
Bachelor Thesis

Automatic Recognition, Processing and
Attacking of Single Sign-On Protocols with

Burp Suite

Tim Guenther

Date: 12/10/2015
Supervisor: Prof. Dr. Jörg Schwenk

Advisor: Dipl.-Ing. Vladislav Mladenov, M. Sc. Christian Mainka

Ruhr-University Bochum, Germany

Chair for Network and Data Security
Prof. Dr. Jörg Schwenk

Homepage: www.nds.rub.de

www.nds.rub.de

i

Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnliche Fassung bereits für eine andere Prüfung an der
Ruhr-Universität Bochum oder einer anderen Hochschule eingereicht habe.

Ich versichere, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen be-
nutzt habe. Die Stellen, die anderen Quellen dem Wortlaut oder dem Sinn nach entnommen sind, habe ich
unter Angabe der Quellen der Entlehnung kenntlich gemacht. Dies gilt sinngemäß auch für gelieferte Ze-
ichnungen, Skizzen und bildliche Darstellungen und dergleichen.

Ort, Datum Unterschrift

ii

Acknowledgements

I want to thank Context Information Security Ltd., especially Christian Becker, Sven Schlüter, Jacek Groth
and Bernhard Gomig, who supported me throughout the thesis. A special thanks goes to my advisors at the
Chair for Network and Data Security, Vladislav Mladenov and Christian Mainka. They helped me with their
enormous knowledge about Single Sign-On (SSO) and this work would not be possible without them. Their
willingness to answer hundreds of mails was awesome. Last but not least, thanks to my lector Katherine
Abercrombie.

iii

Abstract
EsPReSSO does not only wake tired people all over the world but is now also a simple tool to use for
recognition and attacking of Single Sign-On (SSO).
Single Sign-On is supported by a huge amount of web services and web applications. The major protocols
are SAML, BrowserID, OpenID and the OAuth based protocols, namely OpenID Connect, Facebook Con-
nect and Microsoft Account. In order to help researchers to distinguish between these protocols, EsPReSSO
offers an automatic identification and presentation of the major protocols by analyzing the browser’s HTTP
traffic. Moreover, with the integration of the famous web service attacking tool, WS-Attacker [1], it is possi-
ble to attack SAML with over 200 vectors. This thesis will present the fundamentals required to understand
EsPReSSO and its internal structure.

KEYWORDS: Burp Suite, Single Sign-On, Recognition, OAuth, OpenID Connect, Facebook Connect,
Microsoft Account, OpenID, BrowserID, SAML, Signature Faking, Signature Wrapping

Contents

List of Figures . ix
List of Tables . x
List of Acronyms . xii

1. Introduction 1

2. Foundations 3
2.1. XML - Extensible Markup Language . 3
2.2. JSON - JavaScript Object Notation . 3
2.3. JWT - JSON Web Token . 4
2.4. The Basics of SSO - Single Sign-On . 5
2.5. Researched SSO Protocols . 5

2.5.1. Non-OAuth Protocols . 6
2.5.2. OAuth-Family Protocols . 6

2.6. Burp Suite . 7
2.7. Related Work . 8

3. EsPReSSO User Interface 9
3.1. Burp Suite Proxy . 9
3.2. SSO History . 10
3.3. Options . 11
3.4. Help . 12
3.5. Editors . 13
3.6. Attacker . 14

4. Implementation 17
4.1. Compiling and Loading the Extension . 17
4.2. System Setup . 18
4.3. Extending Burp Suite . 18
4.4. Internal Structure . 18

4.4.1. User Interface . 19
4.4.2. Scanner . 21
4.4.3. Editors . 26
4.4.4. Attacker . 28
4.4.5. Logging . 31
4.4.6. Utilities . 32

4.5. Extensibility . 33
4.5.1. Extend the GUI . 33
4.5.2. Extend a new Protocol in the Scanner . 34
4.5.3. Extend a new Attack in the Attacker . 34

4.6. Evaluation . 36

Contents vi

4.7. Limitations . 39

5. Conclusion 41

A. Appendix 43
A.1. Source Code of EsPReSSO . 43
A.2. License . 43
A.3. Dependencies . 43

Bibliography 44

List of Figures

2.1. XML example . 3
2.2. JSON example . 4
2.3. Encoded JWT Element . 4
2.4. Encoded JWT Header, Payload, Signature . 4
2.5. Abstract Single Sign-On Protocol Flow . 5

3.1. The Burp Suite Proxy HTTP history. 9
3.2. EsPReSSOs Full History, displays all recognized protocols. 10
3.3. Select ’Analyse SSO Protocol’ to open a new tab with all inherent protocols. 11
3.4. The Options tab. 11
3.5. The Help tab. 12
3.6. The SAML Editor tab. 13
3.7. The JSON Editor tab. 13
3.8. The JWT Editor tab. 13
3.9. The workflow in the Attacker tab for Signature Faking. 14
3.10. The workflow in the Attacker tab for Signature Wrapping. 15

4.1. Compile the Package form Source, without JUnit tests. 17
4.2. Initialization Output of EsPReSSO . 17
4.3. Burp Suite API . 18
4.4. The registered interfaces for the Burp Suite API . 19
4.5. The abstract User Interface setup. 19
4.6. The abstract UIHistory setup. 20
4.7. The Scanner and important methods. 21
4.8. The SSO Protocol classes. 22
4.9. A template message editor with all necessary methods. 26
4.10. The listeners for code change events. 28
4.11. The Attacker internal structure. 29
4.12. The logging utility. 31
4.13. The utilities package. 32
4.14. Add a new tab to the EsPReSSO GUI . 33

List of Tables

4.1. Software versions. 18

A.1. Dependencies, licenses and copyrights . 43

List of Acronyms

General

API Application Programming Interface

EsPReSSO Extension for Processing and Recognition of Single Sign-On

HTML Hyper Text Markup Languages

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

IT Information Technology

JSON JavaScript Object Notation

JWT JSON Web Token

SSO Single Sign-On

SAML Secure Assertion Markup Language

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

XRDS Extensible Resource Descriptor Sequence

Single Sign-On related

DTD Document Type Declaration

IdP Identity Provider

SP Service Provider

XXE XML External Entity

Organisations

IETF Internet Engineering Task Force

OASIS Organization for the Advancement of Structured Information Standards

W3C World Wide Web Consortium

1. Introduction

A common authentication mechanism is a combination of username and password which can be hard to

remember as far as it chosen in a secure way1. With each reuse of a password, the difficulty of password

management increases. A solution to reduce the password reuse is Single Sign-On (SSO), a technique which

allows user to login with the same credentials over multiple websites. The authentication process is delegated

to an Identity Provider (IdP), such as Facebook, Microsoft, Twitter or Google and makes it therefore easier

for users to log in to web applications using their existing accounts. The technologies and protocols used

by the IdPs are partly closed or open source or not documented and considering the fact that some of

the protocols are based on the same structures and behaviors makes them therefore hard to distinguish

and classify. The Burp Suite Extension for Processing and Recognition of Single Sign-On (EsPReSSO)

provides support for penetration testers and researchers to identify and classify SSO protocols as well as

attack protocols manual and/or automatically. To the best of our knowledge, there is no tool, which can add

support to identification process of SSO protocols.

Contributions. The main contributions by EsPReSSO are:

I Recognition of the protocols SAML, BrowserID, OpenID, OAuth, OpenID Connect, Facebook Con-

nect and Microsoft Account.

I A visualization of the detected protocols integrated in Burp Suite, as well as a user interface designed

for SSO protocols.

I Editors to view and modify special encoded formats such as SAML, JSON and JWT.

I Integration of the WS-Attacker [1] to allow over 200 automatic, semi-automatic and manual attacks

on SAML.

Structure. This thesis is structured as follows:

I Chapter 2 provides the foundations for understanding the implementation of EsPReSSO and is a

starting point for further research. The topics discussed are Single Sign-On in general, the basic

technologies such as XML, JSON and JWT as well as the focused protocols and Burp Suite.

I Chapter 3 illustrates the User Interface (UI) of EsPReSSO and the workflow with screenshots of the

extension. Every aspect and feature is explained in detail.

I Chapter 4 explains the implementation and internal structure of EsPReSSO. The chapter starts with

a description of a guide to extend Burp Suite, followed by the internal structure, a tutorial on the

extension of EsPReSSO, an evaluation of the Scanner, as well as the limitations.

I Chapter 5 provides the conclusion and a look at the future development of EsPReSSO.

1The term secure is in this case referred as a random string containing upper- and lowercase characters, numbers and symbols,
with a length greater then 8 characters [2].

2. Foundations

The following section presents a short overview of the standards and technologies used by the SSO protocols.

