
Bachelor Thesis

Implementing a Modular Framework
for Web Services Penetration

Testing
Ruhr-Universität Bochum

Christian Mainka
Matr.-Nr:108007212667

24. November 2010

Lehrstuhl für Netz- und Datensicherheit
Ruhr-Universität Bochum

Universitätsstr. 150
D-44789 Bochum

Supervision: Prof. Dr.-Ing Jörg Schwenk
Lehrstuhl für Netz- und Datensicherheit, Ruhr-Universität Bochum

Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. York Tüchelmann
Arbeitsgruppe Integrierte Informationssysteme

Abstract

Web services are everywhere – and everyone needs them.
However, they have hardly been analyzed with reference to security so

far. This thesis will introduce WS-Attacker as a modular framework for web
service penetration testing. It is a a free and easy to use software solution,
which provides an all-in-one security checking interface with only a few clicks.

Contents

1 Introduction 5

2 Basics 6
2.1 XML – Extensible Markup Language . 6

2.1.1 XML in General . 6
2.1.2 Namespaces . 7
2.1.3 XML Schema . 8
2.1.4 DOM and SAX . 8

2.2 SOA – Service-Oriented Architectures . 9
2.3 Web Services . 9

2.3.1 WSDL – Web Service Description Language 10
2.3.2 SOAP – Simple Object Access Protocol 11
2.3.3 Security in Web Services . 12

3 Threats to Web Services 14
3.1 Web Service Specific vs. Non-Specific Attacks 14
3.2 SOAPAction Spoofing . 15
3.3 WS-Addressing Spoofing . 17

4 WS-Attacker 19
4.1 Framework Requirements . 19

4.1.1 Requirements for Plugin Developers 19
4.1.2 Requirements for Framework Users 20
4.1.3 Goal of this Thesis . 20

4.2 Overview . 21
4.3 SoapUI as Back-end . 22

4.3.1 Advantages of soapUI . 22
4.3.2 The Structure of the soapUI API 24

4.4 Program Structure . 25
4.5 Attack Plugin Interface . 26

4.5.1 Basic Idea . 26
4.5.2 Extending AbstractPlugin . 27
4.5.3 Using Plugin Options . 30
4.5.4 Minimal Implementation . 31
4.5.5 Adding a plugin to WS-Attacker 33

5 Evaluation 35
5.1 Microsoft .NET . 35
5.2 Apache Axis2 . 39

6 Conclusion and Outlook 41

Appendix 42
List of Figures . 45
Listings . 45
Used Software . 46
Eigenständigkeitserklärung . 47

Introduction

1 Introduction

Web services become more and more popular in the modern world. Companies like
Google and Amazon provide an API for their services so that everyone can use them
within their own applications. A new market for these services are smart-phone appli-
cations, e.g. a mobile navigator can use Google maps to find the nearest restaurant
or train station. For doing this, it is not necessary to navigate to the Google site, nor
to parse HTML. The application simply has to create a SOAP request, send it to the
server and evaluate the response. This response uses the power of XML to structure the
information so that data processing is smart. There are also a lot of web sites which use
the benefits of web services – e.g. an online forum can use Google search to find replies
in threads. Altogether, web services have a high potential, as they are easy to use and
can be easily integrated into new applications. With the increasing popularity of web
services, it is enormously important to test for security.

A web service is vulnerable to two different classes of attack. One of them is well-known,
as these attacks also work on web applications, e.g. SQL Injection [1]. Nevertheless, the
other class of attack is completely new: web service specific attacks abuse weaknesses in
SOAP specifications, XML parsers and many more. Web services must be secure against
all of those attacks. At the moment, there are lots of tools for penetration tests on web
applications, but none of them can be used for penetration tests on web services.

This thesis will introduce the modular web service attacking framework WS-Attacker,
which provides an easy to use GUI for automated penetration testing and a simple
extendable interface for building attack plugins. It allows fast and easy testing for
security issues on web services by using attack plugins. First, web services and their
needed fundamentals are introduced in Section 2. A general overview of existing threats
to web services is given in Section 3. As examples for web service specific attacks,
SOAPAction Spoofing and WS-Addressing Spoofing are described.

Section 4 explains the WS-Attacker concept. Both, the framework itself and its plugin
architecture are presented and as a proof of concept, an attack plugin is built for SOAP-
Action Spoofing. The plugin is evaluated in Section 5. Finally, a concluding outlook
and discussion about WS-Attacker are given in Section 6.

