Systematization of Knowledge Lessons Learned From SSL/TLS Attacks 20.08.2013

Horst Görtz Institute for IT-Security Chair for Network and Data Security

christopher.meyer@rub.de

BIG BANG

END OF THE UNIVERSE AS WE KNOW IT.

RUB

Source: http://www.digicert.com

 \sim

BIG BANG

A---

END OF THE UNIVERSE AS WE KNOW IT.

Gdigicert

Source: http://www.digicert.com

What Would it Take to Break a 2048 Bit SSL Certificate?

SSL vs. The Universe | Cracking an SSL Certificate

After over 13 billion years...

1:01 / 1:20

you are only $1/468,481^{\text{th}}$ of the way done.

BIG BANG

END OF THE UNIVERSE AS WE KNOW IT.

< 0

O You Mile

Gdigicerť

Source: http://www.digicert.com

RUB

What if we don't even need the private key?

SoK: Lessons Learned From SSL/TLS Attacks - Christopher Meyer, Jörg Schwenk | WISA2013 | 19.-21. August 2013

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Nearly 20 years of SSL/TLS

SoK: Lessons Learned From SSL/TLS Attacks - Christopher Meyer, Jörg Schwenk | WISA2013 | 19.-21. August 2013

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Nearly 20 years of SSL/TLS Some key data

Invented in 1994

Nearly 20 years of SSL/TLS Some key data

- Invented in 1994
- Evolutionary development

Nearly 20 years of SSL/TLS Some key data

- Invented in 1994
- Evolutionary development
- 5 official and 1 unpublished revision
 - SSL 2.0, SSL 3.0
 - TLS 1.0, TLS 1.1, TLS 1.2
 - SSL 1.0

RU

Nearly 20 years of SSL/TLS Some key data

- Invented in 1994
- Evolutionary development
- 5 official and 1 unpublished revision
 - SSL 2.0, SSL 3.0
 - TLS 1.0, TLS 1.1, TLS 1.2
 - SSL 1.0
- ~ 39 theoretical and practical attacks so far

RU

Timeline

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Contribution

Collected attacks on SSL/TLS

Contribution

Collected attacks on SSL/TLS

Analyzed all attacks

Contribution

- Collected attacks on SSL/TLS
- Analyzed all attacks
- Categorized each attack

RUB

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Collected attacks on SSL/TLS
- Analyzed all attacks
- Categorized each attack
- Identified the root cause of the vulnerabilities for each attack

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Collected attacks on SSL/TLS
- Analyzed all attacks
- Categorized each attack
- Identified the root cause of the vulnerabilities for each attack
- Concluded Lessons Learned for each attack

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Collected attacks on SSL/TLS
- Analyzed all attacks
- Categorized each attack
- Identified the root cause of the vulnerabilities for each attack
- Concluded Lessons Learned for each attack
- Created a Guideline for Protocol Designers and Implementers

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attack Patterns

Abnormalities during the analysis of attacks

SoK: Lessons Learned From SSL/TLS Attacks - Christopher Meyer, Jörg Schwenk | WISA2013 | 19.-21. August 2013

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attack Patterns

Abnormalities during the analysis of attacks

Attacks focus on specific parts/layers of SSL/TLS

Attack Patterns

- Attacks focus on specific parts/layers of SSL/TLS
- Attacks can be grouped into 4 categories

Attack Patterns

- Attacks focus on specific parts/layers of SSL/TLS
- Attacks can be grouped into 4 categories
 1. Attacks on the Handshake Protocol

Attack Patterns

- Attacks focus on specific parts/layers of SSL/TLS
- Attacks can be grouped into 4 categories
 1. Attacks on the Handshake Protocol
 - **2. Attacks on the Record Layer**

Attack Patterns

- Attacks focus on specific parts/layers of SSL/TLS
- Attacks can be grouped into 4 categories
 - 1. Attacks on the Handshake Protocol
 - 2. Attacks on the Record Layer
 - 3. Attacks on the PKI

Attack Patterns

- Attacks focus on specific parts/layers of SSL/TLS
- Attacks can be grouped into 4 categories
 - 1. Attacks on the Handshake Protocol
 - 2. Attacks on the Record Layer
 - 3. Attacks on the PKI
 - 4. Various other Attacks

Main goal: Influence Handshake Phase

- Main goal: Influence Handshake Phase
 - A
 - **R**
 - | • S

RUB

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Main goal: Influence Handshake Phase
 Alter messages or message parts
 - **R**
 - •
 - S • E

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Main goal: Influence Handshake Phase
 - Alter messages or message parts
 - Replay communication or parts of it
 - •
 - **S**
 - E

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Main goal: Influence Handshake Phase
 - Alter messages or message parts
 - Replay communication or parts of it
 - Interfere messages or message parts
 - **S**
 - E

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Main goal: Influence Handshake Phase
 - Alter messages or message parts
 - Replay communication or parts of it
 - Interfere messages or message parts
 - Systematically analyze communication
 E

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

- Main goal: Influence Handshake Phase
 - Alter messages or message parts
 - Replay communication or parts of it
 - Interfere messages or message parts
 - Systematically analyze communication
 - Establish own Cryptographic Primitives

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attacks on the Record Layer Details

Main goal: Violate Confidentiality or Integrity

RUHR-UNIVERSITÄT BOCHUM

RUB

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attacks on the Record Layer Details

Main goal: Violate Confidentiality or Integrity
 B

• A

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attacks on the Record Layer Details

Main goal: Violate Confidentiality or Integrity Break Encryption

- A
- T

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attacks on the Record Layer Details

- Main goal: Violate Confidentiality or Integrity
 - Break Encryption
 - Analyze Encrypted Traffic
 - **T**

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attacks on the Record Layer Details

- Main goal: Violate Confidentiality or Integrity
 - Break Encryption
 - Analyze Encrypted Traffic
 - Tamper with MAC

Attacks on the Record Layer Details

RUHR-UNIVERSITÄT BOCHUM

RUB

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Attacks on the PKI Details

Main goal: Influence, Compromise or Trick PKI

Attacks on the PKI Details

Main goal: Influence, Compromise or Trick PKI
 R

- •
- T • C
- H

Attacks on the PKI Details

Main goal: Influence, Compromise or Trick PKI Recover or Break Private Keys

- •
- T
- C
- H

- Main goal: Influence, Compromise or Trick PKI
 - Recover or Break Private Keys
 - Influence Certificate Revocation Systems
 - **T**
 - C
 - H

- Main goal: Influence, Compromise or Trick PKI
 - Recover or Break Private Keys
 - Influence Certificate Revocation Systems
 - Trick Certificate Validation
 - **C**
 - H

- Main goal: Influence, Compromise or Trick PKI
 - Recover or Break Private Keys
 - Influence Certificate Revocation Systems
 - Trick Certificate Validation
 - Compute Colliding Certificates
 - H

- Main goal: Influence, Compromise or Trick PKI
 - Recover or Break Private Keys
 - Influence Certificate Revocation Systems
 - Trick Certificate Validation
 - Compute Colliding Certificates
 - Hack or Trick Certification Authorities

RUHR-UNIVERSITÄT BOCHUM

RUB

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Various Other Attacks Details

Main goal: Predict, Disturb, Inject, Disable

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Various Other Attacks Details

Main goal: Predict, Disturb, Inject, Disable
 G

- A
- **S**
- P

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Various Other Attacks Details

Main goal: Predict, Disturb, Inject, Disable Guess Random Numbers

- A
- **S**
- P

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Various Other Attacks Details

Main goal: Predict, Disturb, Inject, Disable

- Guess Random Numbers
- Affect Reliability
- **S**
- P

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Various Other Attacks Details

- Main goal: Predict, Disturb, Inject, Disable
 - Guess Random Numbers
 - Affect Reliability
 - Smuggle Data into Running Connections
 P

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Various Other Attacks Details

- Main goal: Predict, Disturb, Inject, Disable
 - Guess Random Numbers
 - Affect Reliability
 - Smuggle Data into Running Connections
 - Prevent Traffic Encryption (disable SSL/TLS)

Various Other Attacks Details

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Finally... I tried to put the keywords in a meaningful context

SoK: Lessons Learned From SSL/TLS Attacks - Christopher Meyer, Jörg Schwenk | WISA2013 | 19.-21. August 2013

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Finally... ... I tried to put the keywords in a meaningful context

RUHR-UNIVERSITÄT BOCHUM

RUB

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Lessons Learned 1/2 ... what can we conclude?

SoK: Lessons Learned From SSL/TLS Attacks - Christopher Meyer, Jörg Schwenk | WISA2013 | 19.-21. August 2013

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Lessons Learned 1/2

... what can we conclude?

1. Theoretical attacks can turn into practice

- 1. Theoretical attacks can turn into practice
- 2. Side channels may appear at different layers in different situations

- 1. Theoretical attacks can turn into practice
- 2. Side channels may appear at different layers in different situations
- 3. Reliable cryptographic primitives are important

- 1. Theoretical attacks can turn into practice
- 2. Side channels may appear at different layers in different situations
- 3. Reliable cryptographic primitives are important
- 4. Processes must leak as little information as possible

- 1. Theoretical attacks can turn into practice
- 2. Side channels may appear at different layers in different situations
- 3. Reliable cryptographic primitives are important
- 4. Processes must leak as little information as possible
- 5. Specifications have to be implemented without own improvements

- 1. Theoretical attacks can turn into practice
- 2. Side channels may appear at different layers in different situations
- 3. Reliable cryptographic primitives are important
- 4. Processes must leak as little information as possible
- 5. Specifications have to be implemented without own improvements
- 6. Critical parts in specifications and source code have to be highlighted

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Lessons Learned 2/2 ... what can we conclude?

7. Specifications have to verbose, unambiguous and technically detailed

- 7. Specifications have to verbose, unambiguous and technically detailed
- 8. Details on requirements and preconditions are necessary

- 7. Specifications have to verbose, unambiguous and technically detailed
- 8. Details on requirements and preconditions are necessary
- 9. Data has to be protected

- 7. Specifications have to verbose, unambiguous and technically detailed
- 8. Details on requirements and preconditions are necessary
- 9. Data has to be protected
- 10. The interplay between different layers must be part of the security analysis

Lessons Learned 2/2

- ... what can we conclude?
- 7. Specifications have to verbose, unambiguous and technically detailed
- 8. Details on requirements and preconditions are necessary
- 9. Data has to be protected
- 10. The interplay between different layers must be part of the security analysis
- 11. Flexibility mostly means additional risks

Lessons Learned 2/2

- ... what can we conclude?
- 7. Specifications have to verbose, unambiguous and technically detailed
- 8. Details on requirements and preconditions are necessary
- 9. Data has to be protected
- 10. The interplay between different layers must be part of the security analysis
- 11. Flexibility mostly means additional risks
- 12. Always be careful and alarmed

Source: https://www.trustworthyinternet.org/ssl-pulse/

hg NDS Chris Meyer christopher.meyer@rub.de

http://armoredbarista.blogspot.com http://www.nds.rub.de/chair/people/cmeyer @armoredbarista