This chapter provides the reader with the foundation for further research and should help to understand the

user interface and implementation of EsPReSSO.

2.1. XML - Extensible Markup Language

Extensible Markup Language (XML) is a data description language, which is standardized by the World

Wide Web Consortium (W3C). XML is widely accepted within the IT industry and used by applications,

such as Android [3] and Microsoft Office [4]. XML consists roughly of tags or nodes, attributes, and data.

Figure 2.1, describes an example XML structure.

<?xml version="1.0" encoding="UTF-8"?>
<Standards>

<Standard id="1">
<type>RFC</type>
<number>5849</number>

</Standard>
<Standard id="2">

<type>EMAC</type>
<number>262</number>

</Standard>
</Standards>

Figure 2.1.: XML example

The root node of the XML document is <Standards> and enclosed all elements. the children of the root

node are identified by the tag <Standard>. The tag has additionally an attribute, which contains the id

of the object. The tags <type> and <number> are containing the data.

For further information read the W3C recommendation [5].

2.2. JSON - JavaScript Object Notation

JavaScript Object Notation (JSON) is based on a subset of the EMACScript Standard 262 [6] which specifies

a human-readable data-interchange format. The format is language independent and based on a collection

of name/value pairs and ordered list of values. The structure has equivalents in every modern programming

2.3 JWT - JSON Web Token 3

language which makes it a good choice for communicating in the world wide web. Figure 2.2 shows a

representation of Figure 2.1 as JSON object.

{
"Standards" : {

"Standard": {"type" : "RFC", "number" : 5849},
"Standrad": {"type" : "EMAC", "number" : 262}

}
}

Figure 2.2.: JSON example

2.3. JWT - JSON Web Token

JSON Web Token (JWT) is, as described in RFC 7519 [7], a URL-safe, compact and JSON-based format

for the exchange of claims between web applications. The payload can be encrypted by a JSON Web

Encryption [8], or integrity protected with a JSON Web Signature [9].

The format consists of three Base641 encoded strings. The strings are than concatenated with a dot, as

demonstrated in Figure 2.3.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZS
I6IlRpbSBHdWVudGhlciIsIndvcmsiOiJXcml0aW5nIFRoZXNpcyJ9.-axL6pTuJ0ZDz7xX
eMMkQ8l7k3Egtbet0d0tszY_g84

Figure 2.3.: Encoded JWT Element

The first part of the JWTis the header which describes the algorithm used for the signature and the token type.

The next part describes the payload, a simple JSON object with standard fields. The signature is the last ele-

ment and in this case a HMACSHA256(base64UrlEncode(header)+’.’+base64UrlEncode(payload),

secretValue)2. Figure 2.4 presents the three decoded parts of a JSON Web Token.

{"alg":"HS256", "typ":"JWT"}

{"sub":"1234567890", "name":"Tim Guenther", "work":"Writing Thesis"}

6b 12 fa a5 3b 89 d1 90 f3 ef 15 de 30 c9 10 f2
5e e4 dc 48 2d 6d eb 74 77 4b 6c cd 88 3c

Figure 2.4.: Encoded JWT Header, Payload, Signature

1Base64 encoding maps the binary representation of a string to 64 ASCII characters [10].
2HMAC stands for keyed-hash message authentication code [11]. SHA256 is the used hash algorithm.

2.4 The Basics of SSO - Single Sign-On 4

2.4. The Basics of SSO - Single Sign-On

Registrations and login are important security mechanisms on the Internet today. A website where users

have to identify themselves, for example for finacial transactions or accessing private content such as mails,

profiles or photos, needs a kind of authentication or sign-on process. The SSO concept was developed in

order to facilitate registration processes for both users and developers. Without SSO, the user has to register

an individual account for each site, which increases the password management effort.

Identity Provider Client Service Provider

GET Resources
Token Request

Token Request

Authentication

Authentication

Token

Token

Resources

Figure 2.5.: Abstract Single Sign-On Protocol Flow

SSO describes how a sign-on process could be

shared by numerous websites. The idea consists

of to two different servers (Identity Provider (IdP)

and Service Provider (SP)), and a user (Client).

Figure 2.5 illustrates a specific example of a SSO

scenario. The protocol sequence starts with the

client trying to access a restricted resource from the

Service Provider. The SP requests a login token.

This token request is then forwarded to the Identity

Provider, on which the actual login, and the authen-

tication of the user, is conducted. In the next step

the IdP generates a token for the client, which is af-

terwards used to grant access and validate the users identity.

In the case of SSO the terms authentication, for instance verifying ones identity, and authorization, for

instance verifying ones right to access a resource, often overlap but must be considered completely different.

2.5. Researched SSO Protocols

The investigated Single Sign-On protocols can be divided into two groups. The first group includes all

protocols that are not based on OAuth, such as OpenID, SAML and BrowserID. The protocols in the second

group are based on the authorization protocol OAuth. These protocols make use of OAuth typical parameters

and behaviors. This intersection between the protocols increases the difficulty to distinguish and to analyze

them. The following section provides a brief overview and guidance for further research. Each subsection

is structured as follows: an introduction with a reference to the official documentation, a short overview

over the used technologies and possible dependencies on other protocols. A common characteristic between

all protocols is the data exchange with HTTP GET or POST parameters. A profound description of each

protocol is considered to be out of scope for this thesis, but it is worth noting that the fundamentals used

here for the recognition and distinction between the different protocols is based on Mainka et al. [12].

2.5 Researched SSO Protocols 5

2.5.1. Non-OAuth Protocols

The following protocols are not based on the OAuth framework and are therefore easier to differentiate due

to their uniqueness.

OpenID

OpenID, developed by the OpenID Foundation, is an authentication protocol used mainly for Single Sign-

On. The focused versions are OpenID 1.1 [13] released in 2006 and the last version OpenID 2.0 [14] which

was released in 2007. With OpenID it is possible to setup private IdPs, caused by its decentralized approach,

and therefore the IdP must be negotiated in the discovery phase with the SP. A typical part of OpenID is

the HTTP-GET parameters starting with openid. For IdP discovery OpenID 2.0 uses a XML derivation,

called Extensible Resource Descriptor Sequence (XRDS), or HTML. As one of the first standardized SSO

protocols, OpenID has no dependency on any of the other reviewed protocols.

BrowserID

BrowserID is developed and distributed under the name Persona by Mozilla. As a monolithic SSO service

the communication to the Identity Provider takes place at https://login.persona.org/. As a

feature, BrowserID supports an interface to integrate existing OpenID and OpenID Connect services, as well

as a fallback IdP, as described in [15]. Concerning this interface, the detection of different SSO protocols

during the protocol flow should be expected. The protocol data exchange uses JWT and JSON.

SAML - Secure Assertion Markup Language

The Secure Assertion Markup Language (SAML) has existed in its first version since November 2002 as

an OASIS standard. The last version is 2.0 and is standardized in [16]. SAML describes a method for the

exchange of cryptographic secure information, and is not designed for Single Sign-On but is capable of it.

SAML is based on XML and it is possible to use it to sign and encrypt data. It has no dependencies on other

protocols.

2.5.2. OAuth-Family Protocols

The following protocols are based on, or make use of, the authorization protocol OAuth. It should be noted

that OAuth is an authorization framework and therefore not capable of doing Single Sign-On or authentica-

tion.

OAuth

The OAuth protocol is an open source standard for secure authorization for HTTP services. It enables and

manages third party access to restricted resources. OAuth version 1.0 is standardized in RFC 5849 [17] by

the Internet Engineering Task Force (IETF), and the current version, OAuth 2.0, was standardized in RFC

6749 [18] in late 2012, as described in [19]. OAuth is capable of using both, XML(in particular SAML)

https://login.persona.org/

2.6 Burp Suite 6

and JSON (in particular JWT) for data interchange, aside from the normal HTTP parameters. The OAuth

Protocol has no dependencies on any of the other researched protocols.

OpenID Connect

OpenID Connect is an authentication and authorization framework build on top of the OAuth protocol, and

is published by the OpenID Foundation [20]. Its communication is based on JSON and JWT, alongside

the standard POST/GET parameters. Despite the similarities in the name, OpenID Connect is a complete

different protocol than OpenID [21].

Facebook Connect

Facebook Connect [22] is developed by Facebook Inc. to authenticate users on third party websites and

authorize web applications’ to access user resources like email address or photos. The protocol is based on

OAuth 2.0, and thus it uses JWT for communication [23].

Microsoft Account

Microsoft Account [24] is a proprietary protocol developed by Microsoft. It adopts the OpenID Connect

protocol and OAuth framework, as well as the WS-Federation protocol3 which is not discussed here. Hence,

Microsoft Account utilizes the same technologies as OpenID Connect and OAuth.

