft.com/rms/2015/03/09/aes-256-symmetric-key-encryption/
https://blogs.msdn.microsoft.com/rms/2015/03/09/aes-256-symmetric-key-encryption/
https://msdn.microsoft.com/en-us/library/hh535292(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh535292(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ff842510.aspx
https://msdn.microsoft.com/en-us/library/ff842510.aspx
https://msdn.microsoft.com/en-us/library/cc243349.aspx
https://msdn.microsoft.com/en-us/library/cc243349.aspx
https://msdn.microsoft.com/en-us/library/cc243191.aspx
https://msdn.microsoft.com/en-us/library/cc243191.aspx
https://msdn.microsoft.com/en-us/library/ff842475.aspx
https://msdn.microsoft.com/en-us/library/ff842475.aspx
https://docs.microsoft.com/en-us/rights-management/sdk/2.1/api/win/functions
https://docs.microsoft.com/en-us/rights-management/sdk/2.1/api/win/functions
https://docs.microsoft.com/en-us/rights-management/sdk/2.1/api/win/functions
https://msdn.microsoft.com/en-us/library/ff842500.aspx
https://msdn.microsoft.com/en-us/library/ff842500.aspx
https://technet.microsoft.com/en-us/library/hh831669.aspx
https://technet.microsoft.com/en-us/library/hh831669.aspx
https://docs.microsoft.com/en-us/rights-management/develop/how-to-set-up-the-pre-production-development-environment
https://docs.microsoft.com/en-us/rights-management/develop/how-to-set-up-the-pre-production-development-environment
https://docs.microsoft.com/en-us/rights-management/develop/how-to-set-up-the-pre-production-development-environment
https://docs.microsoft.com/en-us/rights-management/develop/how-to-set-up-the-pre-production-development-environment
https://docs.microsoft.com/en-us/rights-management/develop/switching-to-the-production-environment
https://docs.microsoft.com/en-us/rights-management/develop/switching-to-the-production-environment
https://docs.microsoft.com/en-us/rights-management/develop/switching-to-the-production-environment
https://docs.microsoft.com/en-us/rights-management/develop/switching-to-the-production-environment
https://docs.microsoft.com/en-us/rights-management/rms-client/sharing-app-admin-guide-technical
https://docs.microsoft.com/en-us/rights-management/rms-client/sharing-app-admin-guide-technical
https://docs.microsoft.com/en-us/rights-management/rms-client/sharing-app-admin-guide-technical
https://msdn.microsoft.com/en-us/library/ff842520.aspx
https://msdn.microsoft.com/en-us/library/ff842520.aspx
https://msdn.microsoft.com/en-us/library/cc542560(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/cc542560(v=vs.85).aspx


Digital Information (Online: 02 05 2016
2003), https://web.archive.org/web/
20030618093832/http://www.microsoft.
com/windowsserver2003/docs/RMS.doc

[39] Moritz Borgmann, Tobias Hahn,
M.H.T.K.M.R.U.V.S.V.: On the security of
cloud storage services. Fraunhofer Institute for
Secure Information Technology SIT (2012)

[40] Official Microsoft RMS Team Blog: Ac-
cessing protected content offline and con-
tent pre-licensing (Online: 12.05.2016),
https://blogs.technet.microsoft.com/
rms/2012/04/16/accessing-protected-
content-offline-and-content-pre-
licensing/

[41] OpenText: Open Text Announces Rights Man-
agement Services for the Open Text ECM Suite
(Online: 04.05.2016), https://www.opentext.
com/who-we-are/press-releases?id=2358

[42] Redmond Magazine: Microsoft Rights Manage-
ment Service Now Available (Online: 12.05.2016),
https://redmondmag.com/articles/2013/
11/18/rms-now-available.aspx

[43] Reid, J.F., Caelli, W.J.: Drm, trusted comput-
ing and operating system architecture. In: Pro-
ceedings of the 2005 Australasian Workshop on
Grid Computing and e-Research - Volume 44. pp.
127–136. ACSW Frontiers ’05, Australian Com-
puter Society, Inc., Darlinghurst, Australia, Aus-
tralia (2005), http://dl.acm.org/citation.
cfm?id=1082290.1082308

[44] Check Point Software Technologies Ltd.:
Check point capsule docs document control,
https://supportcenter.checkpoint.
com/supportcenter/portal?eventSubmit_
doGoviewsolutiondetails=&solutionid=
sk106568

