
Towards Elimination of Cross-Site Scripting on
Mobile Versions of Web Applications

Ashar Javed and Jörg Schwenk

Chair for Network and Data Security
Horst Görtz Institute for IT-Security, Ruhr-University Bochum

{ashar.javed, joerg.schwenk}@rub.de

Abstract. In this paper, we address the overlooked problem of Cross-
Site Scripting (XSS) on mobile versions of web applications. We have
surveyed 100 popular mobile versions of web applications and detected
XSS vulnerabilities in 81 of them. The inspected sites present a simpli-
fied version of the desktop web application for mobile devices; the survey
includes sites by Nokia, Intel, MailChimp, Dictionary, Ebay, Pinterest,
Statcounter and Slashdot. Our investigations indicate that a significantly
larger percentage (81% vs. 53%) of mobile web applications are vulner-
able to XSS, although their functionality is drastically reduced in com-
parison to the corresponding desktop web application.
To mitigate XSS attacks for mobile devices, this paper presents a light-
weight, black-list and regular expressions based XSS filter for the de-
tection of XSS on mobile versions of web applications, which can be
deployed on client or server side. We have tested our implementation
against five different publicly available XSS attack vector lists; none of
these vectors were able to bypass our filter. We have also evaluated our
filter in the client-side scenario by adding support in 2 open source mo-
bile applications (WordPress and Drupal); our experimental results show
reasonably low overhead incurred due to the small size of the filter and
computationally fast regular expressions. We have contributed an imple-
mentation of our XSS detection rules to the ModSecurity firewall engine,
and the filter is now part of OWASP ModSecurity Core Rule Set (CRS)1.

Keywords: XSS, mobile web, regular expression, client-side filter

1 Introduction

Cross-Site Scripting (XSS) [3] is one of the most prevalent security issue in
web applications: according to a recent report by WhiteHat, 53% of websites
have XSS vulnerabilities [4]. An attacker can exploit an XSS vulnerability to
steal users’ credentials, spread worms and deface websites. Researchers have
proposed different mitigation against XSS ranging from purely client or server
side methods to hybrid solutions [22,23,25,27,28,29,32,31,33]. However, the field
which still lacks research is mobile versions of web applications.

1 https://github.com/SpiderLabs/owasp-modsecurity-crs/blob/master/base_

rules/modsecurity_crs_41_xss_attacks.conf

https://github.com/SpiderLabs/owasp-modsecurity-crs/blob/master/base_rules/modsecurity_crs_41_xss_attacks.conf
https://github.com/SpiderLabs/owasp-modsecurity-crs/blob/master/base_rules/modsecurity_crs_41_xss_attacks.conf

Characterization of Mobile Web Applications. In mobile web applications,
functionality and user interaction is adapted to the small touchscreens of mod-
ern smartphones. The URLs of mobile web applications often start with the
letter “m”, or end in the words “mobi” or “mobile”. Sites automatically present
a simple and optimized version of their web application to mobile browsers, e.g.,
Etsy (a popular handmade items’ marketplace) website2. These stripped-down
versions of web applications contain significantly less or no AJAX-style interac-
tions, thus the attack surface for XSS should (at first glance) be reduced.

We found that mobile sites have approximately 69% less HTML code as
compared to desktop versions (see Section 2.3). Only one mobile site (http:
//www.jobmail.co.za/mobile/) is using Modernizr3 – a JavaScript library that
detects HTML5 and CSS3 features in the user’s browser – which indicates that
these novel features are rarely used. According to [5]:

“... In mobile interfaces, set of navigation options is usually presented one at
a time; for example, with iPhone-style sliding drill-down menu panels. ...”

A usability study of hundreds of sites conducted by Nielsen Norman Group
[6] states:

“Good mobile user experience requires a different design (cut features, cut
content and enlarge interface elements) than what’s needed to satisfy desktop
users. The desktop user interface platform differs from the mobile user inter-
face platform in many ways, including interaction techniques, how people read,
context of use, and the plain number of things that can be grasped at a glance.”

XSS Vulnerabilities in Mobile Web Applications. We found XSS vulner-
abilities in 81 of the 100 surveyed applications (see Section 2) which shows (when
compared to the 53% from the WhiteHat study [4]) that a significantly higher
percentage of these applications are affected by XSS. This result is surprising,
since the reduced functionality of the mobile versions should facilitate protec-
tion against such attacks. According to OWASP Top 10 Mobile Risks, client-side
injection is ranked as number four [17].

Mitigation against XSS. For the simple and optimized mobile versions of
web applications, we need a simple and light-weight solution that incurs reason-
ably low run-time overhead for the application (both on client and server side)
and at the same time requires little effort or knowledge from the developers.

Filtering malicious content is the most commonly used method for the pre-
vention of XSS on web applications and sites normally use filtering as a first line
of defense. The main goal of filtering is to remove malicious contents from the
user-supplied input, while still allowing the non-malicious parts to be processed.
A recent paper [16] has also argued in favor that mobile applications can learn
from the web experience.

Since removing malicious content from user-supplied input is a complicated
and error-prone task, we take the stricter blocking approach to keep our filter

2 “Type Etsy.com into your mobile browser on your phone and you’ll find a simple
and optimized version of the Etsy site http: // www. etsy. com/ .”

3 http://modernizr.com/

2

http://www.jobmail.co.za/mobile/
http://www.jobmail.co.za/mobile/
http://www.etsy.com/
http://modernizr.com/

simple: Whenever we detect malicious content, the whole request is blocked, and
only an error message is returned.

Related Work. The idea of using client-side filter to mitigate XSS is not new.
Engin Kirda et al. propose Noxes [25] which is a client-side, Microsoft Windows
based personal web application proxy. Noxes provides fine-grained control over
the incoming connections to the users so that they can set XSS filter rules without
relying on web application provider. Noxes assumes that users are trained and
security aware and can set filtering rules, which is not the case often and at the
same time it requires considerable amount of effort from the users. Noxes does
not consider HTML injection and only Windows based.

Omar Ismail et al. [26] propose a client-side solution for the detection of XSS.
The solution, which is user-side proxy, works by manipulating the client request
or server response. The solution works in two modes request change mode and
response change mode and also requires servers (i.e., collection/detection and
database server). As authors stated in the paper that the proposed solution can
affect performance because of extra request in request change mode. At the same
time in response change mode, proxy assumes that the parameter with length
greater than 10 characters should contain XSS script, which is not the case
often. Last but not the least, solution is not automatic and requires considerable
amount of effort from the developer because it requires manual insertion of
scripts used for XSS detection.