2.6. Burp Suite

Burp Suite, developed by PortSwigger, is a Man-In-The-Middle HTTP proxy. It is possible to configure a

redirection in applications such as a browser in order to forward the network traffic to Burp Suite. Burp Suite

is able to intercept each request and response in order to modify the transmitted data. To enable analysis

of HTTP messages Burp Suite offers an raw editor and a hexadecimal editor as well as parsed POST or

GET parameters and HTTP-headers. As well as this history of processed messages Burp Suite also offers a

number of other tools. For example, it is also possible to automatically crawl a website with the Spider tool,

in order to discover the content automatically. The Intruder is capable of injecting user defined payloads

multiple times to e.g. brute force a password. With the Repeater, a replay of already received messages

is possible. The Sequencer, Decoder and Comparer are also build-in tools, but are not necessary for this

thesis. The most important feature for this thesis is the possibility to extend Burp Suite via its own API.

For more information on Burp Suite and how to write an extension, see Chapter 4.

3https://msdn.microsoft.com/en-us/library/bb498017.aspx

https://msdn.microsoft.com/en-us/library/bb498017.aspx

2.7 Related Work 7

2.7. Related Work

Except for the general security analysis of individual SSO protocols there are no papers on the recognition

and distinguishing between different single sign-on protocols. SSO tools known to have a similar approach

like EsPReSSO are:

SAMLRaider

SAMLRaider [25] is a Burp Suite Extension developed as part of a bachelor thesis by two students at

the Hochschule für Technik Rapperswil (HSR), to test SAML setups with tempered SAML messages and

manage the certificates. Compared to EsPReSSO, SAMLRaider has more features to modify SAML but

no automatic recognition of the SAML or any other protocol. Apart from this, EsPReSSO is based on the

WS-Attacker library and therefore able to access over 200 different SAML attack vectors.

SAMLyze

SAMLyze [26] is a penetration testing tool for SAML Service Provider (SP). The tests are focused on

preconfigured payloads designed to test against XML External Entity (XXE) and Document Type Decla-

ration (DTD) attacks, as well as a set of SAML validation methods. The user interface is based on a web

interface which makes it, according to the author, easy to configure. Furthermore the workflow allows

integration with both Burp Suite and Zed Attack Proxy.

3. EsPReSSO User Interface

The following chapter explains the User Interface (UI) of EsPReSSO. The workflow and usage of the exten-

sion is discussed in detail, and the following Chapter describes the internal structure and the implementation.

Since EsPReSSO is a Burp Suite Extension, the integration was designed to be as close as possible to the

look and feel of Burp Suite. Therefore the design is oriented towards the already existing components of

Burp Suite. For a guide on how to build EsPReSSO from source and load it in Burp Suite, see Section 4.1.

3.1. Burp Suite Proxy

Figure 3.1.: The Burp Suite Proxy HTTP history.

Burp Suite’s Proxy HTTP history is a tab which enables the user to review all processed HTTP messages

which have been intercepted. Figure 3.1 shows Burp Suite’s Proxy window. If EsPReSSO has already been

loaded by Burp Suite, then a new tab, called EsPReSSO (1.), is attached to the top row. All recognized Single

Sign-On protocols are highlighted in yellow (2.). The comment table column shows additional information

about the recognized protocol (3.). Burp Suite’s Request/Response viewer (4.)displays information such as

3.2 SSO History 9

raw HTTP message, parsed parameters and headers. New tabs of EsPReSSO are integrated into this view.

For example (5.) shows, the SAML tab which decodes the SAML message. For more information on Editors

see Section 3.5.

3.2. SSO History

Figure 3.2.: EsPReSSOs Full History, displays all recognized protocols.

The SSO History (Figure 3.2) is based on the layout of Burp Suite’s Proxy history (1.). In addition to the

typical table entries, the columns titled SSO Protocol and Token are added. SSO Protocol describes the rec-

ognized protocol and Token displays an identifier of the protocol message.

Figure 3.3 shows the context menu added to each table entry. The extension provides a menu which can

be opened, with a right click on a table entry. ’Anayse SSO Protocol’ can be selected to start the analysis of

the table for coherent SSO messages. Once the analysis is finished, all related entries are copied into a new

table which is then attached next to the Full History tab. The new table is named after the protocol of the

selected entry together with a consecutive number.

3.3 Options 10

Figure 3.3.: Select ’Analyse SSO Protocol’ to open a new tab with all inherent protocols.

3.3. Options

Figure 3.4.: The Options tab.

3.4 Help 11

Via the Options tab, as shown in Figure 3.4, the configuration of the extension can be controlled. The

checkboxes at the top are used to control the active protocols that are scanned for. If the box is checked, the

the specific protocol is enabled during scanning. The checkbox next to the headline disables all protocols

at once. To disable the highlighting within the Proxy history uncheck Highlight SSO. The configuration is

stored in a JSON file in the home folder of the user. The user can load or save other configuration files with

the buttons Import and Export (2.). The integrated logger is configurable via the drop-down menu (3.), the

options are Verbose, which enables all logging levels at once, and Debug, which displays only the debugging

and the error level messages. The option Info shows the info and error level messages. For more detail on

where and how the logs are displayed, see Section 4.1.

3.4. Help

Figure 3.5.: The Help tab.

The Help tab, shown in Figure 3.5, displays the name, copyright info, license and dependencies of the

extension in the about tab. The other tabs have not been implemented at the time of writing, but will later

on include information about the recognized protocols.

3.5 Editors 12

3.5. Editors

Editors are a way to integrate features in Burp Suite’s Request/Response viewer. In this thesis a JSON, a

JWT and a SAML Editor were created. The editors attach themselves once the specific content is recognized

in the request or response. In the case of the SAML Editor, Figure 3.6, the editor is integrated as soon as a

message includes the parameters SAMLRequest or SAMLResponse.

Figure 3.6.: The SAML Editor tab.

Figure 3.7.: The JSON Editor tab. Figure 3.8.: The JWT Editor tab.

The JSON Editor, shown in Figure 3.7, displays beautified JSON code. The tab is attached if JSON was

identified as the MIME-type in use. The JWT Editor, shown in Figure 3.8, is attached if a parameter known

for JWT is present in the message.

3.6 Attacker 13

3.6. Attacker

The Attacker tab is only enabled during the interception of a message. While a message is intercepted, it

is possible to modify the message and run attacks against the server. The Attacker functionality is only

available within the SAML Editor. To start an attack click on the tab (1.) and choose between the possible

attacks (2.). The easiest attack to configure is the Signature Faking attack [27], where the signature elements

in the message are replaced with a new generated signature, see Figure 3.9. Simply click on Modify (3.) and

the message is altered into a message with a faked signature. To run the attack, press the Forward button in

order to send the message to the server.

Figure 3.9.: The workflow in the Attacker tab for Signature Faking.

3.6 Attacker 14

The Signature Wrapping [28] attack, shown in Figure 3.10, is more complex. If this type of attack was

selected via the drop-down menu, then a possible payload is presented in the text area (5.). To generate

possible attack vectors hit Update Oracle (6.). The vectors are selected using the slider (7.), a description

on what is modified is presented below (8.). The final manual modifications of the attack are made in the

last text area (9.), and all modifications can be applied to the message by selecting the Modify button (10.).

Figure 3.10.: The workflow in the Attacker tab for Signature Wrapping.

The Attackers business logic is based on the WS-Attacker [1], see also Section 4.4.4.

4. Implementation

In this chapter the specific implementation for EsPReSSO is described by documenting all relevant classes,

functions and attributes. All diagrams are reduced to the minimum to explain the context.

4.1. Compiling and Loading the Extension

The build management tool used for this is Maven, developed by the Apache Software Foundation, which

is used to organize dependencies on Java projects. To compile the EsPReSSO tool form source run the

commands in Figure 4.1 within the project directory.

$ mvn clean -Dskip package

Figure 4.1.: Compile the Package form Source, without JUnit tests.

The required Java version is Java 1.8. To successfully start the extension Burp Suite must be started with the

same Java version. After Burp Suite is started, navigate to the Extender tab and use the Add button to add

the newly compiled .jar-file from the folder /target in the project path.

If EsPReSSO has been successfully loaded a new tab called EsPReSSO is added to Burp Suite. Under

Burp Suite’s Extender / Output tab, lines, similar to the listing in Figure 4.1, are printed. Printing

the output to a file is recommended for better debugging, since the output in Burp Suite is limited and fast

exceeded with a stack trace.

