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Abstract—At CCS’11 a new chosen-ciphertext attack on XML
Encryption [13] has been presented. This attack is of high
relevance, since it allows one to decrypt arbitrary encrypted XML
payload by issuing 14 server requests per byte on average.

In this paper we discuss several countermeasures against
this attack, which have been considered by different framework
developers for different scenarios. We analyze the scenarios and
show why these countermeasures do not work. Thereby, we
motivate for the application of authenticated encryption in the
XML Encryption specification.

I. INTRODUCTION

The W3C XML Encryption specification [8] is a part of
the XML Security standards. It is responsible for ensuring
confidentiality in XML-based messages. It is adopted in vari-
ous standardized scenarios (e.g. Web Services or Single Sign-
On) and customized applications. It is applied in major web-
based applications, ranging from business and e-commerce,
financial services and healthcare, to governmental and military
infrastructures. It is, for example, implemented in frameworks
of several major organizations like Apache, Redhat, IBM,
Microsoft, or SAP.

However, as previously shown [13], the XML Encryption
specification is vulnerable to a specific chosen-ciphertext
attack. This attack can be applied in all scenarios, where
the attacker is able to send messages including modified
ciphertext to an oracle that decrypts the message and responds
with 1 or 0 according to the message validity. According
to the server responses, the attacker can decrypt the whole
ciphertext. The attack is based on a fact that the server
parses the decrypted XML data. If the parsing fails, the server
interrupts the message processing. This new side-channel has
led to a generalization of padding oracle attacks applied by
Vaudenay [23] and considered in further works [1], [20], [7],
[24], [5], [6], and to a development of a more performant
practical attack. The attacker has to issue only 14 requests to
decrypt one byte on average.

In this paper we outline the attack and introduce two exem-
plary scenarios: Web Services and Single Sign-On. We have
to note that this attack is however applicable to all the custom
applications using XML Encryption and revealing a decryption
oracle. We summarize discussions with various developers
and introduce the proposed countermeasures. We explain why
standard-conformant and customized countermeasures in most
of the scenarios do not work. We e.g. show why unifying
error messages is not a valid countermeasure or why XML

Signatures [9] in Web Services cannot mitigate these attacks
if the Web Services are secured using WS-Security Policy [16].

To this end, we propose the standardization of mode of
operation including authentication and integrity check. We
hope that the discussed difficulties by application of different
countermeasures in different scenarios will force the standard-
ization groups to include authenticated modes of operations
in their specifications and reconsider deprecation and remov-
ing unauthenticated modes of operations. This includes the
described XML Encryption specification [8]1 as well as the
newly developed JSON Web Encryption standard [15].

II. BASICS

In this section we give an overview of the Cipher block
chaining mode of operation and security standards used in
XML and Web Services.

A. Cipher Block Chaining

AES and 3DES are well-used symmetric-key encryption
algorithms. They allow to encrypt and decrypt data, whose
length is 16 or 8 bytes, respectively. In order to apply these
algorithms to data of arbitrary length, the data has to be padded
and split into blocks, which are then chained using a mode of
operation.

Cipher block chaining (CBC) [18] is the most popular
blockcipher mode of operation in practice. Its functionality
in the XML Encryption specification including the padding
scheme is depicted in Figure 1.

For its description, suppose a byte string data′ of arbitrary
length. The data′ string is first padded in order to achieve
a length l, which is an integer multiple of the block-size bs.
XML Encryption specifies the following padding scheme:

1) Compute the smallest integer p > 0 such that |data′|+p
is an integer multiple of bs of the block cipher.

2) Append (p− 1) random bytes to data′.
3) Append one more byte to data′, whose integer value

equals p.

Using this padding scheme we get data, whose length is
multiple of bs. Now, we can split data into blocks: data =
(data(1), . . . , data(d)). These blocks are processed as follows:

1The newest version of the standard already includes Galois Counter Mode
(along with CBC) as a mandatory mode of operation: http://www.w3.org/TR/
xmlenc-core1/
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Fig. 1. CBC mode of operation with the XML Encryption padding scheme

• An initialization vector iv ∈ {0, 1}8·bs is chosen at
random. The first ciphertext block is computed as

x(1) := data(1) ⊕ iv, C(1) := Enc(k, x(1)). (1)

• The subsequent ciphertext blocks C(2), . . . , C(d) are
computed as

x(i) := data(i) ⊕ C(i−1), C(i) := Enc(k, x(i)) (2)

for i = 2, . . . , d.
• The resulting ciphertext is C = (iv, C(1), . . . , C(d)).
The decryption procedure reverts this process in the obvious

way.

B. XML and Web Services

The Extensible Markup Language [2] defines a structure for
flexible storage and transmission of tree-based data. It is cur-
rently used in Single-Sign On scenarios, custom applications,
or in Web Services [12].

Web Services is a W3C standard used to achieve inter-
process interactions over networks between different soft-
ware applications. The communicating applications use SOAP
messages [11]. SOAP messages are XML-based messages
generally consisting of header and body. The header element
includes message-specific data (e.g. timestamp, user informa-
tion, or security tokens). The body element contains function
invocation and response data, which are mainly addressed to
the business logic processors.

C. XML Security

XML documents often contain data whose confidentiality,
authenticity, and integrity must be protected. Therefore, the
W3C consortium developed standards describing the XML
syntax for applying cryptographic primitives to XML data:
XML Encryption [8] and XML Signature [9].

1) XML Encryption: XML Encryption specifies a method
for achieving confidentiality of the stored XML elements.
In order to encrypt XML data, in most scenarios hybrid
encryption is used: First, the encryptor chooses a session key
k. This key is encrypted using a public-key encryption scheme
(please note that the public-key encryption scheme is out of

Envelope

Header

Security

Body

EncryptedData Id=”enc”

EncryptedKey

DataReference URI=”#enc”

CipherData

ReferenceList

CipherData

Fig. 2. Example of a SOAP message with encrypted data

scope of this paper since we describe an attack on the part
encrypted with a symmetric key). Afterwards, the payload
data is encrypted with a symmetric cipher. For this purpose,
until March 2012, the standard allowed to choose between two
symmetric ciphers, namely AES-CBC and 3DES-CBC.

Figure 2 gives an example of a SOAP message containing
such a hybrid ciphertext. This message consists of the follow-
ing parts related to our next attack description:

1) The EncryptedKey part. This part consists of two
components. The CipherData element contains the
encrypted session key k. ReferenceList contains
references to all EncryptedData elements that can
be decrypted with the session key k.

2) The EncryptedData part. This part contains the
initialization vector iv in a clear followed by the payload
data, encrypted using the session key k.

Let us mention that there may be multiple
EncryptedData elements sharing the same session key.
These elements are referenced using the ReferenceList
element.

A SOAP Web Service receiving such an XML document
processes it as follows. It first decrypts the session key k. Then,
it uses k to decrypt all the parts containing encrypted payload.
Finally, the payload data is parsed with an XML parser and the
whole document is forwarded to the next module or business
process invocation.

It is important to mention that the XML Security processing
module typically does not know, which parts of the decrypted
payload is later processed by the business logic. Thus, it could
also happen that the encrypted payload is decrypted, parsed,
and not processed further.

2) XML Signature: In order to ensure integrity and au-
thenticity of exchanged XML documents, the XML Security
working group defined the XML Signature specification [8]. A
simplified structure of an XML Signature applied to a SOAP
message according to WS-Security [19] gives Figure 3.

The depicted SOAP message includes a function invoca-
tion "MonitorInstances" defined in the SOAP body.
The authenticity and integrity of the SOAP body is ensured
by the XML Signature defined in the SOAP header. The
XML Signature element consists of two mandatory elements:
SignedInfo and SignatureValue. The SignedInfo
element includes an Id-reference pointing to the SOAP body
and a digest value computed over the referenced element.
In order to secure the SignedInfo element, a signa-
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ture value over this element is computed and put to the
SignatureValue element. This is achieved by a public-
key algorithm such as RSA or DSA.