Vogt et al. also propose a client-side solution [29] for the mitigation of XSS
attacks. The proposed solution track flow of sensitive information inside the
Mozilla Firefox browser and alert user if information starts flowing towards third-
party. The proposed solution is a good protection layer against XSS but as
authors stated that it requires considerable engineering effort to modify the
Firefox browser.

Mozilla proposed Content Security Policy (CSP) for the mitigation of XSS
attacks [31]. At the time of writing, mobile browsers do not support4 W3C
CSP 1.0 specifications5. At the same time, CSP requires great amount of effort
from developers to modify sites because of no inline-JavaScript support. We
have also compared our XSS filter with some industry proposed XSS filters (see
Section 7).

Our Solution. In this paper, we present a simple, optimized, light-weight and
black-list client-side XSS filter for mobile applications (see Section 4). Our XSS
filter is based on a set of regular expressions and can cope with code obfuscation.
We have chosen regular expressions because (if implemented correctly) they are
computationally fast compared to any equivalent string manipulation operation
(see Section 6.2) and easy to maintain. Our set of regular expressions can be
deployed in server-side filters (e.g., in firewall), or as a client-side JavaScript
function.
4 Flip the pref to turn on the CSP 1.0 parser for Firefox for Android: https:

//bugzilla.mozilla.org/show_bug.cgi?id=858780
5 http://www.w3.org/TR/CSP/

3

https://bugzilla.mozilla.org/show_bug.cgi?id=858780
https://bugzilla.mozilla.org/show_bug.cgi?id=858780
http://www.w3.org/TR/CSP/

Our solution is not intended for desktop based web applications because
of complex nature of web applications and significant use of AJAX. Our filter
may harm the performance of the rich internet application and it requires more
changes from the developers perspective, and may not be able to deal with highly
complex XSS vectors available there. From now on, we will only consider mobile
version of web application that are simple in nature.

Regular expressions based XSS filters are very common e.g., the Firefox No-
Script6 and the XSS filter implemented in Internet Explorer use regular ex-
pressions. In this paper, we leverage the idea of regular expressions from Gary
Wassermann et al’s. work [1]. Wassermann et al. have proposed static detec-
tion of XSS vulnerabilities using tainted information flow and string analysis.
They have developed a function named stop xss that uses regular expressions
to capture malicious input from the user-supplied string. The function stop xss

has three categories of regular expressions to deal with different types of XSS
vectors.

1. A regular expression category that deals with script tag based XSS vectors,
e.g., <script>alert(1)</script>. We call it Category 1.

2. A regular expression category that deals with XSS vectors making use of
event handlers like onerror, onload etc, e.g., <body onload="alert(1)">.
We call it Category 2.

3. A regular expression category that deals with XSS vectors making use of
JavaScripts URIs, e.g., <p style="background:url(javascript:alert(1))

">. We call it Category 3.

For client-side deployment, we have implemented the XSS filter as a JavaScript
function (see Section 5). To integrate our filter, sites simply have to inlcude or
link the JavaScript XSS filter code at the top of their web page. This is very
common practice and it can even be observed on the mobile sites especially when
sites include the jQuery mobile JavaScript library7 (see Section 2.3). Sites may
call our filter function on HTML form’s (<form> tag) onsubmit event handler,
e.g., “onsubmit=xssfilter()”.

For server-side deployment, sites may use our filtering rules in Firewall or
as server-side reverse proxy. Apache’s mod proxy module provides functionality
to set up reverse proxy and then proxy decides how to deal with the incoming
requests according to the rules [35]. We have contributed an implementation
of our XSS detection rules to the world most widely deployed firewall engine –
ModSecurity – (around 1,000,000 deployments8), and the filter is now part of
OWASP ModSecurity Core Rule Set (CRS) (see Section 6.3). In this paper, we
focus only on the client-side deployment. We have also tested our filter against
a large set of XSS vectors (see Section 5.2) and have evaluated our client-side
implementation by adding support in two popular open-source (Wordpress and
Drupal) mobile applications (see Section 6).

6 http://noscript.net/
7 http://jquerymobile.com/
8 https://www.trustwave.com/modsecurity-rules-support.php

4

http://noscript.net/
http://jquerymobile.com/
https://www.trustwave.com/modsecurity-rules-support.php

Contributions. The paper makes the following contributions:

• It presents a survey of 100 mobile sites and found XSS vulnerabilities in
81 of them. The complete list of mobile sites that are vulnerable to XSS
vulnerabilities is available at http://pastebin.com/AHJbjJsy.

• It proposes a XSS filter for mobile versions of web applications based on
regular expressions and blacklisting. We have contributed our XSS detec-
tion rules to the ModSecurity firewall engine, and have implemented it as a
Javscript function for client-side deployment.

• The proposed XSS filter was tested against five publicly available XSS vector
lists, and no vector was able to bypass the current version of the XSS filter.

• The feasibility of our approach was shown by adding our XSS filter as a
JavaScript function in two open-source mobile applications, with reasonably
small overhead (client-side), and by the integration into ModSecurity after
intensive testing by the OWASP Modsecurity team (server-side).

2 Survey

In this section, we present the results of our survey9 and discuss these results
briefly. To the best of our knowledge, this is the first survey on mobile web
applications. All quantitative overviews on XSS we are aware of are related to
desktop version of web applications. During the survey of 100 popular mobile
version of web applications, we found reflective XSS vulnerabilities in 81 sites,
including web sites like Nokia, Intel, MailChimp, Vodafone, Dictionary, Ebay,
Answers, HowStuffWorks, Statcounter and Slashdot etc.

2.1 Methodology of Testing Websites

We manually injected a commonly used XSS vector (i.e., "><img src=x onerr

or=prompt(1);>) in the input fields available on the mobile-version of web
applications. In order to open mobile versions of websites, we have used Mozilla
Firefox browser on Windows 7, running on DELL Latitude E6420ATG (Intel
Core i7 processor). In 74 out of 81 XSS vulnerable websites we found HTML
forms (<form> tag). Similar to the desktop versions, on mobile versions we also
found usage of the <form> tag for search, feedback and log-in functionality. For
the remaining 7 sites we have injected the XSS vector directly in URL being
retrieved (in the query string of the URL). The reason for this large amount of
XSS vulnerabilities seems to be the total lack of input validation on client and
server side.
One could argue that this lack of filtering could be intentional, since there is
probably no attractive target for attackers amongst mobile web applications.
This is however not the case: e.g., Pinterest (http://m.pinterest.com) has
an XSS vulnerability (see http://i.imgur.com/sJUQdwt.jpg) and this site has
millions of unique users10. We have also found other examples of attractive

9 The complete list of surveyed mobile sites is available at http://pastebin.com/

MabbJWWL
10 http://en.wikipedia.org/wiki/Pinterest

5

http://pastebin.com/AHJbjJsy
http://m.pinterest.com
http://i.imgur.com/sJUQdwt.jpg
http://pastebin.com/MabbJWWL
http://pastebin.com/MabbJWWL
http://en.wikipedia.org/wiki/Pinterest

targets on the mobile side like MailChimp’s log-in form11, Jobmail’s Employer
login form12, Moneycontrol’s (India’s #1 financial portal) registration form13

and Mobiletribe personal detail form14, Homes’ login form15 and many others
etc. Attacker can steal users’ credentials by exploiting the XSS flaw.

2.2 Ethical Considerations

Regarding our findings, we are acting ethically and have informed some sites
about the XSS vulnerability and in the process of contacting others. Some of
the XSS issues have been fixed and some are in progress. Sites like Nokia and
Intel have reacted promptly and now in both cases XSS (see http://i.imgur.

com/FTVFlpm.png and http://i.imgur.com/Qzp7bhJ.jpg) has been fixed by
their security teams and at the same time they have also acknowledged16 our
work. We believe that our survey will help raise awareness about XSS problems
on mobile sites. Table 3 (see Appendix) shows top site names along with its
Alexa rank at the time of writing.

2.3 Stripped-down Versions of Desktop Web Applications

HTML Usage on Mobile Sites: Our manual source code analysis of mobile
web sites showed that they contain significantly less HTML code as compared to
the desktop version of the same application. To be precise, we found an average
of 69% less HTML code on mobile variants of web application. Fig. 1 shows the
difference in number of lines of HTML code on mobile and desktop sites.

JavaScript Usage on Mobile Sites: Our survey results show that 79 sites
out of 100 are using JavaScript on mobile version of their web application.
The other 21 sites do not use JavaScript at all. However, most of this code
is JavaScript-based third-party tracking. We found 62 sites are using JavaScript
tracking code provided by different ad-networks (41 sites are using Google Ana-
lytics JavaScript code). According to recent report by Ghostery, Google Analytics
is the most widespread tracker on web [20]. Our survey has found that Google
Anayltics is the also widespread tracker on mobile17.

We also found that 33 sites are using jQuery mobile library18. The jQuery
mobile library allows developers to build mobile applications that can run across

11 XSS is now fixed, see http://i.imgur.com/oWwpc1e.jpg
12 http://www.jobmail.co.za/mobile/employerLogin.php
13 http://m.moneycontrol.com/mcreg.php
14 http://portal.motribe.mobi/signup
15 http://m.homes.com/index.cfm?action=myHomesLogin#signin
16 Nokia has sent us Nokia Lumia 800 Phone as a part of appreciation and responsible

disclosure.
17 For interested readers, we will soon publish a technical report titled — “A Footprint

of Third-Party Tracking on Mobile Web”.
18 http://jquerymobile.com/

6

http://i.imgur.com/FTVFlpm.png
http://i.imgur.com/FTVFlpm.png
http://i.imgur.com/Qzp7bhJ.jpg
http://i.imgur.com/oWwpc1e.jpg
http://www.jobmail.co.za/mobile/employerLogin.php
http://m.moneycontrol.com/mcreg.php
http://portal.motribe.mobi/signup
http://m.homes.com/index.cfm?action=myHomesLogin#signin
http://jquerymobile.com/

Fig. 1. Comparison of HTML lines of code on Mobile and Desktop versions.

the various mobile web browsers and provide same or at least a similar user in-
terface [21]. Unfortunately, we have found only one (out of 79) client-side input
validation JavaScript library19. We were able to break that validation library us-
ing the following cross-domain XSS vector: "><iframe src=//0x.lv>20. The
input field has constraint on length and that’s why, in this case, we have used
this vector. The remaining 78 sites have no sort of server side filtering also.

3 Overview of XSS Filtering Approach

The goal of an XSS filter is to filter potentially malicious input from the user-
supplied string. To achieve maximum protection, we use a blocking approach: as
soon as the XSS filter detects malicous input, we immediately block the sending
(client side) or processing (server side) of the corresponding GET or POST request.
The idea of completely blocking the GET or POST request is e.g., implemented
by the IE XSS filter’s block mode [2]. The Internet Explorer XSS filter supports
X-XSS-Protection: 1; mode=block which means that when the IE XSS filter
detects the malicious outbound HTTP requests and mode value has been set to
block, then IE stops rendering the page and only renders # sign. Blocking is a
safe way to achieve maximum security and at the same time it helps in avoiding
introduction of filter based vulnerabilities in web applications [24], but it may
break some of the more complex web applications. Since mobile versions are
much simpler than their desktop equivalents, blocking seems to be an adequate
method to solve the XSS problem.

19 http://m.nlb.gov.sg/theme/default/js/validate.js
20 The url 0x.lv has been developed by Eduardo Vela of Google.

7

http://m.nlb.gov.sg/theme/default/js/validate.js
0x.lv

3.1 Regular Expressions

A regular expression is a pattern for describing a match in user-supplied input
string. Table 4 (see Appendix), briefly describes the syntax related to the regular
expressions that are used in our filter. For interested readers, in favor of space
restriction, we refer to [7,8,9,10] for detailed descriptions on regular expressions.

3.2 Black-list Approach

Our filter is based on a black-list approach: the filter immediately rejects mali-
cious input patterns if they match with the blacklist of regular expressions. XSS
vectors typically belong to specific categories and the number of categories are
finite; in our filter we cover every known category of XSS vectors. Our focus
during the development of this filter was thus on categories of XSS vectors, and
not on individual XSS vectors. Our starting point was the work of Wasserman
et. al [1], which contains the idea of XSS categories. We will discuss shortcom-
ings of Wasserman et al.’s regular expressions’ categories (see Section 3.5). We
have carefully analyzed publicly available XSS vector lists to group them into
different categories. The figure available at http://i.imgur.com/C0sihbg.jpg
shows that the large number of XSS vectors belong to three main categories (i.e.,
Category 1,2 and 3 – see Section 3.5). There are some other categories of XSS
vectors and we will discuss in Section 4.4.