+---+
| EsPReSSO - Extension for Processing and Recognition of Single Sign-on |
| Started @ 02:31:32 |
+---+
[I] 02:31:32 - [de.rub.nds.burp.espresso.gui.UIOptions]:
The config from {$homedir}/EsPReSSO/config.json is now loaded.
[I] 02:31:32 - [burp.BurpExtender]: Tab registered.
[I] 02:31:32 - [burp.BurpExtender]: Scanner registered.
[I] 02:31:32 - [burp.BurpExtender]: SAML editor registered.
[I] 02:31:32 - [burp.BurpExtender]: JSON editor registered.
[I] 02:31:32 - [burp.BurpExtender]: JWT editor registered.
[I] 02:31:32 - [burp.BurpExtender]: ExtensionStateListener registered
[I] 02:31:32 - [burp.BurpExtender]: Init. complete.

Figure 4.2.: Initialization Output of EsPReSSO

4.2 System Setup 16

4.2. System Setup

To develop EsPReSSO the author used following versions of software:

Software Version Software Version
Java 1.8.0_60 (OpenJDK) NetBeans 8.0.2
Burp Suite 1.6.01 Maven 3.3.3
OS (Linux) 4.1.6-1-arch, amd64

Table 4.1.: Software versions.

4.3. Extending Burp Suite

It is possible to write etensions for Burp Suite in Python, Ruby or Java. EsPReSSO is a Maven based project.

To integrate the Burp Suite API [29] into the project, add the listing of Figure 4.3 to the pom.xml between

<dependencies> node.

<!-- Burp Suite Extension API -->
<dependency>

<groupId>com.h3xstream.retirejs</groupId>
<artifactId>burp-api</artifactId>
<version>1.0.0</version>

</dependency>

Figure 4.3.: Burp Suite API

This adds the required interfaces to the project and can be used from now on. For Burp Suite specific

questions please refer to the Burp Suite Support [30].

4.4. Internal Structure

The start of every Burp Suite Extension is the class BurpExtender.java which must be placed in the

folder

{project}/src/main/java/burp/ and implements the interface IBurpExtender. This inter-

face is called every time Burp Suite loads the extension. Figure 4.4 describes the internal process after Burp

Suite calls the interface using the method method registerExtenderCallbacks(IBurpExtenderCallbacks

callbacks). The IBurpExtenderCallbacks object is Burp Suite’s main inter process communi-

cation interface. The main features and methods of Burp Suite can be triggered with the callbacks object.

Within the aforementioned function all new components for the extension are registered such as a new tab,

the Scanner and the Editors. The Attacker is a part of the SAML Editor.

4.4 Internal Structure 17

Figure 4.4.: The registered interfaces for the Burp Suite API

4.4.1. User Interface

Figure 4.5.: The abstract User Interface setup.

The User Interface (UI) components are placed in the package de.rub.nds.espresso.gui, as shown

4.4 Internal Structure 18

in Figure 4.5. The Burp Suite interface for a new tab is implemented in UITab. The getUIComponent()

function returns the UIMain object which is in the process attached next to Burp Suite’s regular tabs. In

UIMain, which extends the java.swing class JTabbededPane, the following classes UIHistory,

UIOptions and UIHelp are added as new tabs.

SSO History

Figure 4.6.: The abstract UIHistory setup.

The UIHistory extends a JSplitPane, the top component of which is a table containing the SSO history.

The bottom component is an IMessageEditor object, which is the same as the request/response viewer

used in the rest of Burp Suite. The Full History is a customized JTable in the package de.rub.nds.burp.utilities.table

simply called Table. Each row is defined by the class TableEntry. The new table is created with a

TableHelper, a caption for the new tab and an identifier. The TableHelper supplies operations for

the table, as well as the table model information by extending the AbstractTableModel. The table

layout can be seen in Figure 3.2. The class TableDB manages and stores all created tables. The basic

operations are ’get a table’ by its index or id or ’remove a specific table’ from the storage.

A context menu can be opened by right clicking on a table row. This menu offers three operations on

the TableEntry:

I Analyse SSO Protocol:1 This operation starts the analysis of the protocols to find matching protocol

1This function is a feature but is unstable at the time of writing.

4.4 Internal Structure 19

messages for the selected entry. At the time of writing the algorithm analyzes the protocol flow during

the recognition phase.

I Add Selected to Table: This operation will move a selected entries to a table/protocol flow, but is not

implemented at the time of writing.

I Clear History: This operation will remove all entries from the table to clear the view, but is not

implemented at the time of writing.

The TableMouseListener is registered on the table it recognize these events.

Options

UIOptions extends java.swing.JPanel. The logic is straight forward: public static getters

are used to control the functions outside the UIOptions class. The disabled components are not used in

the version of the thesis but will be enabled in a later version.

Help

The UIHelp class contains no logic, therefore it is not explained here. Please refer the source code for

more information in Appendix A.

4.4.2. Scanner

Figure 4.7.: The Scanner and important methods.

The Scanner is implemented in the class de.rub.nds.burp.espresso.scanner.ScanAndMarkSSO,

demonstrated in Figure 4.7. It is the heart of the application and implements the IHttpListener from

Burp Suite. This interface is called each time a request or response is processed by Burp Suite. Burp Suite

4.4 Internal Structure 20

calls the method processHttpMessage(int toolFlag, boolean isRequest, IHttpRe-

questResponse httpRequestResponse) for each received message. Within this method the toolFlag

represents a specific Burp Suite tool like the proxy, as an integer. The boolean isRequest states, if the

message is a request (true) or a response (false). The object of the interface IHttpRequestRe-

sponse is Burp Suite’s data structure to pass HTTP messages around. If a message is sent by the Proxy

Tool and the corresponding response is received, the IHttpRequestResponse object is then passed to

the function processSSOScan(). This is important as if the method does not wait for the response, then

the IHttpRequestResponse object will be incomplete.

The method proccessSSOScan() includes the calls to all protocol check functions, which are discussed

more precisely in the section 4.4.2 (Check SSO Protocols).

After a protocol is detected the HTTP message is highlighted in yellow and commented with the recognized

result by the method markRequestResponse(). The SSOProtocol returned by the check method is

then converted to an TableEntry and propagated to via updateTables() to the Tables.

Aside from the Single Sign-On recognition, the automatic recognition of OpenID logins and metadata

is done by the method checkRequestForOpenIdLoginMetadata(), which is called by pro-

cessHttpMessage() with proccessLoginPossibilities().

SSO Protocols

Figure 4.8.: The SSO Protocol classes.

SSOProtocol is a class to gather the common features needed to store the protocols. In order to implement

protocol specific behaviors and provide the same interface three methods need to be implemented by the

classes extending the SSOProtocol. The first, analyseProtocol(), should implement a method

4.4 Internal Structure 21

to analyze the protocol flow when the user hits ’Analyse SSO Protocol’, as demonstrated in Figure 3.3.

The method decode() should provide a way to decode encoded input such as SAML parameters. The

operation findToken() searches for a protocol specific identifier. For example, in SAML it is the ID or

InResponseTo value within the XML message. Besides the get and set methods for the private variables,

conversion operations like toString() and toTable() are available. Every supported protocol is

represented through its extension and implementation of this class.

Check SSO Protocols

In the following section the checkRequestFor-methods are discussed, and the structure for the detection

process for each protocol is presented. The implementation is based on the paper Mainka et al.[12]. The

order of the protocols, presented below, is the same as in the implementation and is important due to the

similarities between the OAuth-family protocols.

Facebook Connect
For Facebook Connect the message host must contain facebook.com. Afterwards the message URL

is checked for /ping? and marked as Facebook Connect Ping Request, if this characteristic is present.

Next the message is checked for the parameters app_id, domain, origin and/or sdk. If one or more

of these parameters appear the message is classified as Facebook Connect, otherwise the checkRe-

questForOauth() method is called to check for OAuth specific behaviors for Facebook Connect. If the

parameter signed_request is identified the message is marked as Facebook Connect Authentication Re-

sponse. If the parameter response_type contains the value signed_request the message is marked

as Facebook Connect Authentication Request.

Microsoft Account
For Microsoft Account the message host must contain live.com, live.net or contoso.com. The

message is then identified as Micosoft Account with OAuth if the scope parameter is present and contains

wl.basic, wl.offline_access or wl.signin. If scope contains openid, then the check-

RequestForOpenIDCOnnect() method is called and as long as the returned value is not null the

message is marked as Microsoft Account. If the message is still not classified, and the parameter wa is

present with the value wsignin1.0, the message is marked as Microsoft Account WS-Federation. Other-

wise the message is checked with checkRequestForOAuth() to ensure that no OAuth related message

has been missed, and if the method returns a value other than null, the message is marked as Microsoft

Account.

