
Expressiveness Considerations of XML Signatures
Meiko Jensen, Christopher Meyer
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{Meiko.Jensen,Christopher.Meyer}@ruhr-uni-bochum.de

Abstract—XML Signatures are used to protect XML-based
Web Service communication against a broad range of attacks
related to man-in-the-middle scenarios. However, due to the
complexity of the Web Services specification landscape, the task
of applying XML Signatures in a robust and reliable manner
becomes more and more challenging.

In this paper, we investigate this issue, describing how an
attacker can still interfere with Web Services communication
even in the presence of XML Signatures. Additionally, we discuss
the interrelation of XML Signatures and XML Encryption,
focussing on their security properties and expressiveness in
different application scenarios.

I. INTRODUCTION

The rapid development in e-commerce applications has
brought up a large set of technologies and standards for
network-based business communication. Among these tech-
nologies, the XML-based specifications of the so-called Web
Services platform [1] received particular attention, mostly due
to their widespread use in industry and their capabilities in
terms of flexibility and manageability.

However, with new Web Services specifications emerging
rapidly, and with ongoing modification of the existing ones,
the overall landscape of Web Services standards has changed.
Today’s Web Services world has seen lots of issues related to
missing interoperability of implementations and incompatibil-
ity among complementary standards (e.g. [2]).

For the particular task of security for Web Services com-
munication, this high degree of complexity causes severe
problems for Web Service developers. This is due to the issue
that the correct and secure use of the corresponding Web
Services specifications requires an in-depth knowledge on their
concepts and especially their pitfalls for proper use.

In this paper, we will examine the Web Services specifica-
tions involved in applying digital signatures to Web Services
communication. Namely, the particular specifications are XML
Signature [3], WS-Security [4], SOAP [5], XML Encryption
[6], and WS-Addressing [7]. We will discuss the purposes of
digital signatures in network-based communication, and focus
on their implications to the proper use of the XML Signature
specification in interrelation to other existing Web Service
specifications.

The paper is organized as follows: The next section de-
scribes the evolution of digital signatures in communication
networks, and reasons about their necessity and purposes.

This work was partially funded by the Sec2 project of the German Federal
Ministry of Education and Research (BMBF, FKZ: 01BY1030).

Section III then discusses some basic issues and security con-
siderations for different application styles of XML Signatures
to SOAP messages, and Section IV goes into detail on the
interrelation of XML Signature and XML Encryption, also
giving advice on how to reach a maximum of security here.
The paper is concluded with future research directions in
Section V.

II. DIGITAL SIGNATURES AND XML

A. Digital Signature Basics

The cryptographic primitive of a digital signature can be
used for enforcing a set of security-related requirements.
Among these, the properties of integrity, authenticity, and
non-repudiation are commonly considered the most important
ones. Further, digital signatures can play key roles in authen-
tication protocols or on providing application-specific proofs
of authorization (e.g. in the sense of a hand-written signature
beneath a contract document).

The use of digital signatures typically consists of two sepa-
rate tasks. The sign(input, keypriv) operation uses a private
key to produce a check value for a given input, the signature
value, which can later-on be verified by the corresponding
verify(input, keypublic) operation. If the inputs are identical
in both tasks, and if the private key used in sign() belongs to
the public key used in verify(), the verify() operation will
return true, in all other cases it will return false.

When applying this cryptographic primitive to network-
based communication, the cryptographic properties ensure that
the requirements listed above can be enforced. For instance,
integrity directly correlates to the property that the input
parameter of sign() and verify() have to be identical in both
operation executions in order to result in a successful signature
verification. Authenticity relies on the fact that every entity
holds an unique private/public key pair. Obviously, the private
key has to be kept secret here.