Processing of the given SOAP message would usually look
as follows: The recipient first searches for the referenced
element given in SignedInfo. He computes the digest value
over this element and compares it to the value given in the
DigestValue element. Afterwards, he verifies the signature
value over SignedInfo. At the end, he can execute the
function defined in the SOAP body.

D. XML Signature Wrapping

The XML Signature Wrapping attack [17] compromises
integrity of the signed XML documents. An example of this
kind of attack applied on the message given in Figure 3 shows
Figure 4. In this example, the attacker moves the original
SOAP body to a Wrapper element in the SOAP header. Af-
terwards, he creates a SOAP body with a new Id="attack"
and defines an arbitrary function, e.g. CreateKeyPair.
As the Id of the original SOAP body stays same and the
concerning parts are not altered, the security logic can verify
its integrity and authenticity. The business logic however
invokes the newly inserted function CreateKeyPair.

Let us mention that there exist more sophisticated XML
Signature Wrapping attack techniques. They misuse different
properties of the validation logic [10], [21] or completely
different referencing mechanisms [14].

E. WS-Security Policy

In order to define security properties of the exchanged
SOAP messages, on both server and client side, WS-Security
Policy [16] is used. This specification allows to indicate policy
assertions that apply to Web Services. Policy assertions are
grouped into policy alternatives. A set of policy alternatives

<Policy>
<ExactlyOne>
<All>
<EncryptedParts><Body/></EncryptedParts>

</All>
</ExactlyOne>

</Policy>

Fig. 5. WS-Security Policy defining that the SOAP body in the incoming
message has to be encrypted. However, it does not restrict encryption of other
elements.
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Fig. 6. Encrypted claims about identities are placed into the
EncryptedAssertion element. This element is defined in the Response
element and secured using an XML Signature.

gives a WS-Policy definition. For grouping of policy as-
sertions two XML tags are used: All and ExactlyOne.
All indicates that all child node assertions have to be ful-
filled. ExactlyOne indicates a logical XOR and it con-
tains assertions, from which exactly one has to be fulfilled.
However, most of the Web Services implementations handle
ExactlyOne as a logical OR and thus also accept messages
with more assertions fulfilled.

An example of WS-Security Policy document gives Fig-
ure 5. This Policy definition would enforce the server to
process only the SOAP messages that contain encrypted SOAP
body. It is however important to mention that using this policy
all the analyzed frameworks also accepted SOAP messages
including additional encrypted document parts, e.g. elements
in the SOAP header.

F. Single Sign-On and SAML

The growing number of user identities in Internet has led to
development of different Single Sign-On solutions. These solu-
tions are based on one login-procedure. The users authenticate
only by a trustworthy Identity Provider (IdP). After successful
login, the Identity Provider can issue different tokens for the
user giving him access to Relying Parties (RP). Single Sign-
On can be realized by different standards including OAuth,
OpenID, or Security Assertion Markup Language (SAML) [4].

In the following, we will consider the XML-based SAML
standard. This standard allows to define arbitrary claims
about identities and secure them by applying XML Sig-
nature and XML Encryption. An example of an encrypted
SAML assertion is given in Figure 6. In this figure the
EncryptedAssertion element is stored in a binding
element – in this case in the Response element. Authenticity
and integrity of the whole message are secured using an XML
Signature.

A simplified SAML-based Single Sign-On scenario is de-
picted in Figure 7. In this scenario, a logged-in user first sends
a token request including the desired RP to the IdP (1). The
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Fig. 7. A typical SAML-based Single Sign-On scenario: The user sends
a token request to the IdP. The IdP issues a token for the user, which is
afterwards encrypted and signed. The issued token is sent to the user and
forwarded to the RP.

IdP issues a token for the user including e.g. his rights, roles,
or expiration time. The token is afterwards encrypted and
signed (2). The IdP sends the secured token to the user (3),
who forwards it to the desired RP (4). The RP first validates
the signature over the token and decrypts it. Afterwards, it
evaluates the token and gives the user rights to access his
domain (5).

III. HIGH-LEVEL ATTACK DESCRIPTION

In this section we give a brief attack description. Afterwards,
we show two real-world attack scenarios. Please note that these
scenarios are only exemplary, the attack can also be applied
to other custom applications.

A. Attack Description

The attack on XML Encryption is based on the malleability
of the CBC mode of operation: It allows an attacker, who
is in possession of the ciphertext C = (iv, C(1)), to flip
arbitrary bits in the plaintext m = Dec(C, k) without knowing
the session key k. He can simply achieve this by flipping
appropriate bits in the initialization vector iv.

Changing different bits in the encrypted XML data can lead
to errors in the server processing, which forces the server to
respond with a fault message. These fault messages can have
the following reasons:
• Decryption errors. This error stems from an incorrect

padding. Recall that the last byte of a padded plaintext
must include a valid padding number p (in case of AES
p ∈ {0x01 . . . 0x10}).

• Parsing errors. This error may have two reasons. Either
the plaintext contains an “unprintable“ ASCII character
(XML parser can parse only valid characters, otherwise
it stops processing). The other reason is that the syntax
of the decrypted XML part is not valid. The latter means
that the special escape character 0x38 (&) is not followed
by a valid entity reference, or an element starting with
the bracket 0x60 (<) is not properly closed.

Sending differently adapted ciphertexts to the server and
observing the server responses gives the attacker the possibility
to efficiently decrypt the eavesdropped ciphertext.

Given a ciphertext C = (C(0), C(1), . . . , C(d)), which
contains valid XML data including no escape characters (&),
the algorithm looks as follows. The attacker performs the
attack in d rounds (each ciphertext block is decrypted in each
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Fig. 9. Attack on Web Services: Adversary sends eavesdropped SOAP
message with modified ciphertexts c′ to the Web Service server and observes
the server responses. With each response he learns a few plaintext bits.

different round). In each round i = 1 . . . d, he takes two
ciphertext blocks c = (C(i−1), C(i)) = (iv, C(i)) and with
these two blocks he proceeds as follows (we show an example
in Figure 8):

1) He excludes all the left brackets from the plaintext in
order to overcome the parsing errors originating from
improperly closed elements. To this end, he iterates over
the last iv byte and sends in each iteration the two
blocks c = (iv′, C(i)) to the server. The number of valid
responses gives him the position of the first left bracket.
Afterwards, he can flip the bit in the byte containing ′ <′

to convert it to a different valid character. He repeats this
step until he excludes all the brackets.

2) He sets the last iv byte so that the last plaintext byte
contains 0x01. This gives him a possibility to access all
the proceeding bytes in the block.

3) Now, he is able to decrypt all the bytes in the block
byte-by-byte. Thereby, he uses server error responses
returned by invalid parsing processing.

After execution of these three steps, the attacker has knowl-
edge of vector x(i) = data(i) ⊕ iv (see Section II-A).
Therefore, he would also be able to encrypt arbitrary XML
elements with a slightly adapted algorithm [7].
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B. Attack Scenario: Web Services

The first scenario describes an attack on a Web Service
server and is depicted in Figure 9. In this scenario the adver-
sary first eavesdrops a SOAP message transmitted between the
client and the Web Service server. He modifies the ciphertext
c included in the SOAP message according to the algorithm
described above. He sends the message to the server and
observes its response. He needs only to distinguish between
two response types: fault (0) and valid (1). According to the
response type he is able to learn a few bits of the plaintext
and construct new ciphertexts c′. He repeats this step until he
decrypts the whole encrypted content.

C. Attack Scenario: SAML-based Single Sign-On

The second scenario presents an attack applied in SAML-
based Single Sign-On and is depicted in Figure 10. It can
be executed by an adversary who issues modified ciphertexts,
includes them into the SAML assertions, and sends them
to the RP. If the RP responds with 1 or 0 according to
the message validity, the adversary can distinguish between
valid and invalid ciphertexts. This gives him the possibility
to decrypt the whole assertion or create new ciphertexts with
arbitrary content.

In this scenario we have to consider also an adversary who
is registered by the IdP and is a valid user of the RP. By
applying the attack, this adversary can modify the encrypted
SAML assertion sent from the IdP in order to execute privilege
escalation and e.g. get administrator rights. Please note that in
this case SSL/TLS would be of no help since the adversary is
able to see the forwarded SAML messages.