Note that the checkForRequest-methods will mark the message again.

4.4 Internal Structure 22

OpenID Connect
The OpenID Connect check method is divided into two parts. The first part deals with the detection of

parameters with an preceding redirect message (HTTP Status-Code 302), and the second part deals with the

detection of the other parameters.

1. Preceding 302 messages and 200 messages are split as follows:

a) Hybrid Flow: If the parameter response_type contains the value code and the value id_-

token or token, the message is marked as OpenID Connect Hybrid Flow. This also indirectly

matches the cases of the permutation of all three values with the mandatory value code.

b) Authorization Code Flow: If the message has the HTTP status code 302 and the response lo-

cation matches the regular expressions ^Location:.*?response_type=code.*?$ and

^Location:.*?&?scope=[a-zA-Z+]*?openid[a-zA-Z+]*?&?.*?$, the message

is marked as OpenID Connect ACF Request. If the next message contains the parameter re-

sponse_type=code and scope=openid, the message is also marked as OpenID Connect

ACF Request.

c) Implicit Flow: If the parameter response_type=id_token exists in a message with a

302 status-code, the message is marked as OpenID Connect Implicit Flow Request. If the next

message has a parameter named id_token the message is marked as OpenID Connect Implicit

Flow Response. If the following message contains the parameter access_token, the message

is marked as OpenID Connect Implicit Flow Access Token.

2. The other parameters are split as follows:

a) Discovery Flow: If the regular expression

"\\/\\.well-known\\/openid-configuration|\\/\\.well-known\\/webfinger"

matches, the message is classified as OpenID Connect Discovery Flow.

b) Generic Detection: If the parameters code and/or state are present together with the param-

eter scope, the message is marked as OpenID Connect / OAuth. In addition, if the value of

scope is openid, the message is only marked as OpenID Connect.

OAuth
The message is checked at the beginning of the OAuth detection for the parameters redirect_uri,

scope, client_id, client_secret and response_type. If one or more of the parameters is

present the algorithm proceeds. The checks are then divided into three parts:

1. Authorization Code Flow: If the parameters grant_type or response_type are present, the

algorithm proceeds. If the previous message had status-code 302 and the current message contains the

parameter response_type with the value code, the message is marked as OAuth ACG Request. If

the parameter code exists, the message is classified as OAuth ACG Code. If the parameter grant_-

type exists with the value auth_code, the message is marked as OAuth ACG Token Request.

4.4 Internal Structure 23

2. Implicit Code Flow: If the parameters access_token or response_type are present, the al-

gorithm proceeds. If the previous message had the status-code 302 and the current message con-

tains the parameter response_type with the value token, the message is marked as OAuth

Implicit Grant Request. If the response of the message matches the regular expression Loca-

tion:.*?#.*?access_token=.*?&?, the message is marked as OAuth Implicit Token, oth-

erwise it is marked as OAuth (IF).

3. Other Flows:

The parameter grant_type is evaluated for the following values and marked as:

I OAuth Access Token Request with the value authorization_code.

I OAuth Refresh Token Request with the value refresh_token.

I OAuth Resource Owner Password Credentials Grant with the value password.

I OAuth Client Credentials Grant with the value client_credentials.

I OAuth Extension JWT Grant with the value urn:ietf:params:oauth:grant-type:jwt-

bearer.

I OAuth Extension SAML Grant with the value urn:oasis:names:tc:SAML:2.0:cm:bearer.

If none of the three categories matches the message is marked as OAuth, through the generic detection.

OpenID
A message is classified as OpenID, if the parameter openid.mode contains the value checkid_setup

(OpenID Request) or id_res. If the openid.mode contains the value associate, then the message

is an OpenID Association. To identify the message as OpenID 2.0 Token, the parameters openid.sig

and openid.claimed_id must be present. If the parameter openid.claimed_id is not present, the

messages id marked as OpenID 1.0 Token.

SAML
A message is classified as SAML, if the parameter SAMLRequest (SAML Authentication Request) or

SAMLResponse (SAML Response Token)is present.

BrowserID
The message host musst contain persona.org. The message is then searched for the parameters as-

sertion and browserid_state and then classified as BrowserID if they are present.

4.4 Internal Structure 24

4.4.3. Editors

Figure 4.9.: A template message editor with all necessary methods.

Editors are new custom tabs attached to the request/response viewer. The tabs are registered with each of the

six standard request/response viewers as well as with each of the new ones created by this extension. In order

to supply each of the viewers with a new tab an IMessageEditorTabFactory must be implemented.

The factory creates new objects of the interface IMessageEditorTab using the createNewInstance()

method.

Figure 4.9 describes a template containing all of the necessary methods. The IMessageEditorTab

implementation is an inner class of the factory, because in our case we do not reuse the tab elsewhere. The

GUI components are initialized in the construction of the InputTab, the method getTabCaption()

returns the headline of the tab, and the getUiComponent() allows Burp Suite to retrieve the UI to attach.

An attachment rule can be defined by the content of the request/response to control the display of the tab.

For example, the ProtocolEditor should only be attached if a specific protocol is in the request. Basic

getter and setter are defined to display and obtain the whole message or only a selected part. If the method

isModified() returns true Burp Suite will automatically display two tabs after the HTTP message is

stored, one for the original message and one for the modified message.

4.4 Internal Structure 25

JSON Editor

The setup of the JSONEditor is similar to the template, the SAML Editor. The attachment rule analyzes

the given HTTP message for a JSON content type. If JSON is detected a tab called ’JSON’ is added to

the request/response viewer, as shown in Figure 3.7. The sub-tabs ’JSON Viewer’ and ’Raw’ display the

decoded JSON. The viewer automatically indents and syntax highlights the object with the support of

the RSyntaxTextArea integrated in the UISourceViewer class. The ’Raw’-tab simply displays the

unmodified, decoded JSON in Burp Suite’s own editor, implemented in UIRawEditor.

JWT Editor

The JWTEditor is almost identical to the JSONEditor. The only difference is the decoding and attach-

ment rule. The attachment rule searches for specific parameters of SSO protocols known for JWT. At time

of writing the editor searches for assertion, id_token and access_token. Due to this design lim-

itation, the editor is, in contrast to the JSONEditor, not capable of decoding random JWTs. The decoder

uses the format of three Base64 strings concatenated with dots. After the split and Base64 decoding the

messages are displayed in the three tabs representing their value (see Figure 3.8).

SAML Editor

The SAMLEditor differs from the other editors as the Attacker’s attachment rules are also implemented.

The details on the Attacker are discussed in the subsection 4.4.4. What makes this editor unique is that the

de- and encoding function depends on the parameter identified. The searched for parameters are SAML-

Request and SAMLResponse. While SAMLResponse is encoded as a URL encoded Base64 string,

SAMLRequest is redirect format encoded. This means that the XML data is deflated (compressed) and

then Base64 and URL encoded. The same applies to the decoding process.

4.4 Internal Structure 26

4.4.4. Attacker

This subsection explains the setup and structure of the Attacker, starting with the listeners and continuing

with the internal logic. The Attacker is part of the SAML Editor and is attached only if the the IHttpRe-

questRespones is processed by the interceptor tool. This is the case whenever the variable editable

is true, and the message is therefore editable.

Code Listener

Figure 4.10.: The listeners for code change events.

The listener package, shown in Figure 4.10, provides an implementation of the observer design pat-

tern. The classes are intended to manage the notification of changes in the code when a modification should

be applied to the message. The ICodeListener is the interface implemented by the classes requests

for notification. At the moment the classes UISourceViewer and UIRawEditor implement this in-

terface. The listener retrieves the new modified code using setCode(AbstractCodeEvent evt).

The SamlCodeEvent is the extension of AbstractCodeEvent and stores the code internally. The

4.4 Internal Structure 27

CodeListenerController manages the listeners and their notification, with registration, removal and

notification to all listeners. Please not that the methods of CodeListenerController are explicitly not

static because the events would trigger all interface implementations, not just the one in the interceptor.

Attacker Business Logic

Figure 4.11.: The Attacker internal structure.

The Attacker is controlled by the class UISAMLAttacker, as shown in Figure 4.11. The components

of the UI are controlled using UISAMLAttacker. The enabled status is controlled with the overridden

method setEnabled(), which is important if the interceptor is disabled, otherwise UI methods can be

used. The two java.swing.JPanels UISigFakeAttack and UISigWrapAttack are integrated

using a java.awt.CardLayout, and both classes are implementing the interface IAttack.