B. Digital Signature Standards Evolution

In order to make the mathematical foundations of digital
signatures accessible to a world-wide set of adopters, the major
players of both industry and academia fostered the specifica-
tion of a set of standards that explain how digital signatures are
to be used in digital systems. Several specifications emerged,
each specifying protocols and notations (or subsets of them)
for interoperable use of digital signatures. For instance, the
PGP toolset [8] provides a full standard with open source
implementations for applying and verifying digital signatures



of files. X.509 [9] provides means to identify the entities
behind public keys, S/MIME [10] enables integrity-protected
e-mail communication, and TLS ([11], formerly known as
SSL) provides an authenticated, secure and integrity-protected
data exchange channel.

However, as all of these standards had their limitations in
capabilities, the W3C decided to pose a new specification for
the use of digital signatures for the (that time new) eXtensible
Markup Language (XML). This specification, today named
XML Signature [3], provides a lot of new features in terms
of flexibility and interoperability support for the use of digital
signatures. For instance, it supports digital signatures covering
only selective parts of an XML document (in contrast to e.g.
PGP, which always requires a full document to be signed).
Further options are embedding signature metadata like X.509
certificates along with the signature value in an arbitrary
location within the XML document (or even elsewhere, by
using an URI-based referencing scheme) or support for an
unlimited number of digital signatures within the same XML
document.

The large gain in flexibility provided by the XML Signature
specification enabled a broad scope of possible application
scenarios. As a result the effort to standardize these application
scenarios ended up in its own adaptation of XML Signa-
ture, namely the WS-Security specification [4]. It defines the
particular conditions and parameters on how to apply XML
Signatures to SOAP messages in order to enable the security
properties it provides for use in Web Service communication.

C. XML Signatures for SOAP Messages

According to the WS-Security specification, a typical XML
Signature applied to the body of a common SOAP message
looks like shown in Figure 1. It can be seen that the signature
metadata is placed within a designated new SOAP header
element named Security, and that it contains a reference
to the contents that actually have been signed (here the SOAP
body) along with the resulting hash value and signature value.
Here, one has to notice that the calculation of XML Signatures
uses a two-step calculation: first, the hash value over the
referenced parts (here the body) is calculated and added to
the designated DigestValue element of the Reference
block. Then, the whole SignedInfo subtree (including the
DigestValue) is hashed, the resulting hash value is taken as
input to the particular sign() operation, and the resulting
signature value is then placed in the SignatureValue
element of the Signature block.

On verification, these steps have to be reproduced identi-
cally, just taking the public key and the verify() operation
instead of private key and sign(). If either the referenced
contents or the SignedInfo block have been modified since
the signature application, the verification will fail.

D. Threat Model

Discussing security always also requires a discussion on
the threats that cause the particular security requirements. In
the scenario of SOAP-based communication, the threat to be

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:op="http://my.operation">
<soap:Header>

<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/...">
<ds:Signature

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>

<ds:CanonicalizationMethod
Algorithm="http://.../xml-exc-c14n#"/>

<ds:SignatureMethod
Algorithm="http://.../xmldsig#rsa-sha1"/>

<ds:Reference URI="#myID">
<ds:Transforms>

<ds:Transform
Algorithm="http://.../xml-exc-c14n#"/>

</ds:Transforms>
<ds:DigestMethod

Algorithm="http://...xmldsig#sha1"/>
<ds:DigestValue>JVxbSj...</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
d4UfGRmS199IyZp3TaDi...

</ds:SignatureValue>
</ds:Signature>

</wsse:Security>
</soap:Header>
<soap:Body Id="myID">

<op:greet>
<name>John Doe</name>

</op:greet>
</soap:Body>

</soap:Envelope>

Fig. 1. Example of a signed SOAP message

prevented with XML Signatures consists of an attacker mod-
ifying the (application-critical) contents of the Web Service
communication while the message is in transit. Thus, the
underlying threat model consists of a Dolev-Yao attacker [12]
between the entity applying digital signatures and the entity
verifying them. If the system is designed in a way that no such
attacker exists, the use of digital signatures can be omitted,
as data integrity and authenticity is provided automatically.
For real-world scenarios instead, such an attacker might be
instantiated by malicious hackers, but also angry employees, a
service’s Cloud provider, or even an Internet Service Provider.

Thus, for the remainder of this paper, we will assume a
Dolev-Yao attacker to be present and to have full access to
all SOAP communication between a Web Service client and
server.

III. THE INTERRELATION OF XML SIGNATURES AND
OTHER WS-* SPECIFICATIONS

The most easy way of protecting SOAP-based commu-
nication against modification consists in applying a digital
signature on the whole SOAP message document. This way, a
single signature value protects the whole message’s integrity,
and given that only one signature is required, the owner of
its private key can directly be identified as the message’s
originator.

However, for the world of Web Services this approach
is not always satisfactory. For instance, one of the major
advances of using SOAP messages consists in its ability to



have a single message bypass a lot of intermediary processing
entities before the message reaches the ultimate recipient.
Each of these intermediaries may add new SOAP headers,
containing particular metadata for additional functionality or
non-functional parameters. After all, also XML Signatures are
nothing but an example for such additional metadata. Thus, if
the whole SOAP document was protected by a single digital
signature, it would be impossible to add such metadata without
invalidating the signature.

Thus, instead of having a single XML Signature cover-
ing the whole document, practice turned out to favorize an
approach of having several XML Signatures (or one XML
Signature with several references) to protect the critical parts
of a SOAP message only. The big question that arises from this
approach is: what are the critical parts of a SOAP message?

In order to determine an answer to this basic question, it
becomes necessary to investigate the threat model discussed
earlier, and to correlate it to the typical structure of today’s
SOAP messages.

A. WS-AddressingSpoofing and Similar Threats

Today’s most common pattern for applying XML Signature
to SOAP messages actually consists in applying it to the
whole SOAP body only. This way, all functional data within
the body is integrity-protected, and new SOAP headers can
be added without invalidating the signature. If necessary,
authenticity can be ensured from that XML Signature as well,
thus providing a sound basis for access control decisions.

However, latest advancements in the way SOAP message
headers are used for additional functionality render this ap-
proach to be vulnerable to a list of security-related issues. An
example would be the WS-AddressingSpoofing attack [13].
Here, the attacker modifies a SOAP request message (with
signed body) by adding a WS-Addressing header that contains
a Web Service endpoint of the attacker’s choice as ReplyTo
address. As a result, the Web Service invoked will perform its
operation, then deliver the SOAP reply message to the Web
Service endpoint denoted in the malicious ReplyTo element.
This way, the attacker can intercept all reply messages, even
if he only has access to the request messages—an obvious
security breach.

The tricky part about this class of attack patterns is that
they rely on adding new functionalities to SOAP messages
that were not anticipated (or not even known about) at the
message originator’s side. Nevertheless the receiving Web
Service server framework knows how to interpret that new
functionality, and performs its task accordingly. Thus, the
message originator has no possibility to prevent such kinds
of attacks by protecting additional headers by means of XML
Signature. There is no way to sign the absence of a WS-
Addressing header (or any other token from any other WS-*
specification) apart from protecting the whole SOAP header
block with an XML Signature. Protecting the whole SOAP
Header quarries issues concerning flexibility and convenience.
Legitimate intermediaries can not alter the SOAP header any
longer and thus are not able to introduce further means of

<SupportedSpecs soap:mustUnderstand="true"
xmlns="http://...specNegotiation/"
xmlns:soap="http://...soap-envelope">
<SpecificationSuite
URI="http://...specNeg.../XML+NS+SOAP+WSDLSuite" />

<Specification
URI="http://.../XPath" Version="1.0" />

<Specification
URI="http://.../WS-Addressing" Version="1.0" />

<Specification
URI="http://.../WS-Security" Version="1.1" />

<Specification
URI="http://.../SAML" Version="2.0" />

</SupportedSpecs>

Fig. 2. Example of a specification negotiation SOAP header

protection (e.g. additional signatures, encryption blocks) or
additional header data.