IV. COUNTERMEASURES

In this section we give an overview of some countermea-
sures against the attack on XML Encryption and we analyze
the scenarios, in which they work.

A. XML Signature

Application of XML Signatures on ciphertexts can ensure
their authenticity and integrity. This standard describes two
types of signatures, namely public-key XML Signatures (which
use classical digital signature schemes) and secret-key XML
Signatures (which use message authentication codes).

Generally, XML Signatures can thwart these attacks if and
only if :
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Fig. 11. XML Signature applied on the encrypted payload in a SOAP
message

1) the attacker is not able to create validly signed messages.
2) the encrypted part cannot be moved to any unsigned part

of the document.
If the application could ensure these two points, the attack
could not be applied. However, in the following we illustrate
that this is not that trivial. For this purpose, please consider
the SOAP message depicted in Figure 11. In this message the
SOAP body contains an encrypted payload, which is signed
using XML Signature and Id-based referencing.

1) Attacker Able to Create Validly Signed Messages: First
problem by application of public-key XML Signatures comes
with a scenario where more parties are allowed to communi-
cate with a Web Service server. Consider for instance there
are two clients E1 and E2 of a Web Service provider, where
both clients can send encrypted and digitally signed messages
to the server. Assume that E1 creates a SOAP message with
encrypted and signed content, and sends it to the server. Now if
E2 wants to learn the contents of this message, then it could
record this message, simply remove the signature, compute
its own signature over the ciphertext, and mount the attack.
The crucial point here is that the server cannot distinguish
whether E2 has encrypted the payload itself, or copied it from
a ciphertext that E1 has created. Still, in the digital signature
setting the server can at least identify the attacker uniquely.

2) XML Signature Wrapping: Another problem with appli-
cation of XML Signatures on ciphertexts is XML Signature
wrapping attack. This attack affects public-key as well as
secret-key XML Signatures.

Figure 12 gives an example of signature wrapping attack
application on the message presented in the previous figure.
In order to execute this attack, the attacker first copies the
authenticated SOAP body into the security header. As the Id
of the SOAP body stays the same, the signature component
is able to validate this element. Afterwards, the attacker
needs only to apply the attack on XML Encryption on the
content of the newly defined SOAP body: he must force the
server to decrypt the content of this element. Thus, he simply
changes the DataReference element in EncryptedKey
and makes it point to the content of the newly defined SOAP
body.

The server would process the depicted message as follows.
It would first validate the XML Signature. Afterwards, it
would decrypt and parse the content of the newly defined
SOAP body. After successful data decryption and parsing,
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apply the XML Encryption attack.

the payload would be processed by the business logic. This
step would most probably fail, since the randomly generated
payload could not be processed by the server’s business logic.
Thus, by applying this attack the attacker must rely on dif-
ferences between fault messages coming from the decryption
processing and the business logic.

We evaluated Apache Rampart2 and JBossWS3 regarding
their resistance against XML Signature wrapping attacks. Our
experiments showed that all basic examples are vulnerable to
simple XML Signature wrapping attacks. Thus, the attacker
could mount the the attack on XML Encryption.

Similar attacks can be executed on SAML. An applica-
tion of the XML Signature wrapping attack on the Guanxi
implementation4 is depicted in Figure 13. Using this attack,
the adversary copies the whole document and extracts its
Signature element. He inserts it into the Object element
of the original document. Afterwards, he is able to construct
arbitrary ciphertexts and apply the attack on XML Encryption
against the RP. This way, he would be able to break integrity
and confidentiality in the federated identity scenarios. More
details on the topic of XML Signature wrapping in SAML are
given in [22].

3) XML Encryption Wrapping: One could say signature
wrapping attacks could be thwart using different countermea-

2Apache Axis2 security module: http://axis.apache.org/axis2/java/rampart
3http://www.jboss.org/jbossws
4http://sourceforge.net/projects/guanxi
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sures. Apache Rampart e.g. uses in its advanced configuration
WS-Security Policy verification, which explicitly checks, if
the SOAP body is signed (this is a generally applicable
countermeasure). This countermeasure makes it impossible to
move the signed SOAP body to another parts of the document.
However, as described in Section II-E, WS-Security Policy
cannot define the maximal number of secured elements. This
gives the attacker an opportunity to force the server to decrypt
additional elements and apply the so called XML Encryption
wrapping attack.