UISigFakeAttack

The class UISigFakeAttack implements a XML Signature Faking attack based on the WS-Attacker [1]

Signature Faking library. To fake a given XML signature no further configuration is needed. The following

4.4 Internal Structure 28

listing shows the usage of the library and the SignatureFakingOracle.

try {

SignatureFakingOracle sof = new SignatureFakingOracle(code);

sof.fakeSignatures();

String fakedSignatureXML = sof.getDocument();

} catch (SignatureFakingException ex) {

//Do some exception handling!

}

Initiate the SignatureFakingOracle with a XML string (here code) and generate a new String

with a faked signature with sof.fakeSignatures(). The string with the attack vector is called with

sof.getDocument().

UISigWrapAttack

The class UISigWrapAttack implements a XML Signature Wrapping attack based on the WS-Attacker [1]

Signature Wrapping library. More configuration is required compared to the Signature Faking attack. The

following listing demonstrates the steps required to configure the library.

SchemaAnalyzer samlSchemaAnalyser =

SchemaAnalyzerFactory.getInstance(SchemaAnalyzerFactory.SAML);

WrappingOracle wrappingOracle;

SignatureManager signatureManager;

Document doc;

//Init.

try {

doc = DomUtilities.stringToDom(code);

signatureManager = new SignatureManager();

signatureManager.setDocument(doc);

} catch (SAXException ex) {

//Do some exception handling!

}

//Generate the attack with the oracle

Document samlDoc = signatureManager.getDocument();

List<Payload> payloadList = signatureManager.getPayloads();

wrappingOracle = new WrappingOracle(samlDoc, payloadList, samlSchemaAnalyser);

//Choose attack and get modified XML

Document attackDoc = wrappingOracle.getPossibility(attack);

String attackString = DomUtilities.domToString(attackDoc);

4.4 Internal Structure 29

First retrieve a SAML SchemaAnalyzer from SchemaAnalyzerFactory and declare all variables

needed for try-catch-block, initialize the SignatureManagerwith the XML document (here code).

Fetch the Document and the Payload list and create a new WrappingOracle. With this oracle and an

integer representing an attack, the new generated Document can be used to attack the web service.

4.4.5. Logging

Figure 4.12.: The logging utility.

The Logging class integrates a better and more standardized way of logging into Burp Suite’s own log-

ging console. In order to write to Burp Suite’s output and error console, two PrintWriters from Burp

Suite’s callbacks are needed. Therefore the static functions getStdOut() and getStdErr() are im-

plemented in BurpExtender. These methods supply the Logging with the needed PrintWriters.

With the singleton design pattern, there is only one instance of the class, which guarantees that the Log-

ging will work without errors as long as the utility is not used before the BurpExtender has initialized

the PrintWriters.

4.4 Internal Structure 30

4.4.6. Utilities

Figure 4.13.: The utilities package.

The following subsection gives a short description of the utilities in the package de.rub.nds.burp.utilities,

which is shown in Figure 4.13.

Compression

The Compression utility is used for the de- and inflating of SAML messages. Therefore the class has a

compress() and a decompress() method. The operations run on byte arrays and return modified byte

arrays, and the algorithm used is zip (in)deflating.

Encoding

The Encoding class supplies operations to evaluate whether the input data is URL, Base64 encoded or

deflated. The checks can be done on their own or with getEncoding() which returns an integer rep-

resenting a specific encoding. The integer representing the encoding type can be compared with the static

variables URL_ENCODED, BASE64_ENCODED and DEFLATED.

XMLHelper

The XMLHelper provides help to format XML messages with correct indenting. The method gets the

XML String and the indention level and outputs the formatted content. If an error occurs, it is logged and

the unmodified input is returned.

ParameterUtilities

The ParameterUtilities are a set of methods to retrieve HTTP parameters from a set of burp.IParameters.

The operations evaluates if a parameter with a specific name or set of names are in the list of parameters or

retrieves the parameter by its name.

4.5 Extensibility 31

4.5. Extensibility

During implementation the source code was designed to be extendable. The following chapter describes the

ways to extend different components faster. To speed up the development the author recommends to import

the documentation of {projectpath}/doc/apidocs into the Integrated Development Environment

(IDE), this is not necessary if the project is directly modified.

4.5.1. Extend the GUI

To extend the Graphical User Interface (GUI) of EsPReSSO it is necessaryto add a new tab in UIMain,

shown in Figure 4.5. This is done using the code listed in Figure 4.14.

Create a new private variable for your UI. Where UINewPanel is a new written class with the wanted
User Interface.

private UINewPanel newPanel;

Add a new getter for your UI.

public UINewPanel getNewPanel(){
return newPanel;

}

Add initiate and add the new panel as a tab in the initComponents() method.

newPanel = new UINewPanel();

//Add to the tab.
this.addTab("Tab Caption", newPanel);

Figure 4.14.: Add a new tab to the EsPReSSO GUI

If the extension should have a new tab, next to Burp Suite’s regular tabs, create and register a new im-

plementation of burp.ITab interface in the burp.BurpExtender class. The code to add a new tab

is:

callbacks.addSuiteTab(new TheNewSuiteTabImplementation());

4.5 Extensibility 32

4.5.2. Extend a new Protocol in the Scanner

The following instructions guide through the process of adding a new Single Sign-On protocol to the scanner.

1. Extend the SSOProtocol with an new class in the package

de.rub.nds.burp.utilities.protocols.

2. Implement all abstract methods.

3. Add a new method with the name checkRequestForProtocolName() to the ScanAnd-

MarkSSO class.

4. Register the ’check’-method in the function processSSOScan.

if(UIOptions.isProtocolNameActive()){

SSOProtocol protocol =

checkRequestForProtocolName(requestInfo, httpRequestResponse);

if(protocol != null){

protocol.setCounter(counter++);

return protocol.toTableEntry();

}

}

Optional Add a checkbox in UIOptions to enable and disable the scanning.

4.5.3. Extend a new Attack in the Attacker

The following instructions provide a guide for the process of adding a new attack to the SAML Attacker.

1. Create a new class implementing the IAttack interface and extending a java.swing.JPanel.

2. In UISAMLAttacker:

a) Create a private variable for your new class.

b) Create a new private final String ATTACK_NAME = ’Description Text’.

c) Extend the String[] attackArray = {NO_ATTACK, SIGNATURE_FAKING, SIG-

NATURE_WRAPPING, ATTACK_NAME}; array with your new variable.

d) Initiate your new class.

e) Add the class to the settings container with settingsContainer.add(uiNewAttackClass,

ATTACK_NAME);.

f) Register a listener in setListeners() on the new class.

The following listings shows all steps at once.

4.5 Extensibility 33

UINewAttackClass.java

public class UINewAttackClass extends JPanel implements IAttack{

private String code = null;

private CodeListenerController listeners = null;

@Override

public void setCode(AbstractCodeEvent evt) {

// Do your work!

}

@Override

public void notifyAllTabs(String code) {

// Do your work!

}

@Override

public void setListener(CodeListenerController listeners) {

// Do your work!

}

}

UISAMLAttacker.java

public class UISAMLAttacker extends JPanel implements ItemListener{

[...]

private final String ATTACK_NAME = "Description Text";

[...]

private UINewAttackClass uiNewAttackClass = null;

[...]

private void initComponents() {

[...]

String[] attackArray =

{NO_ATTACK, SIGNATURE_FAKING, SIGNATURE_WRAPPING, ATTACK_NAME};

[...]

uiNewAttackClass = new UINewAttackClass();

settingsContainer.add(uiNewAttackClass, ATTACK_NAME);

[...]

}

[...]

public void setListeners(CodeListenerController listeners){

[...]

uiNewAttackClass.setListener(listeners);

}

}

4.6 Evaluation 34

4.6. Evaluation

This section outlines the sites and protocols already tested using EsPReSSO to evaluate the implementation.

Each subsection contains a list of sites tested and a brief description of faults. The colored circles as a traffic

light system, l the recognition is tested and worked, l the implementation is tested but has still issues, l

a protocol characteristic appeared but the implementation failed to recognize it, and l the implementation

could not be tested due to the lack of the right test site or parameters.

All messages sent during the login process were manually evaluated and searched for the characteristic

parameters.

Facebook Connect

l http://cloud.nds.rub.de:8042/loginJS.html

l Ping Request is correct detected with /ping?

l Authentication Request is correct detected with parameter response_type=signed_re-

quest.

l Authentication Response

l Generic Detection is successful, all HTTP messages with Facebook Connect parameters are

detected.

l http://forum.golem.de/login.php

l Ping Request

l Authentication Request

l Authentication Response

l Generic Detection is successful, all HTTP messages with Facebook Connect parameters are

detected.

l https://stackoverflow.com/users/login

l Ping Request

l Authentication Request

l Authentication Response

l Generic Detection The one, successfully detected, message was recognized by the host name

facebook.com only.