3.3 Community-Input

In order to cover all possible edge cases and for hardening the filter, we have an-
nounced an XSS challenge based on our filter rules. The challenge was announced
on Twitter and security researchers as well as professional penetration-testers
from around the world have actively participated in the challenge. We have re-
ceived around 10K XSS vectors from participants and found only three types of
bypasses (i.e., <form> tag based XSS vector, <isindex> tag based XSS vector
and IE9 specific bypass). In IE9 “vertical tab i.e., U+000B ” can be used as an
alternative of white-space character in between tag name and attribute and IE9
renders the XSS vector. We have added support of bypasses in the filter. The
challenge was also intended to get state-of-the-art XSS vectors. After extensive
testing against publicly available XSS vectors, state-of-the-art XSS vectors21 and
internal testing by OWASP Modsecurity team, we can however say that our fil-
ter in its current form is hard to bypass and can be used as an additional layer
of security (see Section 4.5).

3.4 Threat Model

This section describes the capabilities of an attacker that we assume for the rest
of this paper. In XSS, an attacker exploits the trust a user has for a particular

21 We have collected a list of some of the state-of-the-art XSS vectors here http:

//pastebin.com/BdGXfm0D.

8

http://i.imgur.com/C0sihbg.jpg
http://pastebin.com/BdGXfm0D
http://pastebin.com/BdGXfm0D

web application by injecting arbitrary JavaScript on the client-side. A mobile web
application attacker model is similar to the standard web attacker threat model,
proposed by Adam Barth et al. in [30]. In mobile web application attacker threat
model, attacker has a mobile server under his control, and has the ability to
trick the user into visiting his mobile web application. We do not consider a case
where input could originate, for example, as URL encoded parameter via link
from another web site.

3.5 Limitations of Regular Expressions Used in Wassermann et al.’s
stop xss function

In this section we briefly discuss the limitations of Wassermann et al.’s regular
expressions and the respective bypasses found. We have mentioned earlier that
Wassermann et al. used three categories of regular expressions.

Category 1: The regular expression in this category handles XSS vectors mak-
ing use of the script tag. The regular expression is:

<script[^>]*>.*?</script>

The regular expression above can correctly capture XSS vectors like the fol-
lowing:

• <script src="http://www.attacker.com/foo.js"></script>22

• <script>alert(1)</script>

Now we discuss limitations of this regular expression along with XSS vectors
that are able to bypass the regular expression:

• The regular expression does not consider “space” before the closing angular
bracket in the closing script tag like: <script>alert(1)</script > and
this is a valid XSS vector that shows an alert box23. Valid means an XSS
vector that causes alert window to show up.

• The regular expression does not consider “space” along with junk values
before the closing angular bracket in the closing script tag like:
<script>alert(1)</script anarbitarystring>24.

• The regular expression does not consider the absence of a closing angular
bracket in the closing script tag like:
<script>alert(1)</script
Modern browsers render this vector and display an alert window25.

• The regular expression does not consider “new line” in the script tag like:

<script>

alert(1)

</script>

22 http://jsfiddle.net/Nz5ad/
23 http://jsfiddle.net/dDBdP/
24 http://jsfiddle.net/dDBdP/1/
25 http://jsfiddle.net/dDBdP/2/

9

http://jsfiddle.net/Nz5ad/
http://jsfiddle.net/dDBdP/
http://jsfiddle.net/dDBdP/1/
http://jsfiddle.net/dDBdP/2/

Modern browsers also render26 the above XSS vector. An attacker can use
this type of vector if sites allow input in a <textarea> tag. The <textarea>

tag is a multi-line input control and sites widely used it to ask for user-
comments.

• The regular expression does not consider any obfuscation (base6427, URL en-
coding28, Hex entities29 and Decimal entities30) of XSS vectors as described
in http://pastebin.com/a4WSVDzf in favor of space restrictions. In order to
convert XSS vectors into obfuscated form, attacker can use publicly available
utilities like http://ha.ckers.org/xsscalc.html.

• The regular expression also does not consider the complete absence of a
closing script tag like: <script>alert(1) e.g., following is a valid vector
in the Opera browser31:

<svg><script>alert(1)

Category 2: The regular expression in this category matches XSS vectors mak-
ing use of event handlers like onload, onerror etc. The regular expression is:

/([\s"’]+on\w+)\s*=/i

The regular expression above can correctly captures XSS vectors like:

• <body onload="alert(1)">
•
• <img src="http://www.google.com/logos/classicplus.png" alt="Img

Not Found" onerror=alert(1)>
•

Now we discuss limitations of this regular expression along with XSS vectors
that are able to bypass this regular expression:

• The regular expression does not consider forward slash (/) before an even-
thandler e.g., <svg/onload=prompt(1)>. All modern browsers render this
XSS vector32.

• The regular expression does not consider a back-tick symobol ‘ before even-
thandler e.g., . This is a valid XSS
vector which is rendered by the Internet Explorer (IE)33.

• The regular expression does not match an equal sign “=” if present be-
fore the eventhandler e.g., IE specific XSS vector34: <script FOR=window

Event=onunload>alert(2)</script>

26 http://jsfiddle.net/dDBdP/3/
27 http://jsfiddle.net/7aUu8/
28 http://jsfiddle.net/GPPB6/
29 http://jsfiddle.net/h2XWN/1/
30 http://jsfiddle.net/xsrDj/
31 http://jsfiddle.net/F58Zd/
32 http://jsfiddle.net/JMEFE/
33 http://jsfiddle.net/5X6E6/
34 http://jsfiddle.net/KmQUF/

10

http://pastebin.com/a4WSVDzf
http://ha.ckers.org/xsscalc.html
http://jsfiddle.net/dDBdP/3/
http://jsfiddle.net/7aUu8/
http://jsfiddle.net/GPPB6/
http://jsfiddle.net/h2XWN/1/
http://jsfiddle.net/xsrDj/
http://jsfiddle.net/F58Zd/
http://jsfiddle.net/JMEFE/
http://jsfiddle.net/5X6E6/
http://jsfiddle.net/KmQUF/

• The regular expression also fails to capture malicious input if semi-colon sign
“;” is present before the eventhandler name e.g.,35

<iframe src=javascript://.source>

• Finally, the regular expression also does not consider any obfuscations like:

(a) <iframe src="data:text/html,<body %6fnload=alert(1)>"></iframe>

(b) <iframe src="data:text/html;base64,PGJvZHkgb25sb2FkPWFsZXJ0KDEpPg==">

</iframe>

(c) <object data=data:text/html;base64,PHN2Zy9vbmxvYWQ9YWxlcnQoMik+ >

</object>

In (a), the attacker used the URL encoding of letter the “o”, i.e., %6f. In
(b), the base64 obfuscated value (PGJvZHkgb25sb2FkPWFsZXJ0KDEpPg==)
is equivalent to <body onload=alert(1)> and in (c), base64 obfuscated
value (PHN2Zy9vbmxvYWQ9YWxlcnQoMik+) is equal to <svg/onload=alert(2)>

Category 3: The regular expression in this category matches XSS vectors mak-
ing use of JavaScript URIs. The regular expression is:

/(=|(U\s*R\s*L\s*\())\s*("|\’)?[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

The regular expression above can correctly capture XSS vectors like:

• Click Me

• <p style="background:url(javascript:alert(1))">
• <iframe src="jaVAscRipT:alert(1)">
• <form><button formaction="javascript:alert(1)">X</button>

But the main limitation of regular expression is that it can not handle obfusca-
tions like:

(a)

(b) <iframe src=JaVascrIPt:alert(1)>

(c) <iframe src=javascript:prompt(1)>

In (a), an attacker used hex encoding of the letter “p” in order to bypass the
filter. Similarly, in (b), an attacker used hex encoding of colon (:) and in (c),
the vector uses decimal encoding of letter “p”. Modern browsers render all these
XSS vectors, including modern mobile browsers.

4 XSS Filter

In this section, we present our XSS filter and also discuss set of regular expres-
sions that we have added along with the improved versions of Wassermann et
al.’s regular expressions categories.

35 http://jsfiddle.net/Cm7JT/

11

http://jsfiddle.net/Cm7JT/

4.1 Category 1 Improvements

In this section, we discuss our version of regular expressions that deals with XSS
vectors making use of script tag. It is also available at http://jsfiddle.net/
8JCF5/1/. Wassermann et al.’s regular expression is:

<script[^>]*>.*?</script>

Our improved form of above regular expression is:

1) /<script[^>]*>[\s\S]*?/i.test(string) ||

2) /%[\d\w]{2}/i.test(string) ||

3) /&#[^&]{2}/i.test(string) ||

4) /&#x[^&]{3}/i.test(string) ||

The first improvement that we have added in the regular expression is the use of
\s\S class instead of . operator. Dot operator does not handle new line. \s\S gives
better coverage by matching any whitespace and non-whitespace characters. We
have used the “or” operator of JavaScript in order to combine different categories
of regular expressions. The second regular expression covers URL encoding of the
XSS vector like <iframe src="data:text/html,%3Cscript%3Ealert(1)%3C/

script%3E"></iframe>. The regular expression matches the attacker’s XSS
vector and captures it if regular expression observe % sign and after % sign
there is a digit or word in exactly next two characters. This regular expression
also works if attacker completly obfuscates the vector in URL encoded form like:
<iframe src="data:text/html,%3C%73%63%72%69%70%74%3E%61%6C%65%72%7

4%28%31%29%3C%2F%73%63%72%69%70%74%3E"></iframe>.
The third regular expression covers decimal encoded XSS vectors like: <a

href="data:text/html;blabla,<script>

alert(1)</scri

pt>">X. The regular expression matches the XSS vector if it
observes &# signs together and after &# signs there is no & symbol in next two
characters.

The last and the forth regular expression above deals with hex encoded XSS
vectors like: <a href="data:text/html;blabla,<scr

ipt>al ert(1

)</script>">X.
The regular expression matches the XSS vector if it observes &#x signs together
and after &#x signs there is no & symbol in next three characters.

4.2 Category 2 Improvements

This section discusses our improvements of Wassermann et al.’s regular expres-
sion that deals with XSS vectors make use of event handlers like onerror, onload
etc. The regular expression is:

/([\s"’]+on\w+)\s*=/i

Our improved version is:

12

http://jsfiddle.net/8JCF5/1/
http://jsfiddle.net/8JCF5/1/

1) /[\s"\’‘;\/0-9\=\x0B\x09\x0C\x3B\x2C\x28]+on\w+

[\s\x0B\x09\x0C\x3B\x2C\x28]*=/i.test(string) ||

2) /%[\d\w]{2}/i.test(string) ||

3) /&#[^&]{2}/i.test(string) ||

4) /&#x[^&]{3}/i.test(string)

In the first regular expression we have added support of back-tick (‘) sym-
bol, semi-colon (;), forward slash (/), = symbol, digits (0-9), control charac-
ters (U+000B, U+0009, U+000C), U+003B, U+002C and U+0028. The sec-
ond, third and fourth regular expressions (already discussed in previous section)
deals with obfuscation of vectors like <iframe src="data:text/html,<svg
%6F%6Eload=alert(1)>"></iframe>, <iframe src="data:text/html,<svg
onload=alert(1)>"></iframe> and <iframe src="data:text/html,

<svg onload=alert(1)>"></iframe>.

4.3 Category 3 Improvements

In this section we discuss the improved form of regular expression that matches
XSS vectors making use of JavaScript URIs. The Wassermann et al.’s regular
expression is:

/(=|(U\s*R\s*L\s*\())\s*("|\’)?[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

Our improved form is:

1) /(?:=|U\s*R\s*L\s*\()\s*[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

// Removed: ("|\’)? -- The reason is it is an unnecessary capturing group

and [^>] will match optional quote anyway.

The regular expression looks for the following in sequence:

• = or the four characters URL(, in a case insensitive way because of ignore-case
flag i.e., /i, optionally with one or more whitespace characters following any
of the characters.
• Any number of characters other than >.
• The characters SCRIPT: in a case insensitive way, optionally with one or

more whitespace characters following any of the characters.

The regular expression therefore matches all the following if present in user-
supplied input:

• =script:
• ”VBScript:
• url(’javascript:
• u r l (s c r i p t :

In order to support obfuscation, we have used the regular expressions that we
have already discussed above.

13

4.4 Miscellaneous Additions

In this section, we briefly discuss some of the miscellaneous classes of regular
expressions that we have added in order to cover XSS vectors that do not belong
to the above categories. Along with regular expression, we give one example
of corresponding XSS vector (See Table 5 in Appendix). The complete set of
regular expressions can also be found in Appendix A.

4.5 Limitations

The XSS filter is not meant to replace input validation and output encoding
completely. XSS filter rather provide an additional layer of security to mitigate
the consequences of XSS vulnerabilities. Our filter does not support DOM36

and Stored37 XSS but due to simple nature and significantly less AJAX-style
interaction on mobile web applications, the chances of DOM based XSS is very
low.

5 Implementation and Testing

This section reports on our implementation and testing of our XSS filter.

5.1 Implementation

We implemented our XSS filter in the form of JavaScript function. On the client
side, sites may call our filter function (consists of few lines of JavaScript code) on
an HTML form (<form> tag) onsubmit event handler, e.g. “onsubmit=xssfilter()”.
The use of HTML <form> tag is very common on mobile-side as we have dis-
cussed earlier (see Section 2.1). The complete code of the filter is available in
Appendix A.