The basic idea of this attack is depicted in Figure 14.
By its application the attacker simply copies the encrypted
payload to any unsigned document part, which does not
violate XML Schema. Afterwards, the attacker creates a new
DataReference inside of the EncryptedKey element
and makes it point the newly created EncryptedData
element (please note that the attacker can also create a com-
pletely new EncryptedKey element). This forces the server
to decrypt both EncryptedData elements. The original
encrypted payload stays in the signed part. Thus, the XML
Signature stays valid, the original payload is decrypted and
parsed, and the server’s business logic processes it without fail-
ures. On the other hand, the newly created EncryptedData
element in the SOAP header is decrypted and parsed. The
business logic does not process it, as it only needs the content
of the SOAP body.

By application of this simple attack the attacker creates a
server oracle, which responds with 0 or 1 depending on the
validity of the ciphertext. Therefore, even encrypted server
responses could simply be recognized and the attack applied.

We tested all Apache Rampart and JBossWS configuration
examples, showing their vulnerability against XML Encryption
wrapping. Moreover, we proved that these attacks are also
applicable to security configurations in SAP gateways.

B. Unifying Error Messages

The possibly most obvious countermeasure to our attack
consists in unifying the SOAP fault messages sent in response
to invalid SOAP request messages so that an attacker can not
distinguish between a decryption error and an application level
error. However, this approach has some serious drawbacks.



At first, meaningful error messages are generally considered
as “good programming practice”. In fact, they are necessary
for developers that have to implement client-side applications
for encryption-enabled Web Services.

Secondly, even with unified SOAP fault messages, there are
additional side-channels that can be exploited for determining
what type of error a certain request message triggered. For
instance, measuring the time consumed until a (unified) SOAP
fault message arrives may already indicate the level in the
application stack at which the error occurred.

Finally, we stress that this countermeasure is not effective
when XML Encryption wrapping attacks as described above
are applicable, since copying the encrypted data to a deeper
level in the SOAP header would exclude them from XML
Schema validation and business logic processing. Thus, the
server would respond with a SOAP fault if and only if the
encrypted data in the SOAP header are incorrect.

C. Other Countermeasures

In this section we describe other countermeasures, which
were proposed by different software vendors.

1) Revocation of Session Keys: By application of the at-
tack on one EncryptedData element the attacker uses for
each server request the same symmetric key. Revocation of
symmetric keys could be considered as a valid countermea-
sure. However, this countermeasure could cause the following
problems:
• It needs to apply serious changes to applications or

libraries.
• It requires a shared state across servers that are working

in a cluster. Even if this state would be achieved, it would
potentially be possible to get some responses back before
all the servers know about the revoked key.

• Sometimes, even a few bits of information are enough
to decrypt an important part of a message. You can e.g.
think of messages including boolean values (“yes“/“no“)
or credit card numbers.

2) Blacklisting Clients’ Public Keys: This countermeasure
would bring similar problems as described above. However,
it would partially solve the public-key signature problems
described in Section IV-A as the not honest clients having
server access would be blocked after sending invalid messages.

3) Inclusion of Signed Nonces: Inclusion of signed nonces
could be seen as another valid countermeasure. However, it
causes similar problems as the above mentioned revocation
of session keys. Moreover, its application includes signature
problems as described in Section IV-A.

4) Blacklisting Clients’ IP addresses: A countermeasure
proposed by some developers is blocking the clients that
already sent a few number of invalid messages causing security
faults. Please note that there are the same drawbacks as in the
countermeasures described above. Moreover, this countermea-
sure does not work if the attacker is able to execute his attack
from machines with different IP addresses. This is a valid
assumption when considering allocation of virtual instances
in cloud scenarios.

