
On the Effectiveness of XML Schema Validation
for Countering XML Signature Wrapping Attacks

Meiko Jensen, Christopher Meyer, Juraj Somorovsky, and Jörg Schwenk
Chair for Network and Data Security
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{meiko.jensen, christopher.meyer, juraj.somorovsky, joerg.schwenk}@rub.de

Abstract—In the context of security of Web Services, the
XML Signature Wrapping attack technique has lately received
increasing attention. Following a broad range of real-world
exploits, general interest in applicable countermeasures rises.
However, few approaches for countering these attacks have been
investigated closely enough to make any claims about their
effectiveness.

In this paper, we analyze the effectiveness of the specific
countermeasure of XML Schema validation in terms of fending
Signature Wrapping attacks. We investigate the problems of
XML Schema validation for Web Services messages, and discuss
the approach of Schema Hardening, a technique for strengthen-
ing XML Schema declarations. We conclude that XML Schema
validation with a hardened XML Schema is capable of fending
XML Signature Wrapping attacks, but bears some pitfalls and
disadvantages as well.

Index Terms—Security, XML Signature, Signature Wrapping,
XML Schema, Schema Validation, Schema Hardening hardest
argument against

I. INTRODUCTION

One of the cornerstones of security in the cloud computing
age consists in the robustness of its underlying technologies.
A vulnerability in the virtualization or network stack used by
a cloud provider, for instance, puts all of the cloud customers’
data and processes at risk (cf. [1], [2]). Since many of
today’s cloud offers utilize XML-based technologies like Web
Services for accessing and controlling the cloud, these are
of particular importance for the security assessment of cloud
systems.

In this paper, we analyze one of the most critical types of
vulnerability found for XML-based technologies so far: the
XML Signature Wrapping attack [3], [4], [5]. Based on a
fundamental flaw in W3C’s XML Signature specification [6],
the number of vulnerable application stacks identified lately
was tremendous (see e.g. [7], [8], [2], [9]), and is still on the
rise.

When coping with this type of threat, the validation of
a Web Service request’s XML Schema is often cited as a
sufficient countermeasure for fending most of such XML-
based attacks (cf. [10], [11], [12]). However, as we show in this
paper, server-side XML Schema validation of incoming XML
message documents is not capable of fending the XML Sig-
nature Wrapping attack completely. We present our analysis
on the actual effectiveness of XML Schema validation, giving
examples of attack schemes that are fended this way. However,

we also show that even the most restrictive XML Schema
validation has its limitations, allowing Signature Wrapping
attacks to succeed even in presence of such validation at the
server side.

The paper is organized as follows. The next section provides
a brief review of the technologies necessary for understanding
the rest of the paper. Section III then provides our anaylsis
on the interrelation of Signature Wrapping vulnerability and
XML Schema validation in general. Section IV analyzes
the approach of Schema Hardening. Afterwards, Section V
underpins this analysis with real-world examples, and the
paper concludes with future work in Section VI.

II. FOUNDATIONS

In this section we will give an overview about the usage of
XML Signature, XML Schema, and the Web Services related
specifications.

A. XML Schema Validation

The W3C XML Schema set of specifications allows for
precise description of any XML document’s contents. By
defining the XML element tree’s structure, element names,
data types, attributes etc., an instance of an XML Schema
allows for validating conformance of any XML document
against that schema instance. If a particular XML document
successfully passes such a validation, it is called a valid XML
document w.r.t. the given XML Schema instance.

Though being a very powerful language for restricting the
actual apperance of an XML document (e.g. a Web Service
message), the active use of XML Schema validation is often
omitted in XML-processing applications due to performance
reasons. However, recent works have shown that missing XML
Schema validation in Web Service server systems enables
various XML-based attack vectors (cf. [12], [13]). Hence, the
market for XML firewalls capable of performing XML Schema
validation on-the-fly is emerging, leading its customers to
the false assumption that such a firewall also fends all other
types of XML-related attacks—such as the XML Signature
Wrapping attack.