The other from stackoverflow.com send massages are detected by the OpenID Connect

method, as generic OpenID Connect / OAuth.

The Facebook Connect sites were all tested using a valid Facebook account.

http://cloud.nds.rub.de:8042/loginJS.html
http://forum.golem.de/login.php
https://stackoverflow.com/users/login

4.6 Evaluation 35

Microsoft Account

l http://forum.golem.de/login.php

l Microsoft Account with OAuth is correct detected with scope=wl.baisc.

l Microsoft Account with WS-Federation no matching message found.

l http://outlook.com

l Microsoft Account with OAuth no matching message found.

l Microsoft Account with WS-Federation is correct detected with wa=wsignin1.0.

The Microsoft Account sites were all tested using a valid live.de email address.

OpenID Connect

l https://demo.c2id.com/oidc-client/

Select the Response type as code:

l OpenID Connect Authorization Code Flow Request is detected correct.

Select the Response type as id_token:

l OpenID Connect Implicit Flow Request is detected correct.

Select the Response type as code id_token:

l OpenID Connect Hybrid Flow is detected with both parameters.

l OpenID Connect Generic All messages that contain OpenID Connect parameters were correct

detected.

l OpenID Connect Discovery Flow

l OpenID Connect Implicit Flow Response

l OpenID Connect Implicit Flow Access Token

l The implementation is not capable of detecting parameters if they were transmitted as JSON.

OAuth

l https://developers.google.com/oauthplayground/

l OAuth Authorization Code Grant Request

l OAuth Authorization Code Grant Code

l OAuth Authorization Code Grant Token Request

l OAuth Implicit Grant Request

l OAuth Implicit Token

l Other OAuth Flows

l Generic OAuth Detection has many false positives, but most OAuth messages where detected.

Messages only containing code are not detected, as expected.

The OAuth Playground site was tested with the Blogger API v3 (Step 1) and the

https://www.googleapis.com/auth/blogger option enabled. First click on Exchange

authorization code from tokens (Step 2) and finally click Send the request (Step 3).

l The implementation is not capable of detecting parameters if they were transmitted as JSON.

http://forum.golem.de/login.php
http://outlook.com
https://demo.c2id.com/oidc-client/
https://developers.google.com/oauthplayground/

4.6 Evaluation 36

OpenID

l http://cloud.nds.rub.de:7051/consumer-servlet/index.jsp

l OpenID Request classification for parameter openid.mode=checkid_setup is correct.

l OpenID Token 1.0 classification for parameter openid.sig and openid.return_to is

correct.

l OpenID Login Possibility classification as false positive during the OpenID Token 1.0.

l http://forum.golem.de/login.php

l OpenID Request classification for parameter openid.mode=checkid_setup is correct.

l OpenID Token 1.0 classification for parameter openid.sig and openid.return_to is

correct.

Test also correct for the following sites:

l https://stackoverflow.com/users/login

l http://csscreator.com

The OpenID sites were all tested using a valid Blogspot2 account. The option ’login only for this session’ is

used, and the test concluded at the account configuration page.

l OpenID 2.0 Token

l OpenID Associate

SAML

l http://cloud.nds.rub.de:7051/sp/index.html

l http://cloud.nds.rub.de:7023/idp/localauth/index.html 3

The SAML evaluation is straightforward, the parameters that are looked for are SAMLRequest and SAML-

Reponse. The decoding is tested with the output in the SAML tab and the token manually compared with

the one in the parameter.

BrowserID

l https://login.persona.org/

l https://www.voo.st/

l https://developer.mozilla.org/en/Persona/Quick_Setup

All BrowserID sites were tested with a valid Google Mail account. After the press on the login with Persona

the email address was entered and the option to log in for one session was chosen. The tests were concluded

at the configuration page for the account on the SP. The traffic with other IdPs than persona.org is not

analyzed in this test. All messages with the parameter browserid_state were detected. Therefore the

token, which is the mentioned parameter, is identified correctly. The JSON and the JWT for the parameter

assertion are correctly decoded and detected.

2A Google product also known as Blogger
3The request needs an additional parameter, it is included in the pdf version as a href.

http://cloud.nds.rub.de:7051/consumer-servlet/index.jsp
http://forum.golem.de/login.php
https://stackoverflow.com/users/login
http://csscreator.com
http://cloud.nds.rub.de:7051/sp/index.html
http://cloud.nds.rub.de:7023/idp/localauth/index.html?SAMLRequest=nVTJchoxEP0Vle6zgo2t8uBgU06oeKEA5%2BBLSkg9QfGMRKQeMH8fDZsNqUxiX3t57%2FXrli4uX8qCLMA6ZXRGkzCmBLQwUukfGX2c3ARn9LJ74XhZpHPWq3CmR%2FCrAofEN2rHNpmMVlYzw51yTPMSHEPBxr27W5aGMZtbg0aYgpKec2DRU10b7aoS7BjsQgl4HN1mdIY4Z1EkClPJUEsX2moaSmCdOG1Fbh4pLeElnGHpgW6MFbCWk1G0FVAy6Gf0e7uVi5NEnnOe5FK2YwHnrQ73gSTpwOl525e5IXdOLSCjOS9c3ehcBQPtkGvMaBonJ0ESB%2FHpJE1Z0mat07BzFj9RMtxOceV1rN1pGnm6KXLsy2QyDEYglQWBlHzbOe2L6NZXtlZg3xraDM53LtLu6PEquO%2BPydbHWuRCSbAX0VvoHdG4mv70Mj7EtIW49zWDfnfiLyBJW5%2BWUK9ox7ZNHrL5VefKlryGIXeAMyObSUXJZqbwQwQmD55hRRsA%2Bxw5uTf4oB9sL0ewxxtsbzeYPO1heohWTSsEcmMVaFmsat37%2B1sul6F79iZqVLjy00VzUyixiuDz12AwpuRd1dGfrP%2Fo54gRlFwVH%2B0drAO5AlsjRI3eNeWPc%2FtvYLPm4XpO0isKs7y2wPH1SfnX6SGat1xHlAzydSlDy7Xzy8DXob0UqWod7iP3Wh%2FFFXh0%2BNub9hfx7suppNcoYOSv3yqxMekw1f3%2FX2xn7771OHBAEx27sgsdfsvd3w%3D%3D
https://login.persona.org/
https://www.voo.st/
https://developer.mozilla.org/en/Persona/Quick_Setup

4.7 Limitations 37

4.7. Limitations

A limiting factor is Burp Suite itself because, with the exception of the public API, the source of Burp Suite

remains private. This leads to the problem of testing the implementation with unit tests like JUnit. A test

driven implementation would define the expected behavior at the beginning and test if the designed soft-

ware matches the expectations. As seen in the previous section, the evaluation is incomplete. An enormous

amount of effort is required to find all presented cases and analyze them manually. In the current implemen-

tation it is impossible to write a unit test without heavy mocking or implementation of Burp Suite’s API,

because the implementation of EsPReSSO bases heavily on the Burp Suite API.

The second limitation are the similarities between some protocol messages which made them hard to distin-

guish.

5. Conclusion

EsPReSSO is the first attempt to create a SSO Protocol analyzer with the capability to attack SAML. Us-

ing the concepts of automatic identification and classification, as well as a visualization of the recognized

protocols, EsPReSSO will hopefully be a good contribution to the analysis of Single Sign-On technologies.

The easy extensible source code will guarantee the potential for future development of EsPReSSO. As seen

in the evaluation the detection of the individual protocols, despite the good results of some protocols, was

not flawless. In particular it would require too much effort to test all special cases by hand, and be too

inaccurate.

Therefore, future work on EsPReSSO would definitely benefit from a re-implementation, decoupled from

the Burp Suite API, of the Scanner and its checkRequestForXYZ() methods. A JUnit test to ensure the

correct behavior of the implementation would be a good starting point. Furthermore a side-by-side diff to

compare the original with the modified message after the attack would be another great enhancement. Burp

Suite’s Comparer does not full-fill the need for further analyses. Moreover new features such as context

menu entries, for example ’Add as SSO Protocol’ on right click in the Burp Suite Proxy, to enable manual

add of protocols to SSO History of EsPReSSO or ’Change Protocol’ on right click in EsPReSSO’s History

to change a wrong detected protocol manually, would help to simplify EsPReSSO. A feature to store the

results and recover already stored data would helpful for longer investigations.

A. Appendix

A.1. Source Code of EsPReSSO

The source code will available at https://github.com/RUB-NDS/BurpSSOExtension and is
attached on the CD in the printed version.