[45] EMC Corporation: Emc documentum in-
formation rights management services,
http://www.emc.com/enterprise-
content-management/information-rights-
management.htm

[46] Schrittwieser, S., Kieseberg, P., Weippl, E.: Digi-
tal forensics for enterprise rights management sys-
tems. In: Proceedings of the 14th International
Conference on Information Integration and Web-
based Applications & Services. pp. 111–120. ACM
(2012)

[47] Sentinelcloud: SafeNet HSMs for Microsoft Rights
Management Services (Online: 04.05.2016),
http://sentinelcloud.com/WorkArea/
DownloadAsset.aspx?id=8589938599

[48] Stamp, M.: Digital rights management: The tech-
nology behind the hype. J. Electron. Commerce
Res. 4(3), 102–112 (2003)

[49] TechNet: What is Azure Rights Man-
agement? (Online: 15. 02. 2016),
https://technet.microsoft.com/en-
us/library/jj585026.aspx

[50] v3.co.uk: Ministry of Defence CIO introduces
Defence-as-a-Platform with the help of Microsoft
(Online: 04.05.2016), http://www.v3.co.
uk/v3-uk/news/2434336/ministry-of-
defence-cio-introduces-defence-as-a-
platform-with-the-help-of-microsoft

[51] Yang Yu, T.c.C.: Enterprise digital rights manage-
ment: Solutions against information theft by insid-
ers. In: Information Management & Computer Se-
curity (2007)

A Code Examples

1
2 System::Void readLicense(Stream ^encryptedStream)
3 {
4 byte staticLicensePrefix[3] = {0xEF, 0xBB, 0xBF};
5 [...]
6 // transform and copy license structure to RMS

API format
7 bytesLength = gcnew array<Byte>(sizeof(DWORD));
8 bytesRead = encryptedStream->Read(bytesLength, 0,

bytesLength->Length);
9 Marshal::Copy(bytesLength, 0, (IntPtr)(&

m_pLicense->cbBuffer), sizeof(DWORD));
10
11 bytesLicense = gcnew array<Byte>(m_pLicense->

cbBuffer);
12 bytesRead = encryptedStream->Read(bytesLicense,

0, bytesLicense->Length);
13
14 m_pLicense->pvBuffer = (LPVOID)new unsigned char[

bytesLicense->Length];
15 Marshal::Copy(bytesLicense, 0, (IntPtr)(

m_pLicense->pvBuffer), m_pLicense->cbBuffer)
;

16 }
17
18 MemoryStream^ initDecryption(Stream ^encryptedStream)
19 {
20 [...]
21 readLicense(encryptedStream);
22
23 // get content key from read in license
24 pKey = &m_key;
25 hr = IpcGetKey(m_pLicense,
26 0,
27 nullptr,
28 nullptr,
29 pKey);
30
31

13

https://web.archive.org/web/20030618093832/http://www.microsoft.com/windowsserver2003/docs/RMS.doc
https://web.archive.org/web/20030618093832/http://www.microsoft.com/windowsserver2003/docs/RMS.doc
https://web.archive.org/web/20030618093832/http://www.microsoft.com/windowsserver2003/docs/RMS.doc
https://blogs.technet.microsoft.com/rms/2012/04/16/accessing-protected-content-offline-and-content-pre-licensing/
https://blogs.technet.microsoft.com/rms/2012/04/16/accessing-protected-content-offline-and-content-pre-licensing/
https://blogs.technet.microsoft.com/rms/2012/04/16/accessing-protected-content-offline-and-content-pre-licensing/
https://blogs.technet.microsoft.com/rms/2012/04/16/accessing-protected-content-offline-and-content-pre-licensing/
https://www.opentext.com/who-we-are/press-releases?id=2358
https://www.opentext.com/who-we-are/press-releases?id=2358
https://redmondmag.com/articles/2013/11/18/rms-now-available.aspx
https://redmondmag.com/articles/2013/11/18/rms-now-available.aspx
http://dl.acm.org/citation.cfm?id=1082290.1082308
http://dl.acm.org/citation.cfm?id=1082290.1082308
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk106568
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk106568
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk106568
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk106568
http://www.emc.com/enterprise-content-management/information-rights-management.htm
http://www.emc.com/enterprise-content-management/information-rights-management.htm
http://www.emc.com/enterprise-content-management/information-rights-management.htm
http://sentinelcloud.com/WorkArea/DownloadAsset.aspx?id=8589938599
http://sentinelcloud.com/WorkArea/DownloadAsset.aspx?id=8589938599
https://technet.microsoft.com/en-us/library/jj585026.aspx
https://technet.microsoft.com/en-us/library/jj585026.aspx
http://www.v3.co.uk/v3-uk/news/2434336/ministry-of-defence-cio-introduces-defence-as-a-platform-with-the-help-of-microsoft
http://www.v3.co.uk/v3-uk/news/2434336/ministry-of-defence-cio-introduces-defence-as-a-platform-with-the-help-of-microsoft
http://www.v3.co.uk/v3-uk/news/2434336/ministry-of-defence-cio-introduces-defence-as-a-platform-with-the-help-of-microsoft
http://www.v3.co.uk/v3-uk/news/2434336/ministry-of-defence-cio-introduces-defence-as-a-platform-with-the-help-of-microsoft


32 pin_ptr<PIPC_TEMPLATE_INFO> ppTemplateInfo;
33 ppTemplateInfo = &m_pTemplateInfo;
34 hr = IpcGetSerializedLicenseProperty(m_pLicense,
35 IPC_LI_DESCRIPTOR,
36 m_key,
37 0,
38 (LPVOID *)ppTemplateInfo);
39 result = decryptEncryptedContent(encryptedStream)

;
40 [...]
41 }
42
43 MemoryStream^ decryptEncryptedContent(Stream ^

encryptedStream)
44 {
45
46 [...]
47 cbReadRemaining = ... // // get size of encrypted

content
48 while (cbReadRemaining > *pcbBlockSize)
49 // pcbBlockSize = AES block size
50 {
51 cbRead = 0;
52 encryptedStream->Read(readBuffer, 0, *

pcbBlockSize);
53 hr = IpcDecrypt(m_key,
54 cBlock,
55 false,
56 pbReadBuffer,
57 *pcbBlockSize,
58 pbWriteBuffer,
59 cbOutputBuffer,
60 &cbRead);
61 cBlock++;
62 // write the decrypted content to new

document file
63 decryptedStream->Write(writeBuffer, 0,

cbRead);
64 cbReadRemaining -= cbRead;
65 }
66 // decrypt the last encrypted content block.
67 cbRead = 0;
68 encryptedStream->Read(readBuffer, 0,

cbReadRemaining);
69 hr = IpcDecrypt(m_key,
70 cBlock,
71 true,
72 pbReadBuffer,
73 cbReadRemaining,
74 pbWriteBuffer,
75 cbOutputBuffer,
76 &cbRead);
77 decryptedStream->Write(writeBuffer, 0, cbRead);
78 [...]
79 }

Listing 1: Source code of Attack 2/2.

1 MemoryStream^ encryptModifiedContent(Stream ^
modifiedStream)

2 {
3
4 [...]
5 cbReadRemaining = ... // get size of modified

document content
6 // pcbBlockSize = AES block size
7 while (cbReadRemaining > *pcbBlockSize)
8 {
9 cbRead = 0;

10 modifiedStream->Read(readBuffer, 0, *
pcbBlockSize);

11 hr = IpcEncrypt(m_key,
12 cBlock,
13 false,
14 pbReadBuffer,
15 *pcbBlockSize,
16 pbWriteBuffer,
17 cbOutputBuffer,
18 &cbRead);

19 cBlock++;
20 encryptedStream->Write(writeBuffer, 0,

cbRead);
21 cbReadRemaining -= cbRead;
22 }
23
24 // encryption of the last modified content block.
25 cbRead = 0;
26 modifiedStream->Read(readBuffer, 0,

cbReadRemaining);
27
28 hr = IpcEncrypt(m_key,
29 cBlock,
30 true,
31 pbReadBuffer,
32 cbReadRemaining,
33 pbWriteBuffer,
34 cbOutputBuffer,
35 &cbRead);
36 [...]
37 }

Listing 2: Source code of Attack 2/2.

14


	Introduction
	From classical DRM to modern ERM
	Security Model
	Microsofts Rights Management Services
	General Overview
	Test Setup
	The adrms in detail
	The arms in detail

	Attacking Microsoft rms
	Attack Challenges
	disarms Attack #1: How to Remove rms Protection
	disarms Attack #2: How to Modify rms Protected Content

	Attacking a rms
	Attacking Office 365
	Countermeasure
	Related Work
	Conclusion
	Code Examples