B. WS-* Specifications

When considering active XML Schema validation in the
context of Web Service message verification, it is important

Fig. 1. Interrleation of common WS-* specifications for a single SOAP
message

to understand the set of WS-* specifications that define the
XML Schema of each single Web Service message. First and
most important, the SOAP specification defines an initial XML
Schema that any SOAP-based Web Service message has to be
valid against. It mostly describes a document’s <Envelope>,
consisting of an optional SOAP <Header> and a mandatory
SOAP <Body>. The SOAP body contains the actual Web
Service requests; its XML Schema is hence described in the
Web Service Description (WSDL), which contains definitions
of XML Schemata for each type of operation a Web Service
supports. In contrast to SOAP, the XML Schema to use for
validation of the SOAP Body is dependent on the particular
Web Service, and is not explicitly given in a standardized
W3C1 or OASIS2 specification document. This leads to some
challenges when trying to perform XML Schema validation
for the SOAP Body, see GRUSCHKA ET AL. [10].

The SOAP header contains non-functional data that is used
for processing a SOAP message at the recipient side. For
instance, in common settings it contains some WS-Addressing
headers [14] that provide message routing information, and
a WS-Security header [15] that provides security-related in-
formation. The latter typically provides a message timestamp
(as defined by the WS-Utilities Schema [16]), an XML
Signature [6] covering critical parts of the SOAP message,

1http://www.w3c.org
2http://www.oasis-open.org

soap:Envelope

soap:Header

ds:Signature

ds:SignedInfo

ds:Reference URI=”#body”

soap:Body

DeleteUser

wsu:Id=”body”

ds:DigestValue

ds:SignatureValue

Verified data

Processed data

John Doe

wsse:Security

Fig. 2. Example of XML Signature applied on the SOAP body

and optionally some WS-Addressing information. Note that
WS-Addressing headers can actually be used within both
SOAP header or WS-Security header. Figure 1 shows the
interrelation of these WS-* specifications and their particular
XML Schemata in the context of a single SOAP message.

C. XML Signature Wrapping

In order to ensure integrity and authenticity of exchanged
XML documents, the XML Security working group defined
the XML Signature specification [6]. XML Signature allows
to apply cryptographic primitives on the XML messages and
thereby secure arbitrary XML elements. A simplified structure
of an XML Signature applied to a SOAP message according
to the WS-Security standard gives Figure 2.

The depicted SOAP message includes a function invo-
cation deleting the user "John Doe", which is defined
in the body of the SOAP message. The authenticity and
integrity of the SOAP body is ensured by the XML Signa-
ture defined in the SOAP header. The XML Signature ele-
ment consists of two mandatory elements: <SignedInfo>
and <SignatureValue>. The <SignedInfo> element
includes an Id-reference3 pointing to the SOAP body and
a digest value computed over the referenced element. In
order to secure the <SignedInfo> element, a signa-
ture value over this element is computed and put to the
<SignatureValue> element. This is typically done by a
public-key algorithm such as RSA or DSA.

Processing of the given SOAP message would usually look
as follows: The recipient first searches for the referenced
element given in <SignedInfo>. He computes the digest
value over this element and compares it to the value given
in the <DigestValue> element. Afterwards, he verifies the
signature value over <SignedInfo>. At the end, he can
execute the function defined in the SOAP body.

As can be seen, processing of the SOAP message and
verifying the included XML Signature consists of two inde-
pendent steps. This observation was first made by McIntosh
and Austel [3], who misused the different processing parts
for a new attack: XML Signature Wrapping. We give an

3XML Signature specification also supports usage of other referencing
mechanisms. These mechanisms are however out of scope of our paper.

soap:Envelope

soap:Header

ds:Signature

ds:SignedInfo

ds:Reference URI=”#body”

soap:Body

SetAdminRights

wsu:Id=”attack”

ds:DigestValue

ds:SignatureValue

Verified data

Processed data

soap:Body

DeleteUser

wsu:Id=”body”

wsse:Security

John Doe

John Doe

Fig. 3. Signature Wrapping attack

example of the XML Signature Wrapping attack in Figure 3.
In this example an attacker who eavesdrops the message moves
the original SOAP body to the SOAP header. Afterwards he
creates a SOAP body with a new Id="attack" and defines
an arbitrary function: in this example, he enforces the business
logic to execute a function giving admin rights to "John
Doe". As the Id of the original SOAP body stays the same
and the concerning parts are not altered, the security logic
can verify its integrity and authenticity. The business logic
however takes the newly defined SOAP body as input.