A.2. License

The license is the GNU General Public License v2.0 as it published at http://www.gnu.org/licenses/
gpl-2.0.txt.

GNU General Public License v2.0 - Short Form

EsPReSSO - Extension for Processing and Recognition of Single Sign-On
Protocols.
Copyright (C) 2015/ Tim Guenther and Christian Mainka

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.

A.3. Dependencies

All dependencies, licenses and copyrights used by this extension.

Dependencies Access Date Link Copyright (c) Date, Name
RSyntaxTextArea modified BSD license 20.09.2015 https://github.com/bobbylight/RSyntaxTextArea/ 2012, Robert Futrell
json-simple Apache License 2.0 20.09.2015 https://code.google.com/p/json-simple/ Unkown, Yidong Fang
WS-Attacker GNU General Public License v2.0 20.09.2015 https://github.com/RUB-NDS/WS-Attacker/ 2012, Mainka, Falkenberg, et al.

Table A.1.: Dependencies, licenses and copyrights

https://github.com/RUB-NDS/BurpSSOExtension
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/gpl-2.0.txt
https://github.com/bobbylight/RSyntaxTextArea/
https://code.google.com/p/json-simple/
https://github.com/RUB-NDS/WS-Attacker/

Bibliography

[1] Chair for Network and Data Security, Ruhr-University Bochum, “WS-Atacker,” Accessed:
05.07.2015. [Online]. Available: https://github.com/RUB-NDS/WS-Attacker

[2] CERN Computer Security, “Password Recommendations,” Accessed: 04.10.2015. [Online].
Available: https://security.web.cern.ch/security/recommendations/en/passwords.shtml

[3] Android Developers, “Accessing Resources,” Accessed: 04.10.2015. [Online]. Available:
http://developer.android.com/guide/topics/resources/accessing-resources.html

[4] ECMA International, “ECMA-376: Office Open XML File Formats,” Accessed: 04.10.2015.
[Online]. Available: http://www.ecma-international.org/publications/standards/Ecma-376.htm

[5] C. M. S.-M. e. a. Tim Bray, Jean Paoli, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C
REC -20 081 126, Nov. 2008. [Online]. Available: http://www.w3.org/TR/2008/REC-xml-20081126/

[6] The OAuth 2.0 Authorization Framework, ECMA International ECMA -262, June 2015. [Online].
Available: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

[7] N. S. M. Jones, J. Bradley, JSON Web Token (JWT), IETF RFC 7519, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7519

[8] J. H. N. Sakimura, JSON Web Encryption (JWE), IETF RFC 7516, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7516

[9] N. S. M. Jones, J. Bradley, JSON Web Signature (JWS), IETF RFC 7515, May 2015. [Online].
Available: https://tools.ietf.org/html/rfc7515

[10] S. Josefsson, The Base16, Base32, and Base64 Data Encodings, IETF RFC 4648, Oct. 2006. [Online].
Available: https://tools.ietf.org/html/rfc4648

[11] NIST, HMAC: Keyed-Hashing for Message Authentication, FIPS PUB 198-1, July 2008. [Online].
Available: http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[12] Christain Mainka, Vladislav Mladenov, Tim Guenther, Jörg Schwenk, “Automatic Recognition, Pro-
cessing and Attacking of Single Sign-On Protocols with Burp Suite,” 2015.

[13] B. F. D. Recordon, OpenID Authentication 1.1, OpenID Foundation OpenID 1.1, May 2006. [Online].
Available: http://openid.net/specs/openid-authentication-1_1.html

[14] OpenID Authentication 2.0 - Final, OpenID Foundation OpenID 2.0, Dec. 2007. [Online]. Available:
http://openid.net/specs/openid-authentication-2_0.html

[15] H. Thiel, “Praktische Sicherheitsanalyse des Mozilla Single Sign-on Protokolls BrowserID,” Bochum,
Germany, 2014, Accessed: 22.09.2015. [Online]. Available: https://www.nds.rub.de/media/ei/
arbeiten/2014/12/04/BrowerID.pdf

https://github.com/RUB-NDS/WS-Attacker
https://security.web.cern.ch/security/recommendations/en/passwords.shtml
http://developer.android.com/guide/topics/resources/accessing-resources.html
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc4648
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-2_0.html
https://www.nds.rub.de/media/ei/arbeiten/2014/12/04/BrowerID.pdf
https://www.nds.rub.de/media/ei/arbeiten/2014/12/04/BrowerID.pdf

Bibliography 41

[16] R. P. e. a. Scott Cantor, John Kemp, “Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0,” Mar. 2005. [Online]. Available: http://docs.oasis-open.org/
security/saml/v2.0/

[17] E. Hammer-Lahav, The OAuth 1.0 Protocol, IETF RFC 5849, Apr. 2010. [Online]. Available:
https://tools.ietf.org/html/rfc5849

[18] E. D. Hardt, The OAuth 2.0 Authorization Framework, IETF RFC 6749, Oct. 2012. [Online].
Available: https://tools.ietf.org/html/rfc6749

[19] C. Nickel, “Sicherheitsanalyse von OAuth 2.0 mittels Web Angriffen auf bestehende
Implementierungen,” Master’s thesis, Lehrstuhl für Netz- und Datensicherheit, Ruhr-
University Bochum, Bochum, Germany, 2013, Accessed: 22.09.2015. [Online]. Available:
https://www.nds.rub.de/media/ei/arbeiten/2014/12/04/OAuth_Security.pdf

[20] e. a. N. Sakimura, J. Bradley, OpenID Connect Core 1.0 incorporating errata set 1, OpenID
Foundation OpenID Connect 1.0, Nov. 2014. [Online]. Available: http://openid.net/specs/
openid-connect-core-1_0.html

[21] J. Krautwald, “OpenID Connect,” September 2014.

[22] Facebook Inc., “Facebook Login for Apps,” Accessed: 22.09.2015. [Online]. Available:
https://developers.facebook.com/docs/facebook-login/overview

[23] J. Rzeniewicz, “Log Me In with Facebook: Security Analysis of Facebook Connect,” July 2015.

[24] Microsoft, “Microsoft Account,” Accessed: 22.09.2015. [Online]. Available: https://account.
microsoft.com/about

[25] Roland Bischofberger, Emanuel Duss, “SAML Raider - SAML2 Burp Extension,” Accessed:
01.10.2015. [Online]. Available: https://github.com/SAMLRaider/SAMLRaider

[26] John Barber, “SAMLyze,” Accessed: 01.10.2015. [Online]. Available: https://www.blackhat.com/
us-15/arsenal.html#samlyze

[27] Mainka, Christian and Mladenov, Vladislav and Feldmann, Florian and Krautwald, Julian and
Schwenk, Jörg, “Your Software at my Service,” 2014.

[28] S. Gajek, M. Jensen, L. Liao, and J. Schwenk, “Analysis of signature wrapping attacks and counter-
measures,” in Web Services, 2009. ICWS 2009. IEEE International Conference on. IEEE, 2009, pp.
575–582.

[29] PortSwigger, “Burp Extension API,” Accessed: 05.07.2015. [Online]. Available: http://portswigger.
net/Burp/extender/api/index.html

[30] ——, “Burp Support,” Accessed: 05.07.2015. [Online]. Available: https://support.portswigger.net/

http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc6749
https://www.nds.rub.de/media/ei/arbeiten/2014/12/04/OAuth_Security.pdf
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://developers.facebook.com/docs/facebook-login/overview
https://account.microsoft.com/about
https://account.microsoft.com/about
https://github.com/SAMLRaider/SAMLRaider
https://www.blackhat.com/us-15/arsenal.html#samlyze
https://www.blackhat.com/us-15/arsenal.html#samlyze
http://portswigger.net/Burp/extender/api/index.html
http://portswigger.net/Burp/extender/api/index.html
https://support.portswigger.net/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Foundations
	XML - Extensible Markup Language
	JSON - JavaScript Object Notation
	JWT - JSON Web Token
	The Basics of SSO - Single Sign-On
	Researched SSO Protocols
	Non-OAuth Protocols
	OAuth-Family Protocols

	Burp Suite
	Related Work

	EsPReSSO User Interface
	Burp Suite Proxy
	SSO History
	Options
	Help
	Editors
	Attacker

	Implementation
	Compiling and Loading the Extension
	System Setup
	Extending Burp Suite
	Internal Structure
	User Interface
	Scanner
	Editors
	Attacker
	Logging
	Utilities

	Extensibility
	Extend the GUI
	Extend a new Protocol in the Scanner
	Extend a new Attack in the Attacker

	Evaluation
	Limitations

	Conclusion
	Appendix
	Source Code of EsPReSSO
	License
	Dependencies

	Bibliography