Hence, in order to cope with such threats, one viable
approach consists in the following: a message originator
explicitly negotiates a list of tokens that he added to the
SOAP header himself or expects to be added by the legitimate
intermediaries (for an example see Figure 2). This list of
headers can be subsequently protected by an XML Signature,
along with all headers that are present at message creation
time. Note that this approach does not prevent an attacker from
adding new fields, but it enables the message recipient to detect
such modifications. This way, a SOAP message recipient
can determine which of the SOAP headers contained in the
message have been added regularly, and which may be part of
a WS-AddressingSpoofing attack or similar. Additionally, the
recipient knows which tokens have been present on message
creation (as these are part of the XML Signature as well),
which were expected to be applied by intermediaries, and
which happened to be added without the message originator’s
expectation. Accordingly, the message recipient can decide by
himself on whether he wants to process the unexpected headers
or not.

The general approach of adding such creation-time message
metadata as separate SOAP header is not new (cf. [14], [15]),
however, it is crucial to note that the approach proposed
here consists in specifying the set of specifications understood
and used by a message’s originator rather than fixing certain
structural parameters of the XML elements forming a SOAP
message. Hence, a ReplyTo header that may be added to a
SOAP message without violating the fixed structure metadata
will nevertheless rely on the use of the WS-Addressing speci-
fication. If this specification is not contained in the given list,
the bogus header is not processed.

B. Multiple References

Another security-related problem in terms of XML Signa-
ture application consists in the decision on whether to use
n single XML Signatures, one signature for each of the n
references, one single XML Signature with n references, or
anything in mixture. At first glance, it seems unimportant
which of these approaches is used, as all of them result in that
the critical parts are protected by a digital signature in the end.



However, in terms of security considerations for Web Service
communication this difference becomes of critical importance.

Consider the scenario of a SOAP request message that
contains a SOAP operation request as SOAP body and a
timestamp token as SOAP header. The use of the timestamp
token is to guarantee freshness, i.e. to ensure that the message
expires after a certain amount of time. Typically, such an
approach is used to counter replay attacks [16] that consist in
copying and re-sending the very same SOAP message again
in order to trigger the same Web Service operation execution
more often. By adding a timestamp and a nonce value, the Web
Service server can detect whether the message already expired
or whether the nonce value has been already used within the
validity timespan.

As both SOAP body and timestamp header must be con-
sidered as critical tokens, each of them has to be integrity-
protected. Hence, the Web Service developer has two options:
either each token gets its very own XML Signature header
with a single reference, or the SOAP message will contain
one XML Signature with two references. Investigating the
former approach more deeply, incorporating the threat model
of Section II-D, that approach turns out to contain a major
security risk. If the timestamp is protected by an XML
Signature of its own, a Dolev-Yao attacker can copy the whole
timestamp token and its XML Signature, and can move it to
another SOAP message (either one intercepted or one created
by himself). This way, he can re-use the intercepted timestamp
token for other SOAP requests, e.g. against other Web Service
endpoints that require appropriately signed timestamp tokens.
As other Web Services will not know that the nonce has
already been used, they will only see a valid timestamp
token with a valid XML Signature applied. Thus, the attacker
manages to bypass replay attack countermeasures using stolen
timestamp tokens.

In the other case where a single XML Signature protects
both, timestamp token and SOAP body at once, the attacker
can only re-use the timestamp token if he also copies the
SOAP body at the same time. Though this is not impossible
(cf. XML Signature Wrapping attacks [17], [18]), it poses
severe restrictions to an attacker for properly crafting an attack
message that can make use of the XML Signature over times-
tamp and SOAP body. Hence, having one XML Signature with
n references tends to be the preferable approach.

On the other hand, consider the scenario of a SOAP request
message containing a transaction request, e.g. advising a stock
order. Part of the critical data within the SOAP body is a
credit card information block. However, the SOAP body as a
whole must also be considered as a critical token of its own.
Here again, one has to investigate several approaches. The first
and most obvious approach consists in applying a single XML
Signature with a single reference to the SOAP body. This way,
both the SOAP body and the contained credit card data are
integrity-protected. The issue with this approach is that the
credit card data might become part of another SOAP request
that is forwarded to another Web Service endpoint. If the XML
Signature covers the whole SOAP body only, it gets useless

for the purpose of protecting and authenticating the credit card
information in the second SOAP request as well. The same
applies to the approach of having a single XML Signature with
two references, one to the SOAP body and an additonal one to
the credit card information block. But if the message creator
applied two separate XML Signatures, one for the SOAP body
and a separate one for the credit card information block,
the latter one can be re-used in the second SOAP message
to enable the credit card provider to validate both integrity
and authenticity of the credit card information. Hence, the
approach of separate XML Signatures here provides a slight
advantage compared to the other two approaches.

C. XML Signature Best Practices

Resuming both cases, the proper application of XML Sig-
natures largely depends on the application scenario. It is
necessary to determine the pathways that critical data items
have to pass, and to adapt XML Signatures in a way that their
reuse is supported if it is legitimate, but that it is prevented for
unauthorized purposes. In doubt, the safer option is to have a
single XML Signature with n references to all critical tokens
of a SOAP message.

IV. THE INTERRELATION OF XML SIGNATURES AND
XML ENCRYPTION

Another field of interest in terms of proper application
of XML Signatures consists in its correlation to the use
of the XML Encryption specification [6] for enforcing data
confidentiality in SOAP messages. The main issue here is that
XML Encryption changes the actual XML contents, thus it is
likely to invalidate XML Signatures if applied naı̈vely.

A first major stumbling stone to bypass when dealing with
XML Signature and XML Encryption at once reveals to be
the order of their application. At first glance, there is no
difference between the two approaches (sign-then-encrypt and
encrypt-then-sign). In both cases, the critical contents are both
confidential and integrity-protected (and also authenticatable).
However, some eminent differences have to be taken into
consideration.

A. Aimed Security Goals

Before we discuss the different approaches for securing
messages it is indispensable to define the desireable security
goals.

Confidentiality. The security goal of confidentiality con-
firms that only authorized people are able to access or disclose
concerned data. Usually this security goal is achieved by
applying encryption algorithms on data worthy of protection.

Integrity. Integrity ensures that data is not being altered.
In practical environments, hash values or HMACs are used to
guarantee data integrity.

Authenticity. Trustworthiness of entities is addressed by
authenticity. In typical environments one may use digital
signatures for ensuring compliance with this goal.

Non-repudiation. This term ensures validity of statements
issued by an individual in a way that it is not possible for an



Fig. 3. Example of an encrypted-then-signed SOAP message

entity to repudiate the issuance. As a cryptographic primitive
achieving this goal one may consider the usage of digital
signatures and timestamps.

B. Sign-then-Encrypt

Considering the setting of sign-then-encrypt according to
the WS-Security specification, a first critical issue in terms
of security consists of the XML Signature metadata block of
the SOAP security header. If the critical contents are signed
then encrypted, the XML Signature nevertheless provides the
attacker some information on the encrypted contents: the XML
Signature discloses their hash value. Though it is a crypto-
graphically hard problem to reverse a hash value back to the
original contents, it nevertheless can be used for breaking the
required security property of confidentiality: identical contents
have the same hash value. This way, an attacker is able to
determine whether a message’s critical contents are identical
to those of another message he has seen before. For instance,
an attacker might be able to determine a certain limited set of
typical messages with identical hash values, and correlate them
to a certain type of operation invocation. Hence, he knows the
Web Service operation that is to be performed even though
all indicators of the operation (here the SOAP body contents)
have been encrypted for confidentiality reasons.

A common countermeasure to this kind of threat is to
encrypt the XML Signature metadata as well so that the
attacker cannot learn from it. Nevertheless, the Web Service
developer has to be aware of this fact and take it into account.

C. Encrypt-then-Sign

If the XML Signature is to be applied to the encrypted
contents instead of the original contents, a first and obvious
problem consists in the proper element addressing. If the
critical contents to be signed happen to be a subtree of the
contents to be encrypted, and if in that scenario (cf. Figure 3)
the encryption takes place first, the XML Signature application
implementation will not be able to find the referenced contents
due to the fact of being encrypted.

Nevertheless, the calculation of XML Signatures over en-
crypted contents raises issues. First of all, the signer might
not even know about the contents that were signed, thus

Fig. 4. Example of a signed-then-encrypted-then-signed SOAP message

the property of non-repudiation is no longer as strong as a
digital signature applied to plain data. The signer may claim
to have had no clue about the real contents when applying his
signature, so the legitimation properties of a digital signature
may get weakened. All in all, this approach somewhat violates
the paradigm of see-what-is-signed [3, Section 8.1.3], and thus
should be prevented.

However, the application of XML Signatures to encrypted
XML contents may also provide some advantages. Taking a
closer look, the implications of an XML Signature covering
an encrypted XML fragment is a claim that the Signer in the
moment of XML Signature application has seen the encrypted
contents. This implies that the encryption of these contents
can not have happened after XML Signature application. For
the threat model of Section II-D this means that an attacker
is no longer capable of replacing the whole SOAP message
body with some contents he encrypted himself for the Web
Service server endpoint. The XML Signature here does not
protect the critical contents themselves, but merely provides
a guarantee that the encryption happened prior to XML
Signature application. This also gives a proof to the SOAP
message recipient that the SOAP message has been encrypted
when leaving the message originator.

D. Sign-then-Encrypt-then-Sign

Taking these implications as input, the best approach for the
interrelation of XML Encryption and XML Signature might be
the following (cf. Figure 4 and [19]):

If a message originator is about to send a SOAP message
containing critical tokens in terms of confidentiality and in-
tegrity to a SOAP recipient, he applies an XML Signature,
then an XML Encryption, then again an XML Signature. The
reasons for this are the following.

The first, “inner” XML Signature provides all security
properties of an XML Signature. It ensures the original data’s
integrity and provides both authenticity and non-repudiation
in the sense intended by the XML Signature application.

The following XML Encryption ensures confidentiality and
must cover both the critical contents and the XML Signature



metadata (of course, only of the inner XML Signature). Thus,
it provides the same properties as in all other scenarios.

The last, “outer” XML Signature has the sole purpose of
proving to the SOAP message recipient that the message
originator himself applied the XML Encryption to the critical
contents. This way, both the sender and the recipient of the
SOAP message can be sure that the message encryption was
applied correctly while the message was in transfer. Hence,
even if the attacker is capable of crafting malicious requests
with signed tokens using techniques as described above, and
even if he is capable of encrypting those contents for the
target of the Web Service server correctly, he nevertheless will
ultimately fail to create the outer XML Signature, rendering
all his efforts unsuccessful.

Depending on the application scenario, this sign-then-
encrypt-then-sign approach might even be enhanced by having
inner and outer signature become two references of the very
same XML Signature. The concept introduces a chained pro-
cess of four steps resulting in an highly interlocked signature.
The necessary steps are discussed below:

1) Compute a hash value over the data that should be
protected and store it temporarily

2) Encrypt the already processed block
3) Hash again the relevant block (which is now encrypted)
4) Take both pre-computed hash values and sign them

It is crucial to be aware of the fact that the used encryption
algorithm must not use static initialization vectors due to the
fact that an attacker may correlate again the given output of
the encryption (which would be always the same in case of
static IVs and the same message) as described in subsection
Sign-then-Encrypt.

Processing as described above offers a major advantage
that has to be taken into account: It becomes obvious that
the overall task of signing, encrypting, and signing again
was performed in one processing step, thus originating all
at the very same entity. There is no way for an attacker to
remove or forge any of the signatures, nor copy them to other
requests in a reasonable scenario. Each removal/modification
will immediately invalidate one of the two references, hence
the overall XML Signature.

The downside of this approach is that there is no way
to “recycle” any of the XML Signatures as described in
Section III-B. Additionally, the recipient must take care for
properly processing the XML Signature in correct interrelation
to decryption, which is not covered by today’s versions of the
standards.

V. CONCLUSION AND FUTURE WORK

We have shown that minimal differences in the way XML
Signatures are used can cause large differences in the resulting
security implications. Based on this observation, we have
illustrated some basic best practice rules to consider when
applying XML Signatures to SOAP messages according to
the WS-Security specification. Additionally, we investigated
the interplay of XML Signatures and XML Encryption, again
discussing impacts and best practices.

Future work will consist in elaborating a complete guidance
ruleset for all major Web Services specifications to clarify how
they relate to XML Signature and what approach is best to be
used in order to enforce security for them in a best-possible
manner. Additionally, a proof-of-concept implementation of
the SupportedSpecs approach of Figure 2 is work in
progress.

REFERENCES

[1] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson,
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice
Hall PTR, 2005.

[2] M. Jensen, L. Liao, and J. Schwenk, “The curse of namespaces in the
domain of xml signature,” in SWS ’09: Proceedings of the 2009 ACM
workshop on Secure web services. New York, NY, USA: ACM, 2009,
pp. 29–36.

[3] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, XML-
Signature Syntax and Processing (Second Edition), W3C Recommen-
dation, Jun. 2008.

[4] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004), OASIS Std.,
2006.

[5] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.
Nielsen, SOAP Version 1.2 Part 1: Messaging Framework, W3C
Recommendation, Jun. 2003. [Online]. Available: http://www.w3.org/
TR/2003/REC-soap12-part1-20030624/

[6] T. Imamura, B. Dillaway, and E. Simon, XML Encryption Syntax and
Processing, W3C Recommendation, Dec. 2002. [Online]. Available:
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

[7] M. Gudgin, M. Hadley, and T. Rogers, “Web Services Addressing 1.0 -
SOAP Binding,” W3C Recommendation, May 2006.

[8] M. Elkins, D. D. Torto, R. Levien, and T. Roessler, MIME Security with
OpenPGP, IETF RFC 3156, Aug. 2001.

[9] ITU-T Recommendation X.509, Version 3 (1997), ITU-T Information
Technology - Open Systems Interconnection - The Directory Authenti-
cation Framework, ISO/IEC 9594-8:1997, 1997.

[10] B. Ramsdell (Editor), Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.1, IETF RFC 3851, Jul. 2004.

[11] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) proto-
col, version 1.1,” RFC 4346. http://www.ietf.org/rfc/rfc4346.txt, 2006.

[12] D. Dolev and A. C.-C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–207,
1983.

[13] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey of attacks on
web services,” Computer Science - R&D, vol. 24, no. 4, pp. 185–197,
2009.

[14] M. A. Rahaman, A. Schaad, and M. Rits, “Towards secure SOAP
message exchange in a soa,” in Workshop on Secure Web Services, 2006.

[15] M. A. Rahaman and A. Schaad, “SOAP-based secure conversation
and collaboration,” in IEEE International Conference on Web Services
(ICWS 2007). IEEE CS, 2007, pp. 471–480.

[16] P. Syverson, “A taxonomy of replay attacks,” in Proceedings of the 7th
Computer Security Foundations Workshop (CSFW), 1994.

[17] M. McIntosh and P. Austel, “XML signature element wrapping attacks
and countermeasures,” in SWS ’05. New York, NY, USA: ACM Press,
2005, pp. 20–27.

[18] S. Gajek, M. Jensen, L. Liao, and J. Schwenk, “Analysis of signature
wrapping attacks and countermeasures,” in IEEE International Confer-
ence on Web Services (ICWS 2009). IEEE CS, Jul. 2009.

[19] D. Davis, “Defective sign & encrypt in s/mime, pkcs#7, moss, pem,
pgp, and xml,” http://world.std.com/∼dtd/sign encrypt/ sign encrypt7.
html, 2001.