III. SCHEMA VALIDATION AS A COUNTERMEASURE

As introduced XML Schema offers an opportunity to for-
mally describe the structure of concerning XML documents.
Limiting the attack surface through bounding element appear-
ance to clearly defined positions in the document may lead to
more secure and less vulnerable documents.
In order to come to the point schema validation can not be seen
as the ultimate defense against Signature Wrapping attacks, but
remains one brick towards Signature Wrapping resistant XML
data structures.

The following subsections will outline how schema vali-
dation may tighten signature security within XML Signature
containing documents, as well as its boundaries.

A. Fending the Classic Signature Wrapping Attacks

In 2009 Gruschka and Lo Iacono successfully attacked
Amazons EC24 (refer to [7]) by doubling the body of a SOAP
message. This attack could have been easily detected and
defeated by proper schema validation at the processors side.
The sample code snippet in Figure 4 is taken from the official
XML Schema file for SOAP messages5.

An important note is that one has to be aware of the fact that
prior schema definitions defined default settings. Important
for this example is the default value related to attribute
maxOccurs="1". So every time an element applicable for

4http://aws.amazon.com/ec2/
5http://www.w3.org/2003/05/soap-envelope/

01 <xs:complexType name="Envelope">
02 <xs:sequence>
03 <xs:element ref="tns:Header" minOccurs="0"/>
04 <xs:element ref="tns:Body" minOccurs="1"/>
05 </xs:sequence>
06 <xs:anyAttribute namespace="##other"

processContents="lax"/>
07 </xs:complexType>

Fig. 4. Code Snippet from official XML Schema file for SOAP messages

a maxOccurs attribute that does not overwrite the default
setting (by setting a new value) inherits value ”1”.

The code above defines a structure how a valid mes-
sage has to look like. This includes the optional occur-
rence of a tns:Header element at line 03 (but only
exactly ONE element is allowed according to the default
setting maxOccurs="1") and exactly one single, mandatory
tns:Body element at line 04.

How could this prevent the prior introduced attack of dou-
bling the body element within a SOAP message? According
to the part of the schema definition above, direct childs of
an envelope element may only be exactly one body element,
optionally exactly one header element and an element of a
different namespace (namespace="##other"). So if an
attacker tried to double the body element within the envelope
element, as a direct child, the schema validation will fail,
rendering the attack unsuccessful.

Without going into detail, schema validation can also be
used to protect against nested <soap:Body> tags. The
concept remains the same, restricting valid elements at this
position, but this reveals to be only one side of the medal as
we can see in the following section.

B. Inefficiency in Presence of Potential Weakness Indicators

Validating incoming messages by schema validation may
seem to be a promising approach to fight Signature Wrap-
ping. But due to too flexible and permissive crafted standard
schemata security issues arise which are not obvious at first
sight.

For example the attack introduced by McIntosh and
Austel in 2005 [3] where the <wsse:Security>
in the <soap:Header> element is simply doubled,
can not be countermeasured since the schema does
not restrict doubling of elements from arbitrary -
"##any" - namespaces (maxOccurs="unbounded"
and namespace="##any") as can be seen in Figure 5 at
line 08.

Further attack variants such as locating a <soap:Body>
element in a <soap:Header> or wrapping a
<soap:Body> by any other element allowed at the
place of occurence can not be countermeasured either.

The question arises what is repsonsible for this behaviour.
We identified a couple of potential elements, attributes and
their variants in usage that may indicate weaknesses in a
schema definition. All occurences of these elements provide
an attacker a surface for injecting arbitrary elements.

01 <xs:complexType name="Header">
02 <xs:annotation>
03 <xs:documentation>
04 Elements replacing the wildcard MUST be namespace

qualified, but can be in the targetNamespace
05 </xs:documentation>
06 </xs:annotation>
07 <xs:sequence>
08 <xs:any namespace="##any" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>
09 </xs:sequence>
10 <xs:anyAttribute namespace="##other"

processContents="lax"/>
11 </xs:complexType>

Fig. 5. Inefficiency of schema validation - code snippet from official XML
Schema file for SOAP messages

• Element: <xs:any>
Enables the document to contain elements at this position
which are not defined by the schema

• Attribute: namespace="##any"
Allows the usage of elements from any namespace(s)

• Attribute: namespace="##other"
Allows the usage of elements from any namespace(s)
except the namespace of the parent element

• Attribute: processContents="lax"
Only validate the content if a valid schema could be
obtained

• Attribute processContents="skip"
No validation will take place on the namespace(s) refer-
enced by the current element

C. Discussing the Weaknesses

To understand the weaknesses of the identified elements and
attributes one has to look for side-effects that are attended by
their usage.

<xs:any>. The usage of <xs:any> offers an attacker the
option to insert any arbitrary elements which are not defined by
the schema. This includes the option to insert wrapper code to
wrap moved elements as for example <soap:Body>. Figure
6 shows a sample for this.

Code like the example above will ensure that
existing signatures remain valid, since the original
<soap:Body> is simply moved to a different location.
The newly created <soap:Body> element with the id
newBodyProcessedByApplicationLogic will be
processed by the application logic. This implies that the
application logic is looking for a <soap:Body> element at
the usual position.
namespace="##any". Occurrences of this attribute and

value combination allow the usage of elements independently
from their namespace. Any namespace is valid here. This may
lead to an attack vector due to the fact that the parser can be
tricked by equal sounding elements or attributes but located in
another namespace. Thus schema validation can be ”bypassed”
by simply crafting an own schema definition that unleashes the
schema bounds.

<soap:Header>
.....

<myownnamespace:wrapper myownnamespace="http://.....">
<soap:Body id="referencedBySignature">
...
</soap>

</myownnamespace:wrapper>
</soap:Header>
<soap:Body id="newBodyProcessedByAppLogic">

</soap:Body>

Fig. 6. Wrapping of SOAP bodys in wrapper elements

<xs:any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>

Fig. 7. Pitfalls with ”lax” content processing

namespace="##other". In fact nearly equal to the
attribute and value combination above, despite the fact that
only namespaces differing from the parent namespace are
allowed.
processContents="lax". Lax processing announces

the parser to try fetching a schema definition file and parsing
the content, if the schema can not be gathered validation is
skipped. If an attacker manages to block schema fetching or
introducing own namespaces he gains attack surface with little
to no effort.
Considering the schema definition given in Figure 7 would
allow the code given in Figure 8 without violating the schema.
processContents="skip". Completely disables

schema validation by the parser for the child elements.
The resulting security issues are obvious. Without schema
validation everything enclosed by the element is legal and
valid. Arbitrary code can be included without violating the
schema definition, as can be seen in Figure 9.

D. Recap the Security Impact

The weaknesses described above are not theoretical only
but can be found in real world scenarios. To give an example,
it is not possible to detect and prohibit the construct given
in Figure 10 with default schema definitions due to flimsy
and untightened schema definition provided by the related
standards.

The same behaviour can be achieved by replacing the
<wsse:Security> element with an <object> element.
Both variants are valid according to the schema definition.

<myownnamespace:xyz xmlns="http://unfetchable">
... XML Schema not validated ...

</myownnamespace:xyz>

Fig. 8. Tricking ”lax” content processing with unfetchable namespaces

<dontValidateMe>
... XML Schema not validated ...

</dontValidateMe>

Fig. 9. Skipping schema validation

<soap:Header>
....
<wsse:Security>

<soap:Body id="referencedBysignature">
...
</soap>

</wsse:Security>
</soap:Header>
<soap:Body id="newBodyProcessedByAppLogic">
...

</soap:Body>

Fig. 10. Wrapping Body in Security headers

<element name="Object" type="ds:ObjectType"/>
<complexType name="ObjectType" mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">

<any namespace="##any" processContents="lax"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
<attribute name="MimeType" type="string" use="optional"/>
<attribute name="Encoding" type="anyURI" use="optional"/>

</complexType>

Fig. 11. XML Schema of Object element from XML Signature

IV. SCHEMA HARDENING

As discussed previously, the effectiveness of XML Schema
validation as a countermeasure to Signature Wrapping attacks
largely depends on the XML Schema definitions. If the
XML Schema used for validation is too lax, e.g. containing
<xs:any> declarations, this opens up loopholes where an
attacker may move the signed XML contents to. In fact, one
such loophole in the XML Schema is sufficient to enable
Signature Wrapping attacks again.

Hence, it becomes necessary to develop a definite, strict,
loophole-free XML Schema of common Web Service mes-
sages. This XML Schema has to allow the same set of valid
XML documents (here Web Services messages) as the original
XML Schemata from the specifications themselves describe,
but additionally has to be hardened to strictly prohibit any
other content that is not contained in the XML Schema.
This approach is called Schema Hardening [13], [12], and
refers to the technique of removing all of the XML Schema
extension points given in the original XML Schema files
from the specifications themselves. Thus, a hardened XML
Schema allows the same set of valid XML documents as the
non-hardened XML Schema, but explicitly disallows all other
documents.

Based on the set of specifications given in Section II-B,
we created such a hardened XML Schema for a typical
SOAP request message. Therefore, we subsequently removed
all extension points from all of the XML Schema descrip-
tions contained in these specifications. More precisely, we
investigated every occurrence of the <xs:any> declaration,
verifying whether it is used for common SOAP messages,
and removed or restructured it appropriately. This approach
is explained with two examples below.

A. Example 1: Unused Extension Points

An unused extension point is an extension point that is in
fact not used by any subsequent WS-* specification involved

<element name="Object" type="ds:ObjectType"/>
<complexType name="ObjectType" mixed="true">
<attribute name="Id" type="ID" use="optional"/>
<attribute name="MimeType" type="string" use="optional"/>
<attribute name="Encoding" type="anyURI" use="optional"/>

</complexType>

Fig. 12. Hardened XML Schema of Object element from XML Signature

in shaping a common SOAP message. For this example,
we decided to take the XML Schema declaration of the
<ds:Object> element from the XML Signature schema
declaration given in [6]. Figure 11 shows its XML Schema
declaration before the hardening process. As can be seen,
a common <ds:Object> element is declared to contain
arbitrary contents. In fact, it is commonly used for realiz-
ing enveloping signatures, meaning that the XML fragment
signed by an XML Signature instance is contained within
the XML Signature metadata block itself—located within the
<ds:Object> element. Since XML Signature allows to
sign arbitrary XML contents from arbitrary namespaces, the
<ds:Object> element hence is declared to contain XML
elements from any namespace and of any element name.

However, since WS-Security explicitly states that an XML
Signature used within SOAP messages must be a detached
signature, meaning that the signed XML fragment resides
anywhere outside the XML Signature metadata block, there
will never be any signed XML fragments contained in the
<ds:Object> element of an XML Signature found in a
SOAP message. Nevertheless, the XML Schema still allows
the <ds:Object> element to be present and contain arbi-
trary contents—a loophole for performing an XML Signature
Wrapping attack.

The hardened version of this XML Schema does no longer
contain the <xs:any> declaration, as shown in Figure 12.
The declaration simply has been removed during the hardening
process. Hence, an XML Signature used in the context of
a SOAP message may still contain an arbitrary amount of
<ds:Object> elements, but all of them have to be empty—
otherwise the schema validation against the hardened XML
Schema would fail. It is no longer possible to move a signed
XML fragment to the <ds:Object> element without invali-
dating the SOAP message, hence this loophole is closed. Note
that the <ds:Object> element thus becomes useless, and
most likely would never be found in any valid SOAP message
at all. However, it was allowed to be present in the non-
hardened version of an XML Signature instance, therefor its
presence must be tolerated as well after the hardening process.
The fact that it became useless springs from the specific
semantics of this element in the scope of XML Signature,
which is not cared for in the plain approach of XML Schema
hardening. The only result cared for here is that the extension
point itself got closed.

B. Example 2: Used Extension Points

The hardening of unused extension points can rather trivially
be achieved by removing the <xs:any> declaration, reducing

<xs:element name="Header" type="tns:Header"/>
<xs:complexType name="Header">
<xs:sequence>
<xs:any namespace="##other" minOccurs="0"

maxOccurs="unbounded" processContents="lax"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"

processContents="lax"/>
</xs:complexType>

Fig. 13. XML Schema of Header element from SOAP specification

the set of valid child elements to the empty set. However, this
approach is not viable if an extension point is actually made
use of, e.g. from within another specification. An example is
shown in Figure 13, which presents the extension point schema
declaration of the <soap:Header> element. Obviously, the
header of a SOAP message is used to place message metadata
from many other WS-* specifications in, so it naturally has
to be declared using <xs:any>. However, this implies the
SOAP header to become a standard loophole for performing
Signature Wrapping attacks—e.g. by adding a <wrapper>
element as a new child of the <soap:Header> element.

