
A Privacy Preserving System for Cloud Computing

Ulrich Greveler, Benjamin Justus, Dennis Loehr
Dep. of Electrical Engineering and Computer Science

Münster University of Applied Sciences
Steinfurt, Germany

Email: {greveler, benjamin.justus, loehr}@fh-muenster.de

Abstract—Cloud computing is changing the way that or-
ganizations manage their data, due to its robustness, low
cost and ubiquitous nature. Privacy concerns arise whenever
sensitive data is outsourced to the cloud. This paper introduces
a cloud database storage architecture that prevents the local
administrator as well as the cloud administrator to learn
about the outsourced database content. Moreover, machine
readable rights expressions are used in order to limit users
of the database to a need-to-know basis. These limitations are
not changeable by administrators after the database related
application is launched, since a new role of rights editors is
defined once an application is launced. Furthermore, trusted
computing is applied to bind cryptographic key information to
trusted states. By limiting the necessary trust in both corporate
as well as external administrators and service providers, we
counteract the often criticized privacy and confidentiality risks
of corporate cloud computing.

Keywords-Access control, Data security, Software
architecture, Outsourcing, Privacy.

I. INTRODUCTION

While the storage of corporate data on remote servers is
not a new development, current expansion of cloud comput-
ing justifies a more careful look at its actual consequences
involving privacy and confidentiality issues.

We introduce in this paper a secure privacy preserving
cloud database storage architecture. We focus on the Soft-
ware as a Service [1] kind of utility computing model.
The proposed architecture addresses the important security
question: ‘To what extent, an organization has to trust client
users, system administrators and service providers?’

Remote access to corporate networks is already an essen-
tial aspect of the corporate work environment. Client systems
are used by employees both inside the corporate Intranet,
and remotely from home. In both scenarios, applications
require effective requests and use of Cloud-based computing
resources on the fly.

Privacy concerns arise whenever sensitive data is out-
sourced to the cloud. By using encryption, the cloud server
(i.e. its administrator) is prevented from learning content in
the outsourced databases. But how can we also prevent a
local administrator from learning the database content. And
how can we avoid scenarios such as: employees using cloud
applications may learn more than it is necessary to perform
their respective duties?

As an illustration, an organization may want to specify
rules limiting request-per-day for call center employees to
100 client contacts. Such restrictions prevent download of
the whole (customer) database. Our contribution in this pa-
per is a system architecture that allows sufficient and flexible
restriction writing. And in doing so, local administrators as
well as cloud administrators are not able to change the access
rules after an application is launched.

A. Related Work

Maheshwari et al. [2] describe a way of securing larger
untrusted storage such as a hard-disk. This solution needs a
small secure storage for decryption keys. A practical solution
based on this approach is the Microsoft Bitlocker [3], which
uses TPM (Trusted Platform Module[4]) chip as a storage
for decryption keys. Our system is based on Linux operating
system. We use the TPM sealing function with a key-file for
dm-crypt with LUKS[5].

The de facto standard for access control languages at
present is the eXtensible Access Control Markup Language,
or short XACML[6]. Using XACML, one is able to realize
a fine grained and flexible access control policy. Because
XACML is XML based, we can embed XML-Signatures
[7] to secure submission of new access-control-rule-files.

Kubiatowicz et al. [8] describe an architecture for en-
crypted persistent storage in the Cloud called OceanStore;
Sadeghi et al. [9] describe a technique through usage of a
tamper-proof hardware token. This techniques applies to a
cloud service provider which are based on trusted computing
platform. Another project is from Pearson et al. ([10], [11])
that combines some of the previous techniques. The key idea
is the creation of a Privacy Manager, and a role represented
by a Trusted Platform Module. The PrimeLife project [12]
has developed a system that combines the PRIME privacy
technologies with XACML access control. However, all
these systems do not address safeguards against internal
attackers.

While in general an employee cannot access all the data
stored on the cloud, there often exists in a company at least
one privileged role with unlimited administrative accesses.
Our proposed cloud database storage architecture provides
data privacy without the need to trust corporate administra-
tors as well as external cloud administrators. In the rest of the



paper, we shall frequently bring up the following example
as a way of describing the practical benefits of our system:
A company have call-in client contacts organized over an
external call-center. We would like to limit the access-count
of readable client files towards external employees in order
to reduce the risk of losing sensitive data.

B. Outline

This paper is organized as follows. In section II, we give
an overview over the technologies we use in the system.
Section III and IV describes the system components in
details. In section V, we discuss involved security factors
and section VI shows how we may improve the system in
the future.

II. BACKGROUND ON RELATED TECHNOLOGIES

In this subsection we give an overview of the technologies
used in the proposed system. These are in particular the
Extensible Markup Language (XML) based standards XML-
Encryption, XML-Digital-Signatures and XACML. More-
over, we utilize the Trusted Platform Module (TPM) and
use homomorphic encryption.

1) XML: The Extensible Markup Language (XML) is
designed for Internet Application uses. Generally, the spec-
ification [13] describes a way to encode information in a
plain text file. The file format is both machine and human
readable. XML document encoding was designed in 19961

by the World Wide Web Consortium[14].
2) XML-Encryption: The Extensible Markup Language

Encryption Syntax and Processing [15] is an extension to the
XML syntax. The syntax makes embedding of encryption
within XML files possible. The XML-encryption includes
the following features: encryption of a whole XML docu-
ment, encryption of a single element and the content of an
element. Furthermore, encryption upon encryption is also
possible. Geuer-Pollmann[16] introduced a way of hiding
elements by position shifting in a XML document.

3) XML-Signature: The standard XML Signature Syntax
and Processing [7] is maintained by World Wide Web
Consortium. It allows signature embedding within a XML
file.

4) XACML: The eXtensible Access Control Markup Lan-
guage (XACML) is developed by the OASIS [17] com-
mittee. XACML is an XML based access control language
[6]. It defines a policy format, also a request and response
message format. Furthermore, XACML allows users to
define policies, combination of policies and attribute based
restrictions which we can use to to realize our system and
define request limits in addition to the four-eyes principle
XACML file.

1http://www.w3.org/TR/WD-xml-961114.html

Table I
ROLE OVERVIEW

Role Name Identifier Rights

System-Administrator A backup encrypted data &
setup Encryption Proxys

XACML editor E1, E2, ..., En develop and activate
new access rules

Developer D create new requests

Employee/Worker W1,W2, ...,Wm access a limited amount
of data sets

5) Trusted Platform Module: The Trusted Computing
Group (TCG) proposed a trust model where each device
is equipped with a hardware root-of-trust associated with
the platform that can measure integrity metrics and may
confirm these metrics to other parties. Regarding PC or
server hardware the hardware chip is called the Trusted
Platform Module (TPM) and the process of reporting the
integrity of a platform is known as remote attestation. TPM
has a secure non-volatile memory to store RSA-keys and can
bind a file to a specific hardware state. Moreover, a software
based Trusted Platform Module [18] was proposed. In such
a way the Infrastructure as a Service (IaaS) systems may
offer TPM-like functions in a virtual environment.

III. PROPOSED SYSTEM CONCEPT

We aim to build a secure system that can fend off
both external and internal attackers2. Many previous work
deal with issues related to external attackers. Our system
combines many existing techniques which we explain in the
following sections. We summarize the interaction roles of
the system in Table I.

Data availability has a very high priority in any company
operations. In our system, all data are stored encrypted. The
backup of the database is performed regularly by the cloud
service, in addition we require a backup of the Encryption
Proxies with the corresponding decryption keys for the
system integrity.

We automate the backup procedure for Encryption Proxies
by establishing system integrity first, then exchanging the
decryption keys over a secure channel. All session keys
are TPM sealed. By comparing specific PCR values, we
are able to attest the integrity between identical hardware.
And only if both Encryption Proxies have the same state
(same hardware, software, XACML file and known database
services), the exchange of their key material can take place.

Using XACML, our system not only can limit the number
of queries q by an employee Wj , it is also possible to
setup a fine grained access control structure. XACML editors
should follow the what-need-to-know principle. With respect
to confidentiality, employees must only access what they

2Currently we work on a prototype for our System and make this
prototype available at www.daprim.de.



need in their jobs (so system administrators do not need
to access the productive database. In particular, we want
to avoid the possibilities of employees copying the entire
database.

With this in mind, the process of integrating a new
function in the system is as follows. We illustrate this by
considering our old example: design a new per-salesman
business volume request for the call center. First a devel-
oper D has to design the new request and sends it to an
editor. Next a XACML trusted editor Ei (among all editors
M = {E1, E2, ..., En}) integrates the request and sets up
the access rights for the new request. After integration and
setting up the new rules, the new XACML file is signed
and sent to another editor Ei 6= Ej . The second editor then
checks the XACML file and after verification signs the file
next.

The new access control file can now be distributed over
the Encryption Proxies. An Encryption Proxy accepts a new
XACML file on the condition: the file is signed by two
(or more) editors and all their signatures are good. If the
file is not proper, or correctly signed, the system rejects the
new file and falls back to the current rights (for availability
reasons).

The system administrator A has the role of setting up an
environment, and a base system for the encryption proxy. At
this stage, the system administrators have privileges of doing
anything they like in the system. The system afterwards
is not anymore modifiable except for those unmeasured
configurations. This is the post-system setup stage, in which
system-administrators A have the tasks of cloning new
encryption proxies (same hardware, same software and same
configuration) and managing the configuration files. The
system administrators have for each proxy an admin-panel,
so he can submit new (valid-signed) XACML-files, change
the administration credentials (for the admin-panel), and to
edit lists of used cloud databases.

A. System Architecture Details

The productive database is stored in the cloud, and our
proposed architecture aims to protect the content of the
database. The system consists of a Data Management,
Encryption Proxy and a User Interface. The cloud provides
database services and plays the role of data management.
The size of the cloud is not restricted, for example that our
system would work on a private cloud or single database
server.

The content of the productive database is encrypted. The
user privacy and confidentiality is achieved because the
cloud have no access to the original database content. The
clients are not bound to a single Encryption Proxy, and
it is also possible to use a load balancer to enhance the
performance of the system.

The productive database includes a meta data table where
meta information of each user’s transactions are stored. For

User
Client

Encryption 
Proxy

Secure 
Storage

User
Client

User
Client

TPM

Cloud

Figure 1. System Overview

example, the table could contain a counter which holds the
number of service request by a client. This information can
be used in the case, when the system is designed to limit the
number of service request by a single or a group of clients.
A user is not bound to a single encryption proxy, and a load
balancer can be used to distribute work load over several
proxies. The meta-table has to be signed for protection
against replay attacks from cloud administrators. The signing
operation can be achieved by the TPM Quote functionalities.
When signing, the TPM quote contains information about
the hardware state and the status of request tables.

The encryption proxy is the key part of the system.
It provides user access to the (unencrypted) data. The
encryption proxy acts as an intermediary between cloud and
users (see figure 1). An encryption proxy also serves secure
data storage. The secure storage is achieved by the use of
a full disk encryption with a TPM protected key-file. The
storage is dedicated to the use of data management. All other
information are encrypted and stored in external data storage
(‘in the Cloud’).

IV. ENCRYPTION PROXY

Figure 2 gives a detailed view of the encryption proxy.
A clarification of the notations we use in this section: [x]τ ,
{x}τ , and [[x]]τ mean respectively asymmetric encryption
of x, signing of x, and homomorphic encryption[19], [20]
of x using the key τ .

The Linux-based encryption proxy has three parts: a user-
engine, a rule-engine, and a secure storage. TPM is used to
provide secure data storage. The TPM measures and stores
the system BIOS boot in PCR 0-7, IMA Grub in PCR 8-
9 and 12-14 and IMA-kernel in PCR 10. PCR 10 reflects
any program alteration in the system. In addition, the system
provides no login shell.

TPM measurements by themselves do not stop the system
from insecure operations. The TPM sealing function binds
data to a secure state. In order to carry out the sealing



Rule Engine

Encryption Proxy

TPM

Secure Storage

Cloud

DB

DB

Web 
Interface

User Engine

User 
Client

Content:
Keys
DB configuration
XACML-file
Admin-Panel credentials
List of trusted XACML-Keys

Content:
Productive database
user credentials
metadata table

Figure 2. Encryption Proxy View

functions, the TPM binds on the states which are represented
by all the PCRs. Since Boot-up decryption of the whole
secure storage takes long, we propose transparent disk
encryption dm-crypt with LUKS[5]. This allows decryption
only on-demand and reduces time consumption while the
system is booting up (in contrast to desealing the database
on start-up).

In addition, we need an access control language such
as XACML for the rule-engine. XACML enables us to
have complex access rights together with XML-Signatures.
We can specify rules to limit the daily requests for call
center employees (as stated in the introduction) and prevent
download of the whole database. As an illustration, we
added in figure 3 a readable XACML document with two
signatures, which are similar to those used in our system.

The rule-engine uses its secure storage to store data
management information (e. g. realize the organization of
the data within the cloud). In the rule-engine, the first
request fires the decryption signal to TPM to access its
secure storage. This will only succeed if no PCR has
changed since the creation of the database. Only the content
of the secure-storage is changeable within the encryption
proxy. Furthermore only the XACML-file, the admin-panel
credentials, the list of trusted XACML-Editors M and the
credentials for the used cloud databases are changeable.