5/ 47

Basics

2 Basics

This section introduces the fundamentals to understand web services. Section 2.1 gives
a short overview about XML, the markup language used for communication with web
services. Section 2.2 introduces the idea of services-oriented architectures, which are the
basis for web services that are explained in Section 2.3.

2.1 XML – Extensible Markup Language

The Extensible Markup Language (XML) is a set of rules to encode documents. It is a
textual data format with Unicode support and is widely used for message exchange in
the Internet.

2.1.1 XML in General

The World Wide Web Consortium (W3C) describes XML as the following [2]:

“Extensible Markup Language (XML) is a simple, very flexible text format de-
rived from SGML (ISO 8879). Originally designed to meet the challenges of
large-scale electronic publishing, XML is also playing an increasingly impor-
tant role in the exchange of a wide variety of data on the Web and elsewhere.”

In general XML is a data description and structuring language, which is designed for
message exchange over the world wide web and has a large scope of application.

Example:

Consider someone wants to send a contact information to his friend, both using different
application for managing this data. He could export the data to CSV1 or Microsoft
Excel format. Nevertheless, when his friend tries to import this data, there might be
problems, because his application expects a different format, e.g. first name after last
name or similar. The advantage of XML is, that it does not only structure data, but it
also describes data.

1Comma Separated Values

6/ 47

2.1 XML – Extensible Markup Language Basics

Listing 1: XML Example for a person
1 <person>
2 <f i r s tname>John</ f i r s tname>
3 <lastname>Doe</ lastname>
4 <phone type="mobile ">01701234567</phone>
5 </person>

Listing 1 gives an example of an XML formatted person named John Doe. Each value is
enclosed by an opening (e.g. <firstname>) and a closing (e.g. </firstname>) tag, which
forms the element. The element name describes the data type and let one distinguish
between first name and last name2, even if the document builder changes the order of the
elements. Elements may also have attributes, which can give more information about
an element value. In Listing 1, the attribute type="mobile" specifies the type of phone
number: it is a mobile number.

2.1.2 Namespaces

Namespaces are used to uniquely identify XML elements and attributes [3]. This is
important in cases, where XML documents embed other XML documents.

Example:

Let document A define an element Z. Document B also defines a different element Z.
If A embeds B, the parser can not distinguish between the two Z elements. This can
be solved by using namespaces:

Listing 2: XML namespaces
1
2 <Z/>
3
4 <B xmlns=" ht tp : // ns2 . com">
5 <Z/>
6

In Listing 2, element A uses another namespace than element B. Each child from A

respecting B inherits the namespace from its parent element. This way, a parser can
distinguish between both Z children, because they identified by their namespaces.

2Of course, the application needs to know these element names, see Section 2.1.3

7/ 47

2.1 XML – Extensible Markup Language Basics

Note: It is also possible to define a namespace prefix like xmlns:ns1="http://n1. y
com". If an element belongs to this namespace, it must start with the prefix. Listing 3
gives an example for using prefixes.

Listing 3: XML namespaces with prefixes
1 <ns1:A xmlns:ns1=" ht tp : // ns1 . com">
2 <ns1:Z />
3 </ns1:A>

This can be used to declare a namespace only once and use the prefixes for the corre-
sponding elements.

2.1.3 XML Schema

Remember the example of Listing 1: If an application wants to use such a document
defining a person element, it needs to know its syntax. If it does not know the exact
element name, it will have to guess it and search for element names like firstname,
first-name, prename, etc. to get the first name. This leads back to the import problem
mentioned in the previous example. In order to solve this problem, the application needs
information about how elements are named and which children they can have.

XML Schema (XSD) is a well-founded commendation from W3C to define the structure
of an XML document [4]. In contrast to its predecessor Document Type Definition
(DTD), XSD uses XML itself to describe an XML Document.

XSD can be used to describe very complex data types. It uses control structures to
define elements and their allowed sub elements. The leafs of all elements contain data
which corresponds to one of 19 primitive data types, e.g. xsd:string or xsd:integer. One
special child is xsd:any, which means, that any child elements are accepted.

2.1.4 DOM and SAX

There are two possibilities for parsing XML documents:

DOM: The Document Object Model reads the whole XML Data into memory and builds
an object for each element. They are saved in a tree-like order, which allows easy
access to each data node and relationship information like child, parent and sibling
nodes.

8/ 47

2.2 SOA – Service-Oriented Architectures Basics

SAX: The Simple API for XML does not save any object into memory. It parses an
XML stream and sends an event if a new element starts or ends. This is extremely
fast but more difficult to use, since the programmer can not go backwards, e.g.
to get the parent node. He has to save all relevant data, like ancestor or sibling
nodes, himself while processing and he can not directly access to any other node.

