RUB

Sometimes it's better to be STUCK! SAML Transportation Unit for Cryptographic Keys 28.11.2012

Horst Görtz Institute for IT-Security Chair for Network and Data Security

How to transport cryptographic keys ... if no tamed predator is available

Why transport key material?

ICISC 2012 - The 15th International Conference on Information Security and Cryptology | Seoul, Korea | November 28 - November 30, 2012

Why transport key material?

Web Crypto API

"JavaScript API for performing basic cryptographic operations in web applications"

Why transport key material?

Web Crypto API

"JavaScript API for performing basic cryptographic operations in web applications"

Authenticated Key Exchange

Why transport key material?

Web Crypto API

"JavaScript API for performing basic cryptographic operations in web applications"

- Authenticated Key Exchange
- Combining Identity Management/Federation and Key Exchange

Why choose SAML for key transport?

7

Why choose SAML for key transport?

SAML

"Security Assertion Markup Language"

Why choose SAML for key transport?

SAML

"Security Assertion Markup Language"

 Standard for exchanging security statements (Assertions) about subjects Authentication / Authorization / Attestation / ...

Why choose SAML for key transport?

SAML

"Security Assertion Markup Language"

- Standard for exchanging security statements (Assertions) about subjects Authentication / Authorization / Attestation / ...
- XML-based

RU

Why choose SAML for key transport?

SAML

"Security Assertion Markup Language"

- Standard for exchanging security statements (Assertions) about subjects Authentication / Authorization / Attestation / ...
- XML-based
- Flexible, extensive, extensible

Why choose SAML for key transport?

SAML

"Security Assertion Markup Language"

- Standard for exchanging security statements (Assertions) about subjects Authentication / Authorization / Attestation / ...
- XML-based
- Flexible, extensive, extensible
- Most known usage scenario: Single-Sign-On

Advantages of the proposal Build upon approved technologies

Advantages of the proposal Build upon approved technologies

SAML

Advantages of the proposal Build upon approved technologies

- SAML
- XML

Advantages of the proposal Build upon approved technologies

- SAML
- = XML
- XML Encryption

RUB

Advantages of the proposal Build upon approved technologies

- SAML
- = XML
- XML Encryption
- XML Signature

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Advantages of the proposal Seamless integration

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Advantages of the proposal Seamless integration

• Usage of standard SAML Extension Points

Advantages of the proposal Seamless integration

- Usage of standard SAML Extension Points
- No Schema violation

Advantages of the proposal Seamless integration

- Usage of standard SAML Extension Points
- No Schema violation
- Fully SAML compatible

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Advantages of the proposal Binding keys to assertions

Advantages of the proposal Binding keys to assertions

Assertions offer support for:

Integrity protection through digital signatures

Advantages of the proposal Binding keys to assertions

- Integrity protection through digital signatures
- Confidentiality protection through encryption

Advantages of the proposal Binding keys to assertions

- Integrity protection through digital signatures
- Confidentiality protection through encryption
- Time-bound validity

Advantages of the proposal Binding keys to assertions

- Integrity protection through digital signatures
- Confidentiality protection through encryption
- Time-bound validity
- Detailed issuer and subject information

Advantages of the proposal Binding keys to assertions

- Integrity protection through digital signatures
- Confidentiality protection through encryption
- Time-bound validity
- Detailed issuer and subject information
- Identity binding

Advantages of the proposal Identity and Key federation

Advantages of the proposal Identity and Key federation

Key federation between multiple services

Advantages of the proposal Identity and Key federation

- Key federation between multiple services
- Inseparable Identity Key Binding, beyond service borders

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Advantages of the proposal Message level security

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Advantages of the proposal Message level security

Security at message level

RUB

Advantages of the proposal Message level security

Security at message level

Transport Level Security

ICISC 2012 - The 15th International Conference on Information Security and Cryptology | Seoul, Korea | November 28 - November 30, 2012

RUB

STUCK

STUCK Assertion **structure**

STUCK

Assertion structure

Assertion	
Issuer	
Signature	
Subject	
Conditions	
Advice	
Statement *	
AuthnStatement *	
AuthzDecisionStatement *	
AttributeStatement * Attribute * AttributeValue * PLACE KEY DATA HERE	EncryptedAttribute * EncryptedData
	EncryptedKey *
Mandatory Option A Option B	Unbounded (multiple) Occurrence *

STUCK Proposal: Proof-of-concept Assertion

STUCK Proposal: Proof-of-concept Assertion

STUCK Proposal: Compatibility with SAML Protocols

RUB

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Case study Sec² research project

Case study Sec² research project

Case study Sec² research project

1. Middleware fetches (encrypted) data from untrusted Cloud storage

Case study Sec² research project

1. Middleware fetches (encrypted) data from untrusted Cloud storage

2. MicroSD not in posession of required key (yet)

Case study Sec² research project

- 1. Middleware fetches (encrypted) data from untrusted Cloud storage
- 2. MicroSD not in posession of required key (yet)
- 3. Key is requested with SAMLAttributeQuery (including signed authorization data)

RUB

Case study Sec² research project

- 1. Middleware fetches (encrypted) data from untrusted Cloud storage
- 2. MicroSD not in posession of required key (yet)
- 3. Key is requested with SAMLAttributeQuery (including signed authorization data)
- 4. Key Server responds with signed and encrypted key

Case study Sec² research project

- 1. Middleware fetches (encrypted) data from untrusted Cloud storage
- 2. MicroSD not in posession of required key (yet)
- 3. Key is requested with SAMLAttributeQuery (including signed authorization data)
- 4. Key Server responds with signed and encrypted key
- 5. MicroSD decrypts wrapped key

ICISC 2012 - The 15th International Conference on Information Security and Cryptology | Seoul, Korea | November 28 - November 30, 2012

Case study Sec² research project

- 1. Middleware fetches (encrypted) data from untrusted Cloud storage
- 2. MicroSD not in posession of required key (yet)
- 3. Key is requested with SAMLAttributeQuery (including signed authorization data)
- 4. Key Server responds with signed and encrypted key
- 5. MicroSD decrypts wrapped key
- 6. Middleware decrypts fetched data

RUHR-UNIVERSITÄT BOCHUM

hg Horst Görtz Institute for IT-Security Chair for Network and Data Security

Time for questions

Source:http://www.rhodius-mineralwasser.de

Christopher Meyer

christopher.meyer@rub.de http://armoredbarista.blogspot.com http://www.nds.rub.de