Figure 2 shows a detailed overview of a user request. A

user here interacts with the webinterface of the system. If
the webinterface needs some information from the system,
it sends a request req together with the session ID SID.
Communication to the user-client is over a secure channel
(TLS).

User-client UC afterwords creates a XML-RPC request
to the user-engine UE. This XML-RPC consists of the
credentials cred and the request from webinterface. To
secure the request, all parts are encrypted (with XML-ENC)
and the whole request {...}UC is signed (XML-DSIG) by
the UC. The credentials are encrypted with the user-engine
key [cred]UE consequently the req from the webinterface is
encrypted with the rule-engine RE key [req]RE .

After receiving a request, the user-engine checks the
signature. If the signature is genuine, the system will decrypt
the user credentials cred. The user-engine next checks the
credentials. The user-engine appends the UserID UID and
the GroupID GID to encrypted requests and forwards it to
the rule-engine.

Next the rule-engine looks up the access control file
for allowed functions related to UID (or GID). When a
function P is found, the rule-engine also ascertained the
used fields f . With that the RE search in the secure-storage
for the used database d and the decryption keys kf . Next
the RE calculates the computation request for the database
P (f) and sends the request to the cloud database.



1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”>
<P o l i c y xmlns = . . . P o l i c y I d =” p a p e r ”

3 RuleCombiningAlgId =” u r n : o a s i s : . . . ”>
<D e s c r i p t i o n>

5 Th i s i s an example XACML− f i l e
< / D e s c r i p t i o n>

7 <T a r g e t>
<S u b j e c t s> <AnySubjec t /> < / S u b j e c t s>

9 <R e s o u r c e s> <AnyResource /> < / R e s o u r c e s>
<A c t i o n s> <AnyAction /> < / A c t i o n s>

11 <T a r g e t>
. . .

13 <Rule R u l e Id =” . . . ” E f f e c t =” P e r m i t ”>
<D e s c r i p t i o n>

15 Th i s i s an example r u l e
< / D e s c r i p t i o n>

17 <T a r g e t>
<S u b j e c t s> <AnySubjec t /> < / S u b j e c t s>

19 <R e s o u r c e s> <AnyResource /> < / R e s o u r c e s>
<A c t i o n s> <AnyAction /> < / A c t i o n s>

21 < / T a r g e t>
<C o n d i t i o n>

23 . . .
< / C o n d i t i o n>

25 < / Rule>
. . .

27 < / P o l i c y>
<S i g n a t u r e i d =” s i g 1 ”>

29 <S i g n e d I n f o> . . .< / S i g n e d I n f o>
<S i g n a t u r e V a l u e> . . .<S i g n a t u r e V a l u e>

31 <KeyInfo> . . .<KeyInfo>
< / S i g n a t u r e>

33 <S i g n a t u r e i d =” s i g 2 ”>
<S i g n e d I n f o> . . .< / S i g n e d I n f o>

35 <S i g n a t u r e V a l u e> . . .<S i g n a t u r e V a l u e>
<KeyInfo> . . .<KeyInfo>

37 < / S i g n a t u r e>

Figure 3. Structure of an XACML file with two signatures.

To fulfill the request, the cloud service calculates now the
function P ([[f ]]kf ) and sends it back to the RE. RE uses
now the Key kf to decrypt the result and generate a XML-
RPC response. The calculated result P (f) is then XML-
encrypted with the key of the UC and signed by the RE
{[P (f)]UC}RE . After that it will be sent to the UE that
pass through this response to the UC. User-client checks
the signature of the response and decrypts it. To the end the
response is sent to the web interface. So the user has his
new responses.

V. CONCLUSION

Data security and privacy is one of the biggest challenges
in Cloud Computing. Cloud data must be protected not only
against external attackers, but also currupt insiders. Our
proposed system follows the information-centric approach
which aims to make cloud data self-intelligent. In this
approach, cloud data are encrypted and packaged with a
usage policy. The data when accessed will consult its policy,
create a virtualization environment, and attempt to assess
the trustworthiness of the data environment (using Trusted
Computing).

Our contribution in this paper is a privacy preserving
database storage architecture. Such a system is often de-
sirable in a corporate setting, in which database containing
sensitive information need to be protected not only against
external adminstrators, service providers, but also local
adminstrators. Our system also allows via machine readable
rights expressions depth control over information that is
alloted to a particular user.

