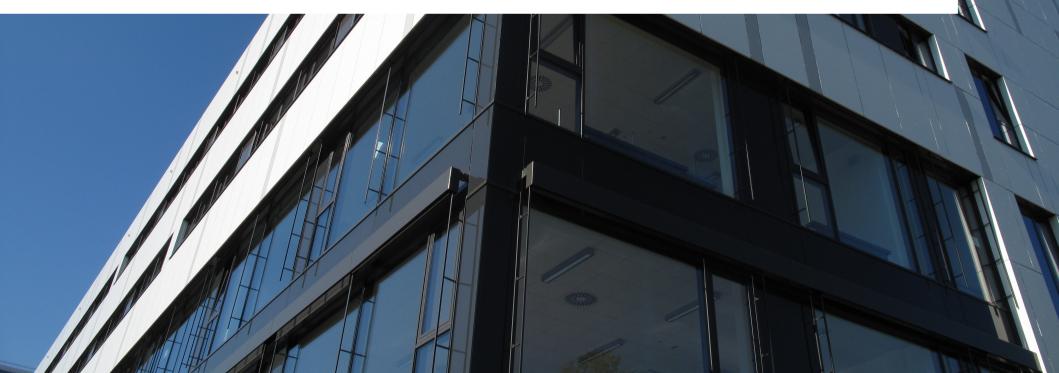
RUHR-UNIVERSITÄT BOCHUM



RUB

SAPSE 2011: Expressiveness Considerations of XML Signatures - a duck tale -

18.07.2011

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Department of Electrical Engineering and Information Sciences

XML Signature A brief introduction

XML Signature A brief introduction

Two base operations:

- Sign(input, key_{private})
- Verify(signature, input, key _____)

Security goals:

- Integrity
- Authenticity
- Non-repudiation

<security></security>	
<signature></signature>	
<signedinfo></signedinfo>	
<canonicalizationmethod algorithm=""></canonicalizationmethod>	>
<signaturemethod algorithm=""></signaturemethod>	
<reference uri="#myID"></reference>	
<transforms></transforms>	
<transform algorithm=""></transform>	
<digestmethod algorithm=""></digestmethod>	
<digestvalue>JVxbSj</digestvalue>	
<signaturevalue>d4Uf6</signaturevalue>	;>
<op:opblock id="myID" xmins:op=""></op:opblock>	
<op:greet></op:greet>	
<name>Scrooge McDuck</name>	

SOAP A brief introduction

SOAP A brief introduction

Purpose:

- Structured transfer of data
- Remote Procedure Calls

Usage scenarios:

- Web-Service communication
- <soap:Envelope xmlns:soap="..."> <soap:Header> <!-- optional SOAP Header information --> </soap:Header> <soap:Body> <!-- mandatory SOAP Body payload --> </soap:Body> </soap:Envelope>

May be combined with XML Signature

XML Signature secured SOAP communication Usage example: Access the money bin

Scrooge McDuck [http://duckman.pettho.com/characters/scrooge.jpg]

Money Bin [http://duckman.pettho.com/characters/moneybin.jpg]

XML Signature secured SOAP communication Usage example: Access the money bin

[http://duckman.pettho.com/characters/scrooge.jpg]

[http://duckman.pettho.com/characters/moneybin.jpg]

XML Signature secured SOAP communication Usage example: Access the money bin

Scrooge McDuck [http://duckman.pettho.com/characters/scrooge.jpg]

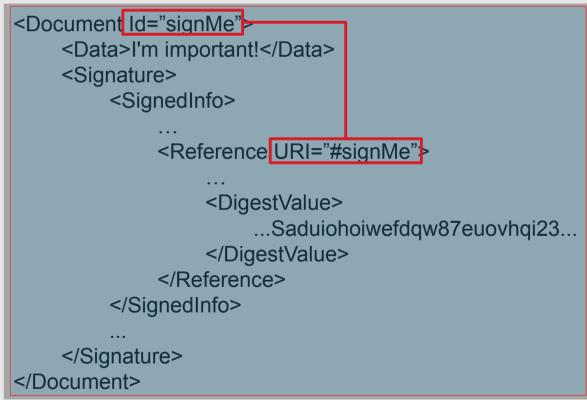
Money Bin [http://duckman.pettho.com/characters/moneybin.jpg]