Using the same approach of XML Schema hardening as
with unused extension points would imply removing the
<xs:any> declaration itself. The result would be that the
existence of any child element within the <soap:Header>
element would immediately cause a schema violation—
even for well-known and allowed header elements like
<wsse:Security>. Obviously, this is not an accept-
able XML Schema for real-world SOAP messages, hence
the approach for resolving such used extension points
in XML Schema hardening is a little more complex. It
consists in determining all immediate child elements that
are explicitly allowed to occur at the given extension
point, and in adapting the XML Schema to explicitly al-
low the use of exactly those XML elements only. For
the given example of the <soap:Header> element, this
implies that the <wsse:Security> header and all of
the WS-Addressing headers (like e.g. <wsa:ReplyTo> or
<wsa:MessageID>) must explicitly be listed as allowed
in the hardened XML Schema version of the extension
point. Figure 14 shows this hardened XML Schema for the
<soap:Header> element.

If all extension points are hardened like this, the use of
the <xs:any> declaration — which always opens up a
loophole for Signature Wrapping attacks — can be annihilated,
rendering the hardened XML Schema resistant to this attack
threat. The downside of this approach is that any additional
extensions used within the SOAP messages must be explicitly
embedded in the hardened XML Schema declaration of the
particular Web Service. For instance, if a SOAP message is
to be extended with a new kind of logging mechanism that
utilizes a new SOAP header, that new SOAP header’s XML
Schema must be hardened itself, and inserted at the right place
into the hardened XML Schema of the overall SOAP message.
Otherwise, the SOAP messages containing logging headers
would be rejected at the recipient’s side due to their schema

<xs:element name="Header" type="tns:Header"/>
<xs:complexType name="Header">
<xs:all>

<!-- WS-Security -->
<xs:element ref="wsse:Security" minOccurs="0"/>

<!-- WS-Addressing -->
<xs:element ref="wsa:MessageID" minOccurs="0"/>
<xs:element ref="wsa:RelatesTo" minOccurs="0"/>
<xs:element ref="wsa:To" minOccurs="0"/>
<xs:element ref="wsa:Action" minOccurs="0"/>
<xs:element ref="wsa:From" minOccurs="0"/>
<xs:element ref="wsa:ReplyTo" minOccurs="0"/>
<xs:element ref="wsa:FaultTo" minOccurs="0"/>

</xs:all>
<xs:anyAttribute namespace="##other"

processContents="lax"/>
</xs:complexType>

Fig. 14. Hardened XML Schema of Header element from SOAP specification

Document Processing Processing Time [ms]
Without XML Schema 1,252

With WS-* XML Schema 4,301
With Hardened XML Schema 52,001

Fig. 15. Summary of Experimental Analysis

invalidity. However, if the set of specifications used within the
context of a SOAP message exchange is known in advance or
negotiated otherwise (see e.g. [17]), this approach still remains
viable, and protects a Web Service effectively against the XML
Signature Wrapping attack in general.

V. REAL-WORLD EXAMPLE

In order to verify our approach, we validated a generated
SOAP message against our hardened XML Schema. The
generated SOAP message included XML Signature, WS-
Addressing, Timestamp, and one element in the SOAP body.
For performance validation purposes, we compared our results
to the SOAP message verification with original WS-* XML
Schema files. We tested our data using the Java SAX Parser.
The tests ran on a machine with Intel Core 2 DUO (2,8 GHz)
and 8 GB of RAM.

The summary of our evaluation can be found in Figure 15.
As can be seen, the SOAP message processing without XML
Schema validation is about 4 times faster than processing
with a WS-* XML Schema and about 50 times faster than
processing with our hardened XML Schema. The performance
disadvantage by the usage of our hardened XML Schema
comes most probably from the exact comparison of XML
elements and their namespaces on each document layer.

The performance numbers are the strongest argument
against application of the hardened XML Schema in real-
world scenarios on the servers that serve many customers. On
the other hand, restriction of arbitrarily defined and deeply
nested elements is a good prevention against XML Signature
Wrapping and Denial-of-Service attacks and therewith brings
the application to a higher security level.