5.2 Testing

First we manually tested the performance of our final version of the filter against
large number of XSS vectors available in the form of five resources ranging from
old to the new ones. To the best of our knowledge, no XSS vector is able to bypass
the filter, at the time of writing of this paper. Our regular expression based XSS
filter has correctly matched all XSS vectors, if present in the user-supplied input.
The five resources we used to test our filter are:

1. XSS Filter Evasion Cheatsheet available at https://www.owasp.org/index.
php/XSS_Filter_Evasion_Cheat_Sheet

2. HTML5 Security Cheatsheet available at http://html5sec.org/
3. 523 XSS vectors available at http://xss2.technomancie.net/vectors/

36 https://www.owasp.org/index.php/DOM_Based_XSS
37 http://en.wikipedia.org/wiki/Cross-site_scripting

14

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://html5sec.org/
http://xss2.technomancie.net/vectors/
https://www.owasp.org/index.php/DOM_Based_XSS
http://en.wikipedia.org/wiki/Cross-site_scripting

4. Technical attack sheet for cross site penetration tests at http://www.vulnerability-
lab.com/resources/documents/531.txt.

5. @XSSVector Twitter Account https://twitter.com/XSSVector. It has 130
plus latest XSS vectors.

Second, the creator38 of one of the above resources has developed an automated
testing framework39 for us in order to test the filter against sheer volume of XSS
vectors. Even with the help of an automated testing framework we were unable
to find XSS vector that is able to bypass XSS filter.

6 Evaluation

This section briefly presents the results of the evaluation of our XSS filter. We
have added support of the XSS filter in two open-source mobile applications i.e.,
Wordpress and Drupal. Developers of the sites who wish to include our filter
(which is available in the form of JavaScript function) in their web applications
has to do minimum amount of effort. Table 1 shows the amount of changes we
have to do in order to add support in Wordpress and Drupal respectively. Figure
available at http://i.imgur.com/OynTbDT.jpg shows our XSS filter correctly
matching the user-supplied malicious input in the Wordpress comments section.
Wordpress and Drupal frameworks already have bulit-in server-side validation
mechanisms and the reason to choose these frameworks is, that we want to make
a point that sites can use our filter in addition to the input checking they are
already using and this will help in mitigating XSS consequences and will add
additional security layer.

Subject Files Lines Per File Total Lines

Wordpress 3 1 3

Drupal 1 2 2
Table 1. Statistics on Subjects’ files

6.1 Evaluation in Terms of Time and Memory

We also wanted to see how our XSS filter performs in terms of time and mem-
ory usage because on the mobile-side web applications present a simplified and
optimized version of their desktop variant. Table 2 reports on XSS filter on the
two subjects (Wordpress and Drupal) in terms of memory and time. We show
the average time (in milliseconds) by repeating the process of loading Wordpress
and Drupal page, with and without our XSS filter support, 50 times. Direct

38 Galadrim https://twitter.com/g4l4drim
39 http://xss2.technomancie.net/suite/47/run and http://xss2.technomancie.

net/suite/48/run

15

https://twitter.com/XSSVector
http://i.imgur.com/OynTbDT.jpg
https://twitter.com/g4l4drim
http://xss2.technomancie.net/suite/47/run
http://xss2.technomancie.net/suite/48/run
http://xss2.technomancie.net/suite/48/run

debugging on mobile devices is not possible due to the lack of support for devel-
oper tools. As a consequence, we have used the “Remote Debugging40” feature
provided by Google for Android.

Subject Memory in KB Avg. Time with Filter Avg. Time without Filter

Wordpress 1.53 331ms 243ms

Drupal 1.17 375ms 251ms
Table 2. Statistics in Terms of Memory and Time

6.2 Execution Time of XSS Filter JavaScript Function

In order to check Regular Expression Denial of Service (REDoS) [15], we have
also measured the execution time of XSS filter JavaScript function. As we have
discussed before, our filter is based on regular expressions. We prove that our
regular expressions’ approach is not vulnerable to REDoS attack and is com-
putationally cheap. We have validated our regular expressions in the REDoS
benchmark suite available at [14].

REDoS attack exploits the backtracking (when regular expression applies
repetition to a complex subexpression and for the repeated subexpression, there
exists a match which is also a suffix of another valid match. [15]) matching
feature of regular expressions and in our set of regular expressions backtracking
is not used in matching. REDoS benchmark uses the following code to measure
the JavaScript time[11,12]:

var start = (new Date).getTime(); // Returns Time in millisecond

// XSS Filter Code i.e., Regular Expressions here

var timeelapsed = (new Date).getTime() - start;

We have measured the time by passing 100 different XSS vectors that belongs
to different categories of regular expressions to the function and the average
processing time we have observed is 1 millisecond.

6.3 Adoption

Our XSS detection rules have been adopted by most popular web application
firewall engine i.e., Modsecurity. The XSS filter is now part of OWASP ModSecu-
rity Core Rule Set (CRS)41. OWASP ModSecurity Core Rule Set (CRS) provides
generic protection against vulnerabilities found in web applications [34].

40 https://developers.google.com/chrome/mobile/docs/debugging
41 https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/master/base_

rules

16

https://developers.google.com/chrome/mobile/docs/debugging
https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/master/base_rules
https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/master/base_rules

7 Comparison to Other Approaches

In this section we compare our filter with the closely related proposals on the
mobile-side.

NoScript Anywhere (NSA): NoScript (http://noscript.net/), is the pop-
ular security add-on for Mozilla Firefox. Its mobile form is called NoScript Any-
where (NSA) and is also based on regular expressions. Recently, Mozilla has
abandoned support of XML User Interface Language (XUL) architecture for
Firefox mobile in order to gain performance benefits and security issues [18].
This architectural change has made NSA useless overnight because of compati-
bility issues [19]. At the time of writing of this paper, NSA is no more compatible
with Firefox mobile [13]. NSA’s highly experimental form for testing purpose is
available but for Firefox Nightly versions. Before this incompatibility issue, we
have observed that NSA lacks update cycle compared to NoScript for desktop
systems. NSA has another limitation in a sense that it is only available for Fire-
fox users. Our XSS filter is available in the form of JavaScript function and is
compatible with every modern browser. NSA has also usability issues because of
blocking the scripts and this is not the case with our filter. Our filter captures
malicious string at the time of user-supplied input.

Internet Explorer XSS Filter: Windows phone 7.5 has browser integrated
support of XSS filter. The problem with the IE XSS filter is that it does not stop
injections like: ClickMe</>. With
this type of injection, attacker can present victim with spoofed log-in page with
a goal to steal credentials. Our filter correctly captures the above injection vec-
tors. IE integrated XSS filter can also be bypassed if attacker is able to control
two input parameters. IE’s integrated XSS filter is only available to IE users
while our filter is browser independent.

8 Conclusion

In this paper, we presented XSS filter for the mobile versions of web applications.
We gave a survey of 100 popular mobile-version of web applications and found
XSS in 81 of them. We have tested our filter against five publicly available XSS
vector lists and found not even a single vector that is able to bypass the filter.
We have also evaluated our filter by adding support in Wordpress and Drupal
for mobiles. We hope that this paper will raise awareness about the XSS issue
on mobile-side.

9 Acknowledgements

The authors would like to thank @0x6D6172696F, @insertScript, @ryancbar-
nett, @garethheyes, @ma1, @avlidienbrunn, @mathias, @secalert, @g4l4drim
and many more from Twitter “infosec community” for their help and anonymous

17

http://noscript.net/

reviewers for their comments. This work has been supported by the Ministry of
Economic Affairs and Energy of the State of North Rhine-Westphalia (Grant
315-43-02/2-005-WFBO-009).

References

1. Gary Wassermann and Zhendong Su. Static Detection of Cross-Site Scripting Vul-
nerabilities. In ICSE 2008.: http://dl.acm.org/citation.cfm?id=1368112

2. Controlling the XSS Filter.: http://blogs.msdn.com/b/ieinternals/archive/
2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-\
protection-http-header.aspx

3. S. Cook. A web developer’s guide to cross-site scripting, January 2003. http://www.
giac.org/practical/GSEC/Steve_Cook_GSEC.

4. WhiteHat Security’s Website Security Statistics Report (May 2013).: https://www.
whitehatsec.com/assets/WPstatsReport_052013.pdf

5. Do Mobile And Desktop Interfaces Belong To-
gether?.: http://mobile.smashingmagazine.com/2012/07/19/
do-mobile-desktop-interfaces-belong-together/more-130354

6. Mobile Site vs. Full Site.: http://www.nngroup.com/articles/
mobile-site-vs-full-site/

7. Regular Expression Language — Quick Reference.: http://msdn.microsoft.com/
en-us/library/az24scfc.aspx

8. Regular Expression Tutorial.: http://www.regular-expressions.info/
tutorialcnt.html

9. Regular Expressions Cheat Sheet.: http://www.cheatography.com/davechild/
cheat-sheets/regular-expressions/

10. Regular Expressions.: https://developer.mozilla.org/en-US/docs/
JavaScript/Guide/Regular_Expressions

11. Measuring Time with Javascript: http://webdesign.onyou.ch/2010/11/30/
measure-time-with-javascript/

12. Accuracy of JavaScript Time: http://ejohn.org/blog/
accuracy-of-javascript-time/

13. NoScript Anywhere: http://noscript.net/nsa/
14. redos.js - JavaScript test program for regular expression DoS attacks.: http://

www.computerbytesman.com/redos/retime_js.source.txt
15. Regular Expression Denial of Service.: http://en.wikipedia.org/wiki/ReDoS
16. Kapil Singh. Can Mobile learn from the Web?. In W2SP 2012.: http://www.

w2spconf.com/2012/papers/w2sp12-final13.pdf
17. OWASP Top 10 Mobile Risks. https://www.owasp.org/index.php/Projects/

OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
18. XUL (XML User Interface Language).: https://developer.mozilla.org/en-US/

docs/XUL
19. Mozilla Developer Platforms Mobile.: https://groups.google.com/group/

mozilla.dev.platforms.mobile/browse_thread/thread/ff8d89bfa28383bb?
pli=1

20. Knowyourelements.: http://www.knowyourelements.com/#tab=list-view&date=
2013-01-24

21. A Complete Guide of jQuery Mobile for Beginners.: http://www.webappers.com/
2013/03/15/a-complete-guide-of-jquery-mobile-for-beginners/

22. Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E., Kara-
giannis, T.: xJS: practical XSS prevention for web application development. In: Pro-
ceedings of the 2010 USENIX conference on Web application development (2010)

23. Bisht, P., Venkatakrishnan, V.: XSS-GUARD: precise dynamic prevention of cross-
site scripting attacks. Detection of Intrusions and Malware, and Vulnerability As-
sessment pp. 23–43 (2008)

18

http://dl.acm.org/citation.cfm?id=1368112
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-\protection-http-header.aspx
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-\protection-http-header.aspx
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-\protection-http-header.aspx
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC
https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf
https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf
http://mobile.smashingmagazine.com/2012/07/19/do-mobile-desktop-interfaces-belong-together/more-130354
http://mobile.smashingmagazine.com/2012/07/19/do-mobile-desktop-interfaces-belong-together/more-130354
http://www.nngroup.com/articles/mobile-site-vs-full-site/
http://www.nngroup.com/articles/mobile-site-vs-full-site/
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://www.regular-expressions.info/tutorialcnt.html
http://www.regular-expressions.info/tutorialcnt.html
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Regular_Expressions
http://webdesign.onyou.ch/2010/11/30/measure-time-with-javascript/
http://webdesign.onyou.ch/2010/11/30/measure-time-with-javascript/
http://ejohn.org/blog/accuracy-of-javascript-time/
http://ejohn.org/blog/accuracy-of-javascript-time/
http://noscript.net/nsa/
http://www.computerbytesman.com/redos/retime_js.source.txt
http://www.computerbytesman.com/redos/retime_js.source.txt
http://en.wikipedia.org/wiki/ReDoS
http://www.w2spconf.com/2012/papers/w2sp12-final13.pdf
http://www.w2spconf.com/2012/papers/w2sp12-final13.pdf
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://developer.mozilla.org/en-US/docs/XUL
https://developer.mozilla.org/en-US/docs/XUL
https://groups.google.com/group/mozilla.dev.platforms.mobile/browse_thread/thread/ff8d89bfa28383bb?pli=1
https://groups.google.com/group/mozilla.dev.platforms.mobile/browse_thread/thread/ff8d89bfa28383bb?pli=1
https://groups.google.com/group/mozilla.dev.platforms.mobile/browse_thread/thread/ff8d89bfa28383bb?pli=1
http://www.knowyourelements.com/#tab=list-view&date=2013-01-24
http://www.knowyourelements.com/#tab=list-view&date=2013-01-24
http://www.webappers.com/2013/03/15/a-complete-guide-of-jquery-mobile-for-beginners/
http://www.webappers.com/2013/03/15/a-complete-guide-of-jquery-mobile-for-beginners/

24. D. Bates, A. Barth and C. Jackson.: Regular Expressions Considered Harm-
ful in Client-Side XSS Filters. In WWW 2010 http://www.collinjackson.com/
research/xssauditor.pdf

25. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: Proceedings of the 2006 ACM symposium
on Applied computing. pp. 330–337. ACM (2006)

26. O Ismail, M Etoh, Y Kadobayashi, S Yamaguchi.: A proposal and implementation
of automatic detection/collection system for cross-site scripting vulnerability. In
AINA 2004

27. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for
cross-site scripting defense. In: NDSS (2009)

28. Robertson, W., Vigna, G.: Static enforcement of web application integrity through
strong typing. In: Proceedings of the 18th conference on USENIX security sympo-
sium. pp. 283–298. SSYM’09, USENIX Association, Berkeley, CA, USA (2009)

29. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: Proceeding
of the Network and Distributed System Security Symposium (NDSS).