VI. FUTURE WORK

While vulnerabilities regarding the confidentiality of data
outsourced to the cloud can easily be addressed through the
adoption of industry standard encryption technologies, the
creation of complex machine readable access rights to the
decryption keys becomes a challenging problem. The syntax
of XML-based rights expressions is complicated and obscure
when the user-related conditions become sophisticated. The
functionality of being able to handle a wide variety of
possible access scenarios is typically built into any rights ex-
pression language, but it is often difficult to cleanly partition
out those subsets needed by a particular privacy preserving
application. How to efficiently generate rights expressions
reflecting the requirements of an organization and being
secure at the same time becomes a future challange.

REFERENCES

[1] H. Hacigümüş, B. Iyer, and S. Mehrotra, “Providing database
as a service,” in Proceedings of the International Conference
on Data Engineering, Los Alamitos, CA, USA, 2002.

[2] U. Maheshwari, R. Vingralek, and W. Shapiro, “How to
build a trusted database system on untrusted storage,” in
Proceedings of the 4th USENIX Symposium on Operating
System Design and Implementation, Berkeley, CA, USA,
2000.

[3] N. Ferguson, “AES-CBC+ Elephant diffuser
A Disk Encryption Algorithm for Windows
Vista,” Microsoft, 2006. [Online]. Available:
http://download.microsoft.com/download/0/2/3/0238acaf-
d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf

[4] Trusted Computing Group, TPM Main Specifica-
tion Version 1.2, Revision 116, 2011. [Online].
Available: http://www.trustedcomputinggroup.org/resources/-
tpm main specification

[5] C. Fruhwirth, “LUKS On-Disk Format Specifi-
cation Version 1.1,” 2005. [Online]. Available:
http://code.google.com/p/cryptsetup/

[6] OASIS XACML committee website, 2011. [Online]. Available:
https://www.oasis-open.org/committees/xacml/

[7] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and
E. Simon, XML Signature Syntax and Processing
(Second Edition), D. Eastlake, J. Reagle, D. Solo,
F. Hirsch, and T. Roessler, Eds., 2008. [Online]. Available:
http://www.w3.org/TR/xmldsig-core/



[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao, “Oceanstore: an architecture for global-scale
persistent storage,” SIGOPS Oper. Syst. Rev., vol. 34, pp. 190–
201, November 2000.

[9] A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-based
cloud computing,” in Trust and Trustworthy Computing,
A. Acquisti, S. Smith, and A.-R. Sadeghi, Eds. Springer
Berlin / Heidelberg, 2010, vol. 6101, pp. 417–429.

[10] S. Pearson, Y. Shen, and M. Mowbray, “A privacy manager
for cloud computing,” in Cloud Computing. Springer Berlin
/ Heidelberg, 2009, pp. 90–106.

[11] M. Mowbray, S. Pearson, and Y. Shen, “Enhancing privacy
in cloud computing via policy-based obfuscation.” Springer
Berlin / Heidelberg, 2010, pp. 1–25.

[12] C. Ardagna, S. De Capitani di Vimercati, S. Paraboschi,
E. Pedrini, and P. Samarati, “An XACML-based privacy-
centered access control system,” in Proceedings of the first
ACM workshop on Information security governance. New
York, NY, USA: ACM, 2009, pp. 49–58.

[13] T. Bray, J. Paoli, E. Maler, F. Yergeau, J. Cowan,
and C. M. Sperberg-McQueen, Eds., Extensible Markup
Language (XML) 1.1 (Second Edition), 2006. [Online].
Available: http://www.w3.org/TR/xml11/

[14] World Wide Web Consortium (W3C), 2011. [Online].
Available: http://www.w3.org/

[15] T. Imamura, B. Dillaway, and E. Simon, XML Encryption
Syntax and Processing, D. Eastlake and J. Reagle, Eds., 2002.
[Online]. Available: http://www.w3.org/TR/xmlenc-core/

[16] C. Geuer-Pollmann, “Xml pool encryption,” in Proceedings
of the 2002 ACM workshop on XML security. New York,
NY, USA: ACM, 2002, pp. 1–9.

[17] Organization for the Advancement of Structured
Information Standards(OASIS), 2011. [Online]. Available:
http://www.oasis-open.org/

[18] M. Strasser and H. Stamer, “A software-based trusted plat-
form module emulator,” in Trusted Computing - Challenges
and Applications. Springer Berlin / Heidelberg, 2008, pp.
33–47.

[19] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the 41st annual ACM symposium on
Theory of computing. New York, NY, USA: ACM, 2009,
pp. 169–178.

[20] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan,
“Fully homomorphic encryption over the integers,” in Ad-
vances in Cryptology EUROCRYPT 2010, H. Gilbert, Ed.
Springer Berlin / Heidelberg, 2010, vol. 6110, pp. 24–43.