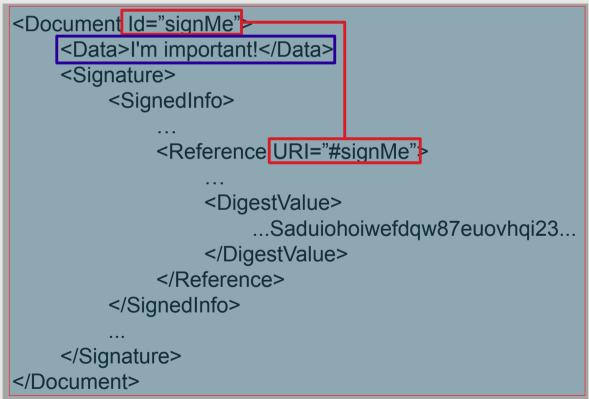
XML Signature secured SOAP communication Usage example: Access the money bin

Scrooge McDuck [http://duckman.pettho.com/characters/scrooge.jpg]

Security decision:

SOAP response


Access granted to Scrooge McDuck


Money Bin [http://duckman.pettho.com/characters/moneybin.jpg]

Where is the problem? Example: Enveloped Signature

Where is the problem? Example: Enveloped Signature

Where is the problem? Example: Enveloped Signature

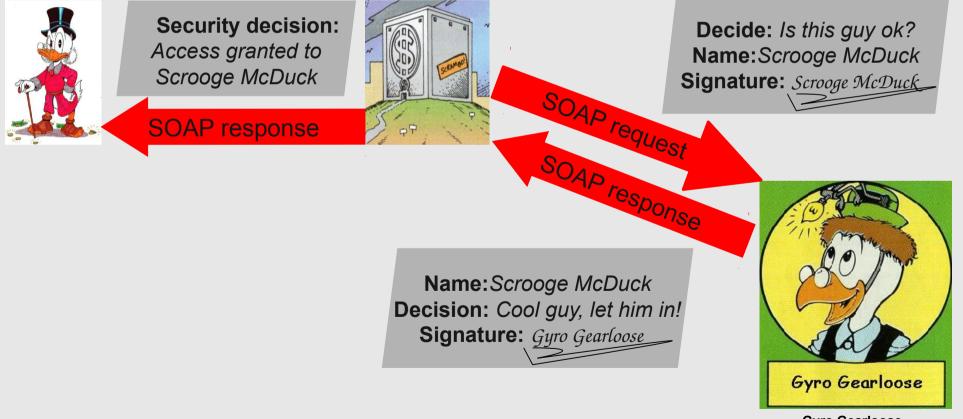
What if only single document parts should be used? Signature will be invalidated when removing particular parts!

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

XML Signature secured SOAP communication Usage example: Access the money bin

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

XML Signature secured SOAP communication Usage example: Access the money bin


Security decision: Access granted to Scrooge McDuck

SOAP response

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

XML Signature secured SOAP communication Usage example: Access the money bin

Gyro Gearloose [http://duckman.pettho.com/characters/gyro.jpg]

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

Signature invalidation when removing single parts Consequence

Signature invalidation when removing single parts Consequence

<soap:Envelope xmlns:soap="...">
<soap:Header>..... </soap:Header>
<soap:Body xmlns:op="http://my.operation">
<soap:Body >
</soap:Body>
</soap:Body>
</soap:Body>
</soap:Body>

Multiple referenced objects necessary

How to protect multiple references Combined signature vs. several signatures

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

How to protect multiple references

One Signature, N References - N Signatures, One Reference

<Signature>

<SignedInfo> <CanonicalizationMethod Algorithm="..."/> <SignatureMethod Algorithm="..."/>

<Reference URI="#authBlock">

</Reference>

<Reference URI="#actionBlock">

</Reference>

</SignedInfo> <SignatureValue>...</SignatureValue> </Signature> <Signature>

<SignedInfo>

<CanonicalizationMethod Algorithm="..."/> <SignatureMethod Algorithm="..."/> <Reference URI="#authBlock">

</Reference> </SignedInfo> <SignatureValue>...</SignatureValue> </Signature>

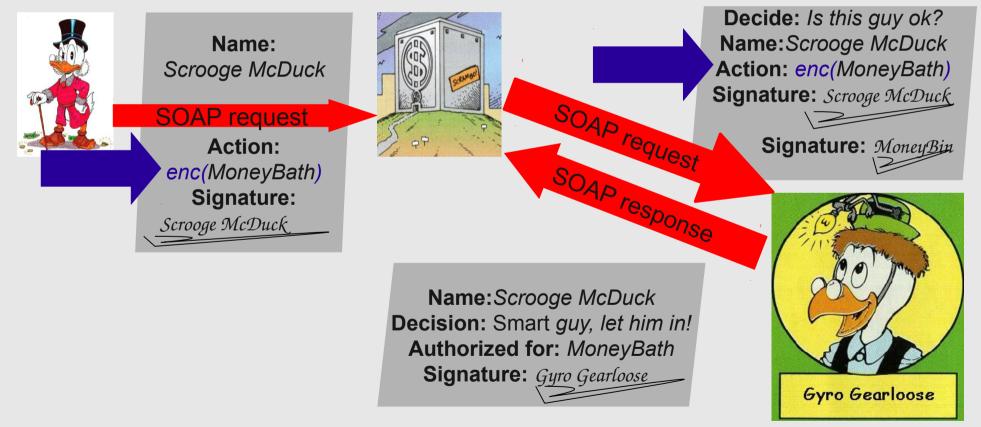
<Signature> <SignedInfo> <CanonicalizationMethod Algorithm="..."/> <SignatureMethod Algorithm="..."/> <Reference URI="#actionBlock">

</Reference> </SignedInfo> <SignatureValue>...</SignatureValue> </Signature>

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

How to protect multiple references One Signature, N References - N Signatures, One Reference

- + lower overhead
- + easier processing
- must be processed in complete


- + re-use of particular parts
- +/- decoupling of message parts
- more complex processing

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

What about confidentiality?

Signature concepts for additional encryption steps

What about confidentiality? Signature concepts for additional encryption steps

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

What about confidentiality?

Signature concepts for additional encryption steps

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

What about confidentiality? Signature concepts for additional encryption steps

Sign-then-Encrypt

- depending on encryption algorithm, ciphertext is deterministic
 - \rightarrow identical messages have the same hash value
 - \rightarrow correlation between output and e.g. operation possible
- the recipient can not be sure who applied the encryption

Confidentiality assumption weakened

What about confidentiality? Signature concepts for additional encryption steps

Encrypt-then-Sign

- encrypted content may be *unreachable* to the signature application
- signer may possibly not know what he is signing (if encryption took place earlier)
 - \rightarrow violation of *see-what-is-signed* paradigm
 - \rightarrow signer may only have seen the encrypted content

Non-repudiation assumption weakened

What about confidentiality? Signature concepts for additional encryption steps

Sign-then-Encrypt-then-Sign

- combines advantages from both approaches
 - \rightarrow first signature provides integrity, authenticity, and non-repudiation
 - → encryption provides confidentiality (over the payload AND its signature)
 - \rightarrow outer signature proves that message originator applied encryption
- not standardized yet
- more complex

Sign-then-Encrypt-then-Sign Enhanced processing steps

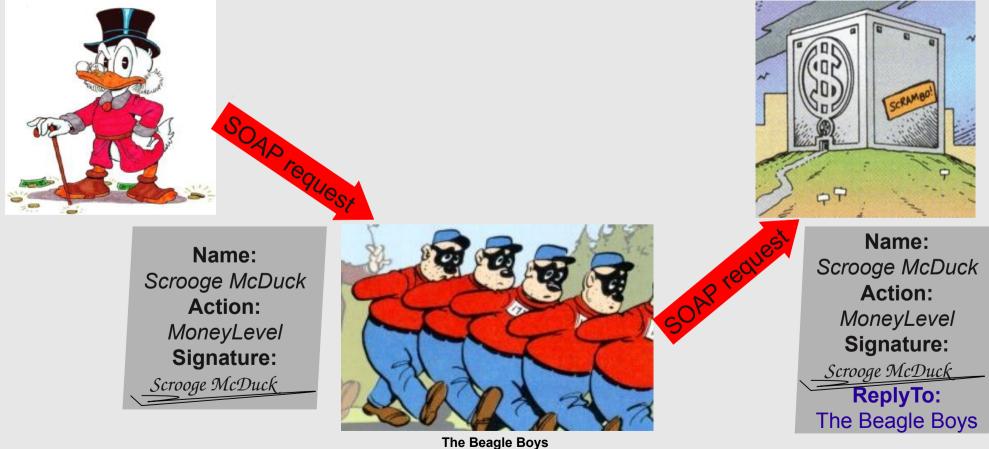
Sign-then-Encrypt-then-Sign Enhanced processing steps

Idea:

chain inner and outer signature

- 1) Compute a hash value over the data that should be protected and store it temporarily
- 2) Encrypt the already processed block
- 3) Hash again the relevant block (which is now encrypted)
- 4) Take both pre-computed hash values and sign them