30. A. Barth, C. Jackson, and J. C. Mitchell, Securing browser frame communication.:
In 17th USENIX Security, 2008.

31. Sid Stamm, Brandon Sterne and Gervase Markham.: Reining in the Web with
Content Security Policy. In WWW 2010

32. T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji. SOMA: Mutual Approval
for Included Content in Web Pages. In CCS 2008.

33. Trevor Jim, Nikhil Swamy and Michael Hicks.: Defeating Script Injection Attacks
with Browser Enforced Embedded Policies. In WWW 2007.

34. OWASP ModSecurity Core Rule Set Project.: https://www.owasp.org/index.
php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

35. Apache Module mod proxy.: http://httpd.apache.org/docs/2.2/mod/mod_
proxy.html

A Appendix

function test(string) {
var match = /<script[^>]*>[\s\S]*?/i.test(string) ||
/%[\d\w]{2}/i.test(string) || /&#[^&]{2}/i.test(string) || /&#x[^&]{3}/i.test(string) ||
/[\s"\’‘;\/0-9\=\x0B\x09\x0C\x3B\x2C\x28]+on\w+[\s\x0B\x09\x0C\x3B\x2C\x28]*=/i.test(string)||
/(?:=|U\s*R\s*L\s*\()\s*[^>]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i.test(string) ||
/:/i.test(string) || /[\s\S]src[\s\S]/i.test(string) ||
/[\s\S]data:text\/html[\s\S]/i.test(string) || /[\s\S]xlink:href[\s\S]/i.test(string) ||
/[\s\S]!ENTITY.*?SYSTEM[\s\S]/i.test(string) || /[\s\S]pattern(?=.*?=)[\s\S]/i.test(string)||
/[\s\S]base64[\s\S]/i.test(string) || /[\s\S]xmlns[\s\S]/i.test(string) ||
/[\s\S]xhtml[\s\S]/i.test(string) || /[\s\S]href[\s\S]/i.test(string) ||
/[\s\S]style[\s\S]/i.test(string) || /[\s\S]formaction[\s\S]/i.test(string) ||
/<style[^>]*>[\s\S]*?/i.test(string) || /[\s\S]@import[\s\S]/i.test(string) ||
/<applet[^>]*>[\s\S]*?/i.test(string) || /<meta[^>]*>[\s\S]*?/i.test(string) ||
/<object[^>]*>[\s\S]*?/i.test(string) || /<embed[^>]*>[\s\S]*?/i.test(string) ||
/<form[^>]*>[\s\S]*?/i.test(string) || /<isindex[^>]*>[\s\S]*?/i.test(string);
return match ? true : false;
}
function inputValidation() {
var string = document.getElementById("searchfield").value;
if (test(string)){ alert(’Filter has detected malicious input’); return false;
}
return true;
}

19

http://www.collinjackson.com/research/xssauditor.pdf
http://www.collinjackson.com/research/xssauditor.pdf
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

Site Name and URL Alexa Rank
Intel http://m.intel.com/content/intel-us/en.touch.html 1107

Nokia http://m.maps.nokia.com/#action=search¶ms=%7B%7D&bmk=1 568
StatCounter http://m.statcounter.com/feedback/?back=/ 188
The New York Times http://mobile.nytimes.com/search 112

MTV http://m.mtv.com/asearch/index.rbml?search= 1168
HowStuffWorks http://m.howstuffworks.com/s/4759/Feedback 2882

SlashDot http://m.slashdot.org/ 2267
Pinterest http://m.pinterest.com/ 38

Dictionary http://m.dictionary.com/ 182
MapQuest http://m.mapquest.com/ 525

Table 3. Top Sites whose mobile-version are vulnerable to XSS

Regular Expression (RE) Syntax
RE Construct Description

\s Matches any white-space character.
\S Matches any non-white-space character.
| Matches any one element separated by the vertical bar character.
* Matches the previous element zero or more times.
? Matches the previous element zero or one time.
ˆ The match must start at the beginning of the string or line.
/i Makes the match case insensitive.
. Matches any character except newline.
\ Escape Character.

[ˆ...] Matches every character except the ones inside brackets.
Table 4. Regular Expression (RE) Syntax Description [7].

Regular Expression (RE) Classes and Examplary XSS Vector
RE Construct XSS Vector

/:/i <form><button
formaction=javascript:
alert(1)>CLICKME

/[\s\S]src[\s\S]/i <iframe
src="http://jsfiddle.net/t846h
/">

/[\s\S]xlink:href[\s\S]/i <math><a
xlink:href="//jsfiddle.net/
t846h/">click

/[\s\S]base64[\s\S]/i <object
data=data:text/html;base64,
PHN2Zy9vbmxvYWQ9YWxlcnQoMik+
></object>

/[\s\S]href[\s\S]/i <a href="http://jsfiddle.net/
t846h">Click Me

/[\s\S]@import[\s\S]/i <style>@import
’http://attacker.com/evilcssfi
le.css’;</style>

Table 5. Miscellaneous Regular Expression (RE) Classes Along with Respective XSS
Vectors.

20

http://m.intel.com/content/intel-us/en.touch.html
http://m.maps.nokia.com/#action=search¶ms=%7B%7D&bmk=1
http://m.statcounter.com/feedback/?back=/
http://mobile.nytimes.com/search
http://m.mtv.com/asearch/index.rbml?search=
http://m.howstuffworks.com/s/4759/Feedback
http://m.slashdot.org/
http://m.pinterest.com/
http://m.dictionary.com/
http://m.mapquest.com/

	Towards Elimination of Cross-Site Scripting on Mobile Versions of Web Applications