VI. CONCLUSION AND FUTURE WORK

One major conclusion that can be drawn is the fact that
XML Schema hardening can only be one brick towards Sig-
nature Wrapping resistant documents. With schema validation
alone it cannot undoubtly be ensured that Signature Wrapping
is completely avoided, but it raises the bar for potential
attackers and reduces the attack surface demonstrably.

Another point to highlight is that the concept of schema
hardening has to be applied to all included namespaces. A
single too lax defined schema could result in bypassing all
efforts to tighten and bound the formal definition of valid XML
documents and opens up attack surface to adversaries.

As shown in our experiments, application of the hardened
XML Schema brings also huge performance disadvantages.
Future work will be to optimize our hardened schemata
regarding performance and minimalism. A brighter testing in
real world scenarios and detailed evaluation remains also work
to be performed.

ACKNOWLEDGEMENTS

This work was partially funded by the Sec2 project of the
German Federal Ministry of Education and Research (BMBF,
FKZ: 01BY1030).

REFERENCES

[1] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security and Privacy,
vol. 8, pp. 40–47, 2010.

[2] Eucalyptus Systems, Inc., “Esa-02: Soap interfaces vulnerable to
xml signature element wrapping attacks,” 2011. [Online]. Available:
http://open.eucalyptus.com/wiki/esa-02

[3] M. McIntosh and P. Austel, “XML signature element wrapping attacks
and countermeasures,” in SWS ’05: Proceedings of the 2005 workshop
on Secure web services. New York, NY, USA: ACM Press, 2005, pp.
20–27.

[4] S. Gajek, L. Liao, and J. Schwenk, “Breaking and fixing the inline
approach,” in SWS ’07: Proceedings of the 2007 ACM workshop on
Secure web services. New York, NY, USA: ACM, 2007, pp. 37–43.

[5] S. Gajek, M. Jensen, L. Liao, and J. Schwenk, “Analysis of signature
wrapping attacks and countermeasures,” in ICWS, 2009, pp. 575–582.

[6] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon,
XML-Signature Syntax and Processing, W3C Recommendation, Feb.
2002. [Online]. Available: http://www.w3.org/TR/2002/REC-xmldsig-
core-20020212/

[7] N. Gruschka and L. Lo Iacono, “Vulnerable Cloud: SOAP Message
Security Validation Revisited,” in ICWS ’09: Proceedings of the IEEE
International Conference on Web Services. Los Angeles, USA: IEEE,
2009.

[8] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. Lo Iacono, “All your clouds are belong to us – security analysis of
cloud management interfaces,” (in submission), 2011.

[9] Canonical Ltd., “Usn-1137-1: Eucalyptus vulnerability,” Ubuntu Security
Notice, 2011. [Online]. Available: http://www.ubuntu.com/usn/usn-
1137-1/

[10] N. Gruschka and N. Luttenberger, “Protecting Web Services from DoS
Attacks by SOAP Message Validation,” in Proceedings of the IFIP TC-
11 21. International Information Security Conference (SEC 2006), 2006.

[11] N. Gruschka, N. Luttenberger, and R. Herkenhöner, “Event-based
SOAP Message Validation for WS-SecurityPolicy-enriched Web
Services,” in Proceedings of the 2006 International Conference
on Semantic Web & Web Services, 2006. [Online]. Available:
http://www.comsys.informatik.uni-kiel.de/publications/

[12] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey of attacks on
web services,” Computer Science - Research and Development (CSRD),
vol. 24, no. 4, pp. 185–197, 2009.

[13] M. Jensen, N. Gruschka, R. Herkenhöner, and N. Luttenberger, “SOA
and Web Services: New Technologies, New Standards – New Attacks,”
in Proceedings of the 5th IEEE European Conference on Web Services,
2007.

[14] M. Gudgin, M. Hadley, and T. Rogers, “Web Services Addressing 1.0 -
SOAP Binding,” W3C Recommendation, May 2006.

[15] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004),” OASIS
Standard, 2006.

[16] OASIS Open, “WS-Utils Schema,” http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-wssecurity-utility-1.0.xsd, 2004.

[17] M. Jensen and C. Meyer, “Expressiveness considerations of xml signa-
tures,” 35th IEEE Annual Computer Software and Applications Confer-
ence Workshops (COMPSACW), 2011.