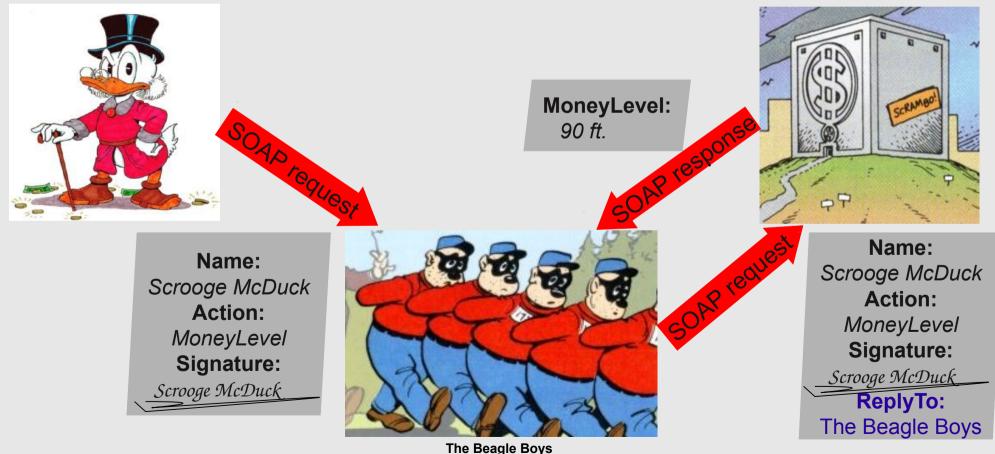
Other problems where XML Signatures are useful Usage example: *Prevent adding SOAP Headers*


SAPSE 2011: The 3rd IEEE International Workshop on Security Aspects of Process and Services Engineering | Munich | July 18th 2011

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

Other problems where XML Signatures are useful Usage example: Prevent adding SOAP Headers

Other problems where XML Signatures are useful Usage example: *Prevent adding SOAP Headers*



[http://duckman.pettho.com/characters/beagleb.jpg]

SAPSE 2011: The 3rd IEEE International Workshop on Security Aspects of Process and Services Engineering | Munich | July 18th 2011

Horst Görtz Institute for IT-Security | Chair for Network and Data Security Expressiveness Considerations of XML Signatures *Meiko Jensen, Christopher Meyer*

Other problems where XML Signatures are useful Usage example: Prevent adding SOAP Headers

[http://duckman.pettho.com/characters/beagleb.jpg]

SAPSE 2011: The 3rd IEEE International Workshop on Security Aspects of Process and Services Engineering | Munich | July 18th 2011

Other problems where XML Signatures are useful Usage example: *Prevent adding SOAP Headers*

<SupportedSpecs soap:mustUnderstand="true" xmlns="http://...specNegotiation/" xmlns:soap="http://...soap-envelope"> <SpecificationSuite URI="http://...specNeg.../XML+NS+SOAP+WSDLSuite" /> <Specification URI="http://.../XPath" Version="1.0" /> <Specification URI="http://.../WS-Addressing" Version="1.0" /> <Specification URI="http://.../WS-Security" Version="1.1" /> <Specification URI="http://.../SAML" Version="2.0" /> </SupportedSpecs>

RU

Conclusion

Results of the latest research

- XML Signature is complex to use
 - \rightarrow One Signature with N References vs. N Signatures with One Reference

Attacker may change message semantics

- \rightarrow Injection of non-signed processing advises (e.g. WS-Addressing header)
- \rightarrow Possible countermeasure:

Explicitly list capabilities of the client at time of message creation, and sign that information

Interplay between signatures and encryption is particularly challenging

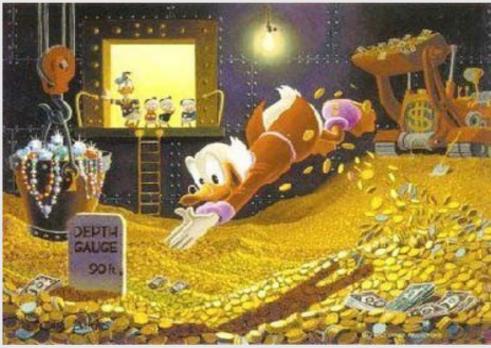
→ Best approach: Sign-then-Encrypt-then-Sign

Signature on plaintext (proof of integrity and knowledge)

AND

Signature on ciphertext (proof of encryption)

 \rightarrow Complex to use, complex to implement


Future Work Open tasks

- More in-depth analysis on interrelation of XML Signature with WS-* Specs
- Attacker Model development for Web Services scenarios
- Formalization of Expressiveness/Semantics of a given XML Signature

RU

Further research necessary Lack of long-term studies concerning skin compatibility

 Taking a money bath

 [http://2.bp.blogspot.com/-8J7Vuk21xrY/TfYY8ygBpYI/AAAAAAABSc/7rECOG-ag9o/s1600/scrooge-mcduck.jpg]

Questions and discussion are welcome!

Authors

Dipl.-Inform. Meiko Jensen Research Assistant

Research topics: Cloud Computing Security, SOA and Web Service Security, Business Process Security

http://www.nds.rub.de/chair/people/meiko-jensen/ Meiko.Jensen@rub.de

Dipl.-Ing. Christopher Meyer Research Assistant

Research topics: XML Security, Java Security

http://www.nds.rub.de/chair/people/cmeyer/ Christopher.Meyer@rub.de RU