Both models are widely used and at first view DOM seems to be the better parser,
because it is easier to use, but it is notable, that parsing only a small document will
result in much higher memory consumption. For a server, which has to process several
documents per second, this can lead to a bottleneck in memory, being abused by denial
of service attacks. However, the SAX model also has its disadvantages: although it is
fast and consumes minimal memory, some XML specific operations, like XPath [5], are
not fully supported.

A third solution for parsing XML is the Streaming API for XML (StAX). It is a mixture
compared to the features of SAX and DOM. SAX is a push parser: it reads a stream
and sends out events. StAX works like a cursor: the programmer can ask for the next
event, so StAX is a pull parser, which does not interact with the program actively.

2.2 SOA – Service-Oriented Architectures

Service-oriented architectures (SOA) define an abstract model of software architecture
[6]. These services will be used by platform independent applications over a network.

The roots of SOA are located in business processes. They are high level descriptions of
provided services, e.g. a bank provides a service “give a credit to”, which is the high level
description for a lot of low level processes like “check credit rating”, “create new account”
etc. SOA hides these low level processes as they are not interesting for clients.

From software point of view, it does not provide any implementation parts, it only
defines an interface which can be used to talk to the service.

2.3 Web Services

Web services represent a concrete implementation for SOA. A web service client will
load a WSDL (Section 2.3.1), which defines the request content of the SOAP message
(Section 2.3.2) and submits it to the server hosting the requested service.

9/ 47

2.3 Web Services Basics

2.3.1 WSDL – Web Service Description Language

The Web Service Description Language (WSDL) is a specification for creating a client’s
web service message. Currently, there are two versions: Version 1.1 was published in
2001 by the W3C [7], but since 2007, there also exists a recommendation for version
2.0 [8]. Figure 1 shows the differences between them. Both versions are not meant for
human reading, but if you try to do so, you should start reading from bottom to top.

Figure 1: Comparison of WSDL 1.1 and WSDL 2.0

A WSDL can be divided into two parts:

1. The Abstract Section defines platform independent parts for creating messages.
This means, it can be reused if the network address changes.

2. The Concrete Section defines the port/endpoint where the messages should be
sent to.

The structure of a WSDL consists of the following elements from bottom to top:

Service: A container for similar endpoints. Some frameworks like Axis2 [9] generate
one Service for SOAP 1.1 and one for SOAP 1.2 messages, see Section 2.3.2.

10/ 47

2.3 Web Services Basics

Port/Endpoint: Defines a network endpoint address or connection to the web service,
in most cases represented by an HTTP URL string.

Binding: Concrete protocol definition and data format given by the PortType/Inter-
face.

PortType/Interface: Defines the possible operations for an endpoint.

Operation: Like a function call in a programming language. The SOAPAction is defined
and the structure of the Message is given.

Message/N.A.: Typically, a Message corresponds to an Operation and contains the
information for executing it. Commonly, the operation name is used as a child of
the SOAP Body. The Message can refer to Types for a more complex message,
e.g. if the operation needs parameters.

Types: Defines an XSD (Section 2.1.3) to structure a message. In WSDL 2.0, this
replaces the Message part.

For more information about WSDL see [7] and [8].

2.3.2 SOAP – Simple Object Access Protocol

The Simple Object Access Protocol (SOAP) is a standard which describes message ex-
change with a web service.

The W3C specified two versions of SOAP. Version 1.1 was published in May 2000 and
Version 1.2 in April 2007. Both versions are still widely used. There are a few differences,
like different SOAP Faults, different namespaces, and in general, one can say that SOAP
1.2 is more precise. For further details, see the specification [10] and [11].

SOAP does not specify any concrete transport protocol, but in most cases HTTP is
used. Consequently, SOAP Messages can not be distinguished from normal HTTP
traffic without any content analysis. This allows bypassing of most standard firewalls.
Therefore, web services can be used whenever HTTP protocol is used.

The SOAP message basically consists of an Envelope element with two child elements
named Header and Body (Figure 2):

Envelope: Container element for the SOAP Header and Body.

11/ 47

2.3 Web Services Basics

Figure 2: Structure of a SOAP Message (Namespaces are omitted).

Header: The optional SOAP Header element can contain any child elements (xsd:any).
The idea is to have a place for additionally needed information like credentials or
signatures.

Body: The SOAP Body also has a child of type xsd:any, which is used for storing the
message defined by the WSDL for a web service operation. For SOAP responses,
the Body element can contain a SOAP Fault element, which gