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Abstract. Security for digital signature schemes is most commonly an-
alyzed in an ideal single user setting where the attacker is provided only
with a single public key. However, when digital signature schemes are
deployed in practice they are often used by many users, each having its
own public key, e.g., in authenticated key exchange (AKE) protocols.
Common security models for AKE model real world capabilities of an
adversary by allowing it (among others) to corrupt secret user keys. For
digital signatures it is well known that security in the idealized single
user setting implies security in this stronger and more realistic multi
user setting with corruptions. However, the security reduction loses a
factor which is linear in the number of users. It is not clear how to avoid
this loss in general.
In this paper we propose an efficient signature scheme whose security
reduction in the above setting is tight. The security reduction loses a
factor of about 2. When 80 bits of security are required our signatures
are of size roughly 2700 bits.

Keywords: Tight security, digital signatures, Groth-Sahai proofs, Katz-
Wang technique, random-oracle heuristic.

1 Introduction

When a new cryptographic scheme is proposed, nowadays the construction comes
along with a proof of security. Most commonly, the proof describes an efficient
algorithm, the reduction, that turns any successful attacker against the scheme
(with respect to the considered security notion) into another efficient algorithm
that breaks a supposed to be hard problem. The quality of a reduction R is
measured in terms of its success probability εR relative to its running time tR.
Ideally we have εR

tR
= O( εFtF ) where εF and tF denote the success probability and

the running time of the forger. In this case the reduction is said to be tight and
the cryptographic scheme is said to have tight security. Tight reductions are a
desirable goal since the quality of a reduction influences the size of the system
parameters when they are selected in a theoretically sound way, cf. table 1.
There exist implementations of many cryptographic primitives that come along
with an (almost) tight reduction in the standard or the random oracle model,
e.g., for digital signatures in the single user setting [8,21,9,28,20], for public key
encryption in the multi user setting [5,17] and for AKE [3].



Digital Signatures in the Multi User setting. The standard security notion for
digital signatures (in the single user setting) is existential unforgeability under
chosen message attacks (EUF-CMA-security) [15]. EUF-CMA-security was later
extended to the multi user setting without corruptions [25]. Recently, [3] intro-
duced the notion of existential unforgeability under chosen message attacks in
the multi user setting with adaptive corruptions (MU-EUF-CMACorr-security).
Here the attacker is considered successful if it manages to produce a signature
for a message m (that was not signed before with respect to the target public
key) that verifies under an uncorrupted public key (the target public key). While
tightness in the single user setting is mostly considered with respect to the num-
ber µ of sign queries issued by the attacker, in the multi user setting tightness
is additionally considered relative to the number ` of public keys the adversary
has access to and that it may corrupt. Hence, for digital signatures in the multi
user setting there are two dimensions to consider tightness in.

It is well known [25,3] that standard EUF-CMA security (i.e., ` = 1) implies
MU-EUF-CMACorr-security. However, the generic reduction loses a factor of `,
i.e., εR

tR
= O(` · εFtF ) and it is not clear how to avoid this loss in general. On the

bright side this means that the proofs from [9,28,20] give rise to digital signature
schemes in the multi user setting with corruptions that come along with a proof
that only depends (linearly) on ` (the number of public keys) but is independent
of µ (the number of sign queries issued by the attacker). Recently, standard
model schemes that come along with a reduction that is independent of µ and
` were proposed [3]. However, as the authors remark due to its large signature
size the full tight scheme from [3] is rather a feasability result. While the almost
tight scheme from [3] supports very short signatures it has public parameters
that are linear in the length of messages.

We stress that common security models for authenticated key exchange (AKE)
or channel establishment (ACCE), e.g. [7,11,19], allow the adversary to cor-
rupt long-term secret keys which often are secret keys of a signature scheme,
e.g., in ephemeral Diffie-Hellman Ciphersuites of the TLS-Handshake [14] or
when compilers lift a passively secure protocol to meet stronger security no-
tions [6,22,18,23]. Therefore, the MU-EUF-CMACorr security notion is implicitly
widely used in practice. However, the security proofs for most schemes apply the
“polynomial equivalence between EUF-CMA and MU-EUF-CMACorr security”
argument which incurs a loss of ` for the reduction and requires larger parame-
ters when the scheme is implemented in practice. Therefore an efficient signature
scheme, i.e., small signatures and public parameters, that comes along with a
tight MU-EUF-CMACorr security reduction is a desirable goal with practical
applications. In particular, plugging in a tightly MU-EUF-CMACorr-secure sig-
nature scheme into the tightness preserving compiler from [3] leads to a tightly
secure authenticated key exchange protocol the efficiency of which is roughly
determined by the efficiency of the signature scheme.