Another drawback would be a simple application of Denial-
of-Service attacks. The attacker having the same IP as the hon-
est client could send an amount of invalid messages causing
security errors. This would again be a valid assumption when
considering that attacker and honest client stay in the same
subnet and are accessing a remote server.

5) Decryption only of Signed Elements: As described in
the previous sections, the WS-Policy unfortunately does not
allow to restrict element decryption. This makes it possible
to apply XML Encryption wrapping attacks. Moreover, it is
possible to execute Denial-of-Service attacks by inclusion of a
large number of EncryptedKey elements, which force the
server to execute expensive public-key decryption. Therefore,
we propose inclusion of new policy tags allowing to decrypt
the element only if it is signed.

Please note that application of this countermeasure still
would not solve signature problems as described in Sec-
tion IV-A.

D. Changing Mode of Operation

Finally we would like to highlight some cryptographic coun-
termeasures. One option is to use a symmetric cryptographic
primitive that does not only provide confidentiality, but also
integrity. One option may be to add a message authentication
code (MAC) like HMAC (see [18]) over the ciphertext to the
encrypted message. In contrast to a digital signature, which
can simply be replaced by a different signature, the security
properties of a MAC ensure that it is not possible for an
attacker to modify a ciphertext while keeping the MAC valid.
In this case, our attack becomes impossible. Another option,
which provides the same improvement in security, would be to
replace the CBC mode of operation with a mode of operation
that provides message integrity, like the Galois counter mode
(GCM) [18], for instance.

The XML Security Working Group included already this
mode of operation into the new standard version. The first
implementation can be found in the Apache CXF framework5.

1) Streaming-based XML Encryption processing: Even
when applying message authentication codes, the developers
should pay attention to other side-channel attacks. These can
appear when applying streaming-based XML processing.

Consider an XML security module that accepts an encrypted
byte stream. It decrypts this stream and sends it block-by-block
to a streaming-based parser. The parser processes the incoming
elements and sends them to another processing module. At the
end of the stream the security module checks the MAC over
all encrypted data. Consider that if a decryption or parsing
error occurs, the parser interrupts the message processing and
immediately sends a fault message. Moreover, consider an
attacker who is in possession of a valid encrypted text and is
able to flip the first bits in the plaintext (either by flipping bits
in the initialization vector when applying CBC or by flipping
bits directly in the ciphertext when applying GCM). If the
encrypted text is long enough, the attacker could observe the

5http://cxf.apache.org



server response time differences. Longer response time would
indicate correct payload and failure by the MAC verification.
Shorter response time would indicate an incorrect payload and
a failure by its parsing.

This is a valid assumption also when applying standard
DOM-based (tree-based) parsers [3]. Namely, some DOM-
parsers include an underlying streaming-parser, which is used
for preprocessing of the incoming elements. An example gives
org.apache.xerces.parsers.DOMParser, which is
included as a default parser in JDK. Therefore, developers
should pay attention when implementing modes of operations
including MAC-checking: The encrypted part must always
be completely processed and parsed and the MAC must be
validated afterwards.

V. CONCLUSION

In this paper we analyzed different countermeasures against
the attack on XML Encryption and described several side-
channels, which allow to mount the attack in the Web Services
and Single Sign-On scenarios. For the vendors we proposed
two practical countermeasures.

By applying XML Signatures, the server must not decrypt
any unsigned content. This trivially looking countermeasure
cannot be defined within WS-Security Policy as this standard
misses an assertion describing this processing. We propose the
developers to implement this processing property by default.

Application of public-key XML Signatures alone does how-
ever not work in specific scenarios, where the adversaries
could construct validly signed messages. In these scenarios we
suggest usage of authenticated modes of operations. XML En-
cryption specification already included Galois Counter Mode
of operation, which would fend the described attacks.

Because of the compatibility reasons, the CBC mode of op-
eration is not going to be extracted from the XML Encryption
specification. This motivates us for further research in this
direction. We ask especially what happens if the adversary
intercepts a message containing a GCM-ciphertext, but is able
to enforce the server to decrypt it as CBC-ciphertext and thus
omit integrity validation? Other research steps can lead to the
analysis of the asymmetric algorithms like PKCS#1.5.
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