Our Contribution. In this paper we propose a signature scheme that tightly
satisfies MU-EUF-CMACorr security, i.e., the running time and the success prob-
ability of the reduction are roughly the same as the running time and the success
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` = 1 ` = 216 ` = 245

Loss Assumption|vk| |σ| |vk| |σ| |vk| |σ|
ECDSA [29,1,30] ≈ 280 ≈ 560 ≈ 312 ≈ 624 ≈ 370 ≈ 740 O(qh`) DLOG

BLS [10] ≈ 2000 ≈ 220 ≈ 3000 ≈ 256 > 4000 ≈ 310 O(µ`) CDH
RSA PSS [8,12] > 1024 1024 > 1350 ≈ 1350 > 3000 ≈ 3000 O(`) RSA

Ours 1024 2688 1024 2688 1024 2688 O(1) SXDH

Table 1: Comparison between our scheme and random oracle signature schemes from
the literature. We compare public key size and signature size in bits when parameters
are selected to obtain 80 bits of security in a theoretically sound way (i.e., parameter
selection considers the security loss) following NIST recommendations [4]. Following
[8] we assume µ = 230 sign-queries and qh = 260 hash-queries per public key. The BLS
and ECDSA schemes as well as our scheme do also require common public parameters.
These are omitted in our comparison since they have to be stored only once by each
user.

probability of the adversary (and in particular independent of µ and ` except
for a negligible fraction). The security reduction loses roughly a factor of 2. The
scheme works over asymmetric bilinear groups G = (G1,G2,GT ) equipped with
an efficiently computable pairing e : G1×G2 → GT . Public parameters contain a
description of the group, one additional element from G1, two additional elements
from G2 and the description of a Hash-function. A public key is a single group
element from G2 and signatures live in G41 ×G22 . Table 1 compares our signature
scheme to random oracle signature schemes from the literature. We observe that
if the number of users is 216 then the signature size of our scheme is roughly
twice the size of an RSA PSS signature and 10 times the size of a BLS signature.
Our scheme outperforms RSA PSS in both, public key size and signature size, if
the number of public keys is about 245 which is a very large number. However,
even in this case, BLS and ECDSA signatures are shorter than our signatures.
Therefore, for most of today’s practical applications our scheme is no better than
known solutions. However, due to the loss of the generic reduction (see above)
and to some problems that occur by natural approaches (see end of this section)
we find it interesting in its own right to construct a signature scheme with tight
MU-EUF-CMACorr security.

Technical Approach. When designing an MU-EUF-CMACorr-secure signature
scheme with tight reduction we are faced with the following problem: On the
one hand we need to be able to reveal the secret key to any public key (note
that guessing the target public key would cause a loss of `) and on the other
hand we must be able to extract a solution to a hard problem from (almost)
any forgery that is output by the adversary. That is, we must be able to extract
a solution from a forgery even if we know the secret key corresponding to the
target public key. To face this problem, we apply non-interactive proof systems
that provide two computationally indistinguishable modes of common reference
strings (CRS), perfectly binding ones and perfectly hiding ones. A perfectly bind-
ing CRS allows to extract knowledge from a given proof while a perfectly hiding
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CRS does not. A signature will roughly be a proof (using a suitable proof system)
that the signer ’knows’ a one time signature. Now, to extract a solution from an
adversarially generated signature the proof output by the adversary needs to be
binding. Note that we do not know the target public key and message up front.
At the same time, to hide all critical information from the adversary all proofs
output by the reduction need to be hiding.

To achieve this we apply the random oracle in a way similar to Katz-Wang
[21] to the (standard model, DLIN-based) linearly homomorphic signature scheme
from [24] converted to the SXDH-setting. Namely, public parameters contain part
of a Groth-Sahai CRS [16]. To sign a message m, a bit b is sampled uniformly
at random. The message is hashed together with b and the public key of the
signer to complete the CRS. Finally, using the secret key, a one time signature
over m is computed and correctness of the computed signature is proved with
respect to the CRS. During the security reduction the random oracle will be
programmed such that for each pair of message m and public key vk one out of
two possible CRS (recall that m and vk are hashed together with b) is perfectly
hiding and the other one is perfectly binding. Both are indistinguishable under a
computational assumption. Now, the reduction will make all proofs on a hiding
CRS (and thus leak no information about sk) and with high probability the
adversary will output a forgery on a binding CRS from which we can extract a
solution to a hard problem with overwhelming probability.

A note on schemes from OR proofs. We note that it might look heavy to use the
random oracle heuristic in combination with pairings at all and in particular to
additionally use Groth-Sahai proofs. Probably the most natural way to construct
a tightly secure scheme in the ROM would be to apply OR proofs as introduced
in [13] to Fiat-Shamir like signature schemes that have a tight reduction, e.g.
[21]. Similar to the fully tight construction from [3] and following the Naor-Yung
paradigm [27], a public key in such MU-EUF-CMACorr-secure scheme would
consist of two public keys (vk0, vk1) of the underlying signature scheme whereas
the secret key would consist only of one of the corresponding secret keys, skδ.
A signature on message m would be a witness indistinguishable OR proof that
the signer ’knows’ a signature on m that validates under vk0 or vk1. The OR
proofs from [13] provide perfect witness indistinguishability. Therefore it remains
information theoretically hidden from the view of the adversary which secret key
is known by the reduction. Unfortunately perfect witness indistinguishability
makes the reduction fail to actually extract knowledge from the forgery output
by the adversary.

If we are to apply pairings we can resort to Groth-Sahai proofs [16] and could
apply a similar technique. However, in this case we need to prove satisfiability of
a set of quadratic equations which makes the proofs expensive, i.e., large. Since
we are interested in efficient schemes we do not apply this technique. We note
however that this technique works even in the standard model [3]. However, it
leads to rather long signatures.
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2 Preliminaries

Notation. By [n] we denote the set [n] := {1, 2, . . . , n}. If A is a set then by a←$

A we denote the action of sampling a uniformly from A. If A is an algorithm then
a ← A(x) denotes that A outputs a when run on input x with fresh uniformly
random coins. By PPT we will abbreviate probabilistic polynomial time. If an
algorithm A has black-box access to an algorithm O, we will write AO.

By G = (e,G1,G2,GT , g1, g2, p) we denote the description of an asymmetric
bilinear group. That is, e : G1×G2 → GT is a non-degenerate bilinear map, gb is a
generator of Gb and |G1| = |G2| = |GT | = p where p is prime. It is well known that
there is a PPT algorithm that on input 1κ returns G such that 2κ < p ≤ 2κ+1. We
denote this algorithm by GEN.asym(1κ). Throughout the paper we reasonably
assume the non-existence of efficiently computable homomorphisms between G1
and G2. Given elements h ∈ G2 and ~g = (g, k) ∈ G21 we denote by E(~g, h) the
vector (e(g, h), e(k, h)).

Complexity Assumptions. Let in the sequel be b ∈ {1, 2}. Given g, h ∈ G2b we

denote by DDHb(g, h) the set DDHb(g, h) :=
{

(ĝ, ĥ) ∈ G2b : logg(ĝ) = logh(ĥ)
}

.

Definition 1. Let G = (e,G1,G2,GT , g1, g2, p) ←$ GEN.asym(1κ). We say that
an adversary (t, ε)-breaks the external Diffie-Hellman assumption in Gb (XDHb
assumption) if it runs in time t and∣∣∣Pr

[
A(G, g, h, ĝ, ĥ) = 1 : (g, h)←$ G2b ∧ (ĝ, ĥ)←$ DDH(g, h)

]
−Pr

[
A(G, g, h, ĝ, ĥ) = 1 : (g, h)←$ G2b ∧ (ĝ, ĥ)←$ G2b

]∣∣∣ ≥ ε
where the probability is over the random choices of g, h, ĝ, ĥ and the random
coins of A.

We say that an adversary (t, ε)-breaks the symmetric external Diffie-Hellman
assumption in G if it (t, ε)-breaks the XDH1 or XDH2 assumption.

A given instance of the XDHb problem is efficiently re-randomizable [26,5].

That is, there is an efficient algorithm that, on input (g, h, ĝ, ĥ, 1q), outputs q
tuples (gi, hi), i ∈ [q] such that

(gi, hi)←$ DDH(g, h) if (ĝ, ĥ) ∈ DDH(g, h)

(gi, hi)←$ G2b if (ĝ, ĥ) /∈ DDH(g, h) .

Definition 2. Let G = (e,G1,G2,GT , g1, g2, p)←$ GEN.asym(1κ) and (gz, gr)←$

G22 . We say that an adversary (t, ε)-breaks the double pairing assumption in G2
(DP2 assumption) if it runs in time t and

Pr [(z, r) 6= (1, 1) ∧ e(z, gz) · e(r, gr) = 1 : (z, r)← A(G, gz, gr)] ≥ ε

where the probability is over the random choices of gz and gr and the random
coins of A.

We define the DP1 assumption analogously.
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Lemma 1 ([2]). For any attacker A that (tDPb
, εDPb

)-breaks the DP assumption
in Gb (where b ∈ {1, 2}) there exists an attacker B that (tXDH, εXDH)-breaks the
XDH assumtion in Gb where tDPb

≈ tXDH and εXDH ≥ εDPb
.

Proof. Let wlog b = 2. Algorithm B, given an XDH2 instance (G, g, h, ĝ, ĥ),
runs A as a subroutine on input (G, g, ĝ). When A outputs (z, r) such that

e(z, g) · e(r, ĝ) = 1 we know that logz(r) = −logĝ(g) and thus e(z, h) · e(r, ĥ) =

1⇔ (ĝ, ĥ) ∈ DDH(g, h).

3 Digital Signature Schemes in the Multi User Setting

Syntax. A digital signature scheme SIG = (Setup,Gen,Sign,Vfy) is a four-tuple
of PPT algorithms.

Public Parameters. The parameter generation algorithm Π ←$ Setup(1κ) on
input 1κ returns public parameters. We silently assume that 1κ is contained
in Π. We note that while Setup often is omitted in the single user setting it
is convenient to define it in the multi user setting. If not explicitly required,
it just outputs 1κ.

Key Generation. The key generation algorithm when input Π outputs a key
pair, (vk, sk) ←$ Gen(Π). Even if not explicitly stated we assume that vk
contains at least Π and that sk contains vk.

Signature Generation. The signature generation algorithm, given a secret
key sk and message m, outputs a signature σ on that message. That is,
it returns σ ←$ Sign(sk,m).

Verification. The verification algorithm accepts or rejects a signature over a
message with respect to a given public key, Vfy(vk,m, σ) ∈ {0, 1}.

For correctness we require that for all κ, all Π ←$ Gen(1κ), all (vk, sk) ←$

Gen(Π) and any message m that

Pr
[
Vfy(vk,m, σ) = 1 : σ ←$ Sign(sk,m)

]
= 1 .

Security Notion. Consider the following security experiment that is played be-
tween a challenger C and an adversary A and that is parametrized by µ, the
number of overall sign queries the adversary may issue and ` the number of
public keys the adversary has access to and that it may corrupt.

1. On input 1κ the challenger runs Π ←$ Setup(1κ) and samples (vki, ski)←$

Gen(Π), i ∈ [`]. Next, it initializes a set SCorrupt ← ∅ to keep track of cor-
rupted keys and sets Si ← ∅ to keep track of messages that were signed with
respect to public key vki. It passes vki, i ∈ [`] to A.

2. The adversary may now adaptively issue sign-queries (m, i) where m is a
message and i ∈ [`] and corrupt-queries i (where also i ∈ [`]). C responds to
the respective queries as follows. When issued a sign query (m, i), C updates
Si to Si ← Si ∪ {m}. Next, it returns σ ←$ Sign(ski,m). When issued a
corrupt query i, C updates SCorrupt to SCorrupt ← SCorrupt ∪ {i} and returns
ski. A is restricted to perform no more than µ overall sign-queries.
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3. Finally, A outputs a forgery (i∗,m∗, σ∗).

Definition 3 (MU-EUF-CMACorr-security). We say that an adversary (t, µ, `,
ε)-breaks the multi user existential unforgeability under chosen message attacks
with adaptive corruptions security of a signature scheme SIG if it runs in time
t in the above security game and

Pr
[
Vfy(vki∗ ,m

∗, σ∗) = 1 : i∗ /∈ SCorrupt ∧m∗ /∈ Si
∗
]
≥ ε .

4 Non-interactive Proof Systems

Given a binary relation R ⊆ X × W and (x,w) such that R(x,w) we call
x the statement and w the witness. A non-interactive proof system NIPS =
(Gen,Prove,Vfy) for witness relation R is a three-tuple of PPT algorithms.

– The common reference string generation algorithm, on input 1κ, returns a
common reference string, CRS←$ Gen(1κ).

– The prove algorithm when input (x,w) such that R(x,w) returns a proof
π ←$ Prove(CRS, x, w) with respect to CRS.

– The verification algorithm verifies a proof, Vfy(CRS, x, π) ∈ {0, 1}.

Definition 4. We call NIPS a witness indistinguishable proof of knowledge
(NIWI-PoK) for R, if the following conditions are satisfied:

Perfect completeness. For all κ ∈ N it holds that if R(x,w) then

Pr
[
NIPS.Vfy(CRS, x, π) = 1 : CRS←$ NIPS.Gen(1κ) ∧ π ←$ Prove(CRS, x, w)

]
= 1

Perfect Witness Indistinguishability. Let CRS ←$ Gen(1κ). For b ∈ {0, 1}
we denote by Ob an oracle that when input (x,w0, w1) such that R(x,wb)
returns π ←$ Prove(CRS, x, wb). We require

Pr
[
AO0 = 1

]
= Pr

[
AO1 = 1

]
Simulated CRS. There exists an algorithm (CRSsim, τ) ←$ E0 that, on input

1κ, outputs a simulated common reference string CRSsim and a trapdoor τ .
Perfect Knowledge Extraction on Simulated CRS. Let (CRSsim, τ)←$

E0(1κ). We require the existence of an algorithm E1 such that for all (π, x)←
A that satisfy NIPS.Vfy(CRSsim, x, π) = 1 it holds that

Pr
[
w ←$ E1(CRSsim, π, x, τ) : (x,w) ∈ R

]
= 1

Secure NIWI-PoK. Let CRSreal ←$ NIPS.Gen(1κ) and (CRSsim, τ)←$ E0(1κ).
We say that an algorithm (t, εCRS)-breaks the security of a NIWI-PoK if it
runs in time t and it holds that

Pr
[
A(CRSreal) = 1)

]
− Pr

[
A(CRSsim) = 1

]
≥ εCRS

If CRS ←$ Gen(1κ) we call CRS hiding and if (CRSsim, ·) ←$ E0(1κ) we call
CRSsim binding. It is easy to verify that perfect witness indistinguishability on a
hiding CRS is preserved if many statements are proven.
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Defining a Relation. Consider the following equation over (z, r)

1 = e(z, kz) · e(r, kr) · e(m, k) (1)

The core of our signature scheme will be the assumption (which we will justify
later) that given (kz, kr, k,m) it is hard to compute (z, r) that satisfy equation
1. We define a relation as follows:

R ((kz, kr, k,m), (z, r)) =

{
1, if 1 = e(z, kz) · e(r, kr) · e(m, k)

0, else

Suitable Proof Systems. The SXDH-based Groth-Sahai proof system [16] is an
(efficient) proof system for witness relation R. Note that equation 1 is linear
where the variables live in G1. In this case each commitment costs two elements
from G1 and a proof element costs additional two elements from G2 (instead of
four elements from G1 and G2 if we had quadratic equations).

Since we need the notation for our signature scheme we recall SXDH-based
Groth-Sahai proofs with efficiency improved verification [24] for relation R here.

CRS←$ Gen(1κ): The common reference string generation algorithm samples
G = (e,G1,G2,GT , g1, g2, p) ←$ GEN.asym(1κ), ~v1 = (g1, f1) ←$ G21 and

~v2 = (ĝ1, f̂1) /∈ DDH(g1, f1). It returns (G, ~v1, ~v2).
π ←$ Prove(CRS, (kz, kr, k,m), (z, r)): The prove algorithm first commits to z

and r via
Cz =(1, z) · ~vδz,11 · ~vδz,22

Cr =(1, r) · ~vδr,11 · ~vδr,22

where multiplication is done component-wise. Next, it computes proofs that
the commitments actually contain a solution to equation 1. These are com-
puted as

π′ = (π′1, π
′
2) =

(
k−δz,1z · k−δr,1r , k−δz,2z · k−δr,2r

)
The proof is returned as π = (Cz, Cr, π

′) ∈ G41 × G22 .
Vfy(CRS, (kz, kr, k,m), π): The verification algorithm outputs 1 iff

(E((1,m), k))
−1

= E(Cz, kz) · E(Cr, kr) · E(~v1, π
′
1) · E(~v2, π

′
2) (2)

(CRSsim, td)←$ E0(1κ): The simulated CRS generation algorithm samples G =
(e,G1,G2,GT , g1, g2, p) ←$ GEN.asym(1κ), ~v1 = (g1, f1) ←$ G21 and ~v2 =

(ĝ1, f̂1)←$ DDH(g1, f1). It sets x = logg1(f1) and returns ((G, ~v1, ~v2), x).

That for any attacker A that (tA, εA)-breaks the NIWI-PoK security of this
proof system there is an attacker B that (tB, εB)-breaks the SXDH-assumption in
G with tA ≈ tB and εB ≥ εA is proven in [16]. We stress that if ~v2 ∈ DDH(~v1) then
(~v1, ~v2) is a perfectly binding CRS whereas if ~v2 /∈ DDH(~v1) then (~v1, ~v2) yields a
perfectly hiding CRS both of which are computationally indistinguishable under
the XDH1 assumption in G.
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5 Our new Signature Scheme

Intuition of our scheme. Before we introduce our scheme formally we would like
to give some intuition what is behind the scheme. Actually our scheme is similar
to the DLIN-based signature scheme from [24] that allows for linear OR-proofs.
However, we do not need OR-proofs at all.

A signature over m is an SXDH-based Groth-Sahai proof [16] of satisfiability
of equation 1 (where (kz, kr, k) are given in the public parameters and the public
key, respectively). The system parameters contain part of a Groth-Sahai CRS
for relation R described in the previous section. The hash of a message, the
verification key of the signer and a uniformly random bit completes the CRS.
Now, the signer (using sk) computes (z, r) that satisfies equation 1 and generates
a proof of this fact using Prove from the proof system of the previous section. We
note that there are many possible solutions to equation 1. The secret key of our
signature scheme allows to compute exactly one satisfying solution to equation
1. However, two distinct solutions yield a solution to the instance (kz, kr) of the
DP2 problem.

Description of our scheme. The scheme works as follows.

SIG.Setup(1κ). The setup algorithm, on input 1κ, works as follows:

1. Sample G = (e,G1,G2,GT , g1, g2, p)←$ GEN.asym(1κ).
2. Sample f1 ←$ G1 and kz, kr ←$ G2 and set ~v1 = (g1, f1).
3. Choose a hash-function H : {0, 1}∗ → G1. The security analysis will view
H as a random oracle.

It returns Π ← (G, kz, kr, ~v1, H). The message space is G1.
SIG.Gen(Π). The key generation algorithm samples χ, γ ←$ Zp and computes

k = kχz k
γ
r ∈ G2. The key is returned as (vk, sk)← (k, (χ, γ)).

SIG.Sign(sk,m). The sign algorithm first checks if m has been already signed.
If this is the case it recovers the bit bvk,m that was previously used to sign
m 1. Else it samples bvk,m ←$ {0, 1}. Next, it proceeds as follows (recall that
m ∈ G1).

1. Compute z = m−χ and r = m−γ .
2. Compute ~v2 = (H(0||vk||m||bvk,m), H(1|vk|||m||bvk,m)) ∈ G21 and set

CRS = (~v1, ~v2).
3. Run the prove algorithm for relation R from the previous section and

return σ ←$ Prove(CRS, (kz, kr, k,m), (z, r)) ∈ G41 × G22 .

SIG.Vfy(vk,m, σ). The verification algorithm accepts iff Vfy(CRS, (kz, kr, k,m), σ)
where CRS = (~v1, ~v2) and v2 = (H(0||vk||m||0), H(1||vk||m||0)) or v2 =
(H(0||vk||m||1), H(1||vk||m||1)).

1 Note that we could also let the signer evaluate a pseudo-random function on m to
determine b. According to [21] another very simple solution is to determine b by
evaluating another hash function H ′ on m and vk (which again will be viewed as
a random oracle by the analysis). This way the signer does not need to maintain
states.

9



Remark 1 (On the requirement of a trusted setup). We note that if the scheme
is implemented the way we describe it here we require Setup to be run by a
trusted party. We can get rid of this requirement if we let the public parameters
contain only the description of the group. In this case each user needs to choose
H, ~v1 ←$ G21 and kz, kr ←$ G2 itself and publish these as part of its public key.
By the random self reducibility of DDH and DP the tightness of the reduction
will be preserved. However, this approach leads to longer public keys. Because
of this and for ease of readability we chose to describe the scheme as above.

Next, we show that there is a tight reduction from breaking the SXDH-
assumption to breaking the unforgeability of the above signature scheme.

Theorem 1. For any attacker A that (t, µ, `, εSIG)-breaks the MU-EUF-CMACorr-
security of SIG there is an attacker B = (BXDH,BDP) such that BXDH (tXDH, εXDH)-
breaks the XDH-assumption in G1 or BDP (tDP, εDP)-breaks the double pairing
assumption in G2 with t ≈ tXDH ≈ tDP and

εSIG <
`2

2 · p
+ 2 ·

(
εXDH + εDP +

µ+ 1

p

)
.

The analysis will view H as a random oracle.

Proof. The proof is built on the following fact: Given only the public key, there
are many possible secret keys and the actual values of χ and γ are information
theoretically hidden. However, given a message and a secret key the pair (z, r) is
determined. That is, a given secret key allows to compute exactly one pair that
satisfies equation 1. At the same time, even if the secret key is available, any
other tuple that satisfies equation 1 allows to solve an instance of the DP2 prob-
lem. We argue that since the signer commits to (z, r) via hiding commitments
the actual values (z, r) are information theoretically hidden from the view of A.
Therefore the secret key is also hidden from the adversary. Now, the reduction
will manipulate H to produce binding commitment keys for (almost) any ad-
versarially generated signature. From this, we can extract a DP solution with
probability 1− 1

p .

The proof proceeds in a sequence of games. Here, we denote by Pr[χi] the
probability thatA is considered successful in game i. Let us denote by (i∗,m∗, σ∗)
the forgery otuput by A and vki∗ by vk∗.

Game 0. This game is the real MU-EUF-CMACorr-security game. When issued
a hash-query for the string s the reduction R first checks if s has already been
hashed. If this is the case it returns the previously computed value H(s). Other-
wise it samples r uniformly at random from G1 and sets and returns H(s) = r.
All other queries are answered according to the MU-EUF-CMACorr-security ex-
periment. This perfectly simulates the challenger in the random-oracle model.
Thus, we have:

Pr[χ0] = εSIG
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Game 1. Let Qvkcoll denote the following event:

Qvkcoll :=
{
∃(i, j) ∈ [`]2 : i 6= j ∧ vki = vkj

}
In Game 1 R aborts (and A looses) if event Qvkcoll occurs. Since χ and γ are
chosen uniformly at random by R, public keys are distributed uniformly random

over G2 which implies Pr[Q] = `·(`−1)
2·p . Thus, we have

|Pr[χ0]− Pr[χ1]| ≤ `2

2 · p

Game 2. Before we introduce the changes made in Game 2 let us fix some
notation. Let bvk,m denote the bit that is (lazily) sampled byR during signing on
m under vk. In Game 2, R aborts if for the forgery (i∗,m∗, σ∗) that is output by
A it holds that v∗2 = (H(0||vk∗||m∗||bvk∗,m∗), H(1||vk∗||m∗||bvk∗,m∗)). In other
words, R aborts (and A looses) if A chooses for the forgery the same bit bvk∗,m∗

that R would have chosen itself to sign m∗ under vk∗. Since R chooses each
bit uniformly at random the actual choice of bvk∗,m∗ is information theoretically
hidden from the view of A (recall that all vk are distinct due to Game 1). Thus
we have

Pr[χ1] ≤ 2 · Pr[χ2]

Game 3. In Game 3 the reduction proceeds similarly to Game 2 except for the
following: R lazily programs the hash-oracle such that for every pair of m and
vk we have that (H(0||vk||m||1− bvk,m), H(1||vk||m||1− bvk,m)) ∈ DDH(g1, f1).
By the random self reducibility of DDH we get:

|Pr[χ2]− Pr[χ3]| < εXDH

Game 4. This game is similar to Game 3, except that R aborts (and A looses),
if for any sign query (m, i) issued by A during the security experiment we have
that (H(0||vki||m||bvki,m), H(1||vki||m||bvki,m)) ∈ DDH(g1, f1). Since images of
H are distributed uniformly over G we have that

|Pr[χ3]− Pr[χ4]| ≤ µ

p

Game 5. Game 5 proceeds exactly like Game 4 except for the following. R
aborts if it cannot extract a satisfying assignment for equation 1 from σ∗. Due
to Game 3 we know that (ĝ1, f̂1) = (H(0||vk∗||m∗||1−bvk∗,m∗), H(1||vk∗||m∗||1−
bvk∗,m∗)) ∈ DDH(g1, f1). Therefore (~v1, ~v2) is in the (first) range of E0(1κ) and
gives a perfectly binding CRS.

Given the trapdoor τ = logg1(f1) and using E1, R is able to extract (z∗, r∗)
that satisfy equation 1 due to the perfect knowledge extraction on simulated
CRS [16]. Thus, we have:

Pr[χ4] = Pr[χ5]

11



Game 6. Game 6 proceeds exactly as Game 5 except for the following. The
reduction aborts (and A looses) if for the forgery that A outputs it holds that
the satisfying assignment of equation 1, (z∗, r∗), that is extracted by R from
σ∗ is equal to ((m∗)−χ, (m∗)−γ). Since for all sign queries (m, i) issued by A it
holds that (H(0||vki||m||bvki,m), H(1||vki||m||bvki,m)) /∈ DDH(g1, f1) (which is
due to Game 4) the signatures output by R are perfectly hiding proofs and do
not leak any valuable information on (z, r) that are used by R to compute the
respective commitements. From the view of the adversary all (z, r) that satisfy
the respective equation 1 are equally likely. In particular the only information
that the adversary obtains on χ and γ comes from the public key. However the
public key provides the adversary with one linear equation in two unknowns
which has p possible solutions. Thus we have:

|Pr[χ5]− Pr[χ6]| ≤ 1

p

Lemma 2. Pr[χ6] < εDP2 .

We will show that any forgery output by the adversary in Game 6 allows BDP

to solve a given instance of the DP2 assumption. To this end, assume that A
outputs a valid signature σ∗ for m∗ that was not signed before under vk. By
Game 5 we know that from σ∗ we can extract (z∗, r∗) such that 1 = e(kz, z

∗) ·
e(kr, r

∗) · (k∗,m∗). Moreover due to Game 6 we know that (z∗, r∗) 6= (z, r) =
((m∗)−χ, (m∗)−γ). However, we do know that (z, r) also satisfies equation 1.
Now, ( zz∗ ,

r
r∗ ) 6= (1, 1) yields a solution to the DP2 instance (kz, kr) ∈ G2:

e(
z

z∗
, kz) · e(

r

r∗
, kr) =e(z, kz) · e(r, kr) · e(z∗, kz)−1 · e(r∗, kr)−1

=e(z, kz) · e(r, kr) · e(m∗, k∗)1−1 · e(z∗, kz)−1 · e(r∗, kr)−1

=1

where the last equation is due to the fact that both, (z, r) and (z∗, r∗), satisfy
equation 1. This completes our proof. ut

We stress that the reduction is able to reveal the secret key corresponding to
a public key in every single game throughout the proof and is nevertheless able
to extract a solution to a hard problem from a forgery. We do not even have to
re-randomize publicly available values. That is, we can use kz and kr, as well as
v1 from Π for all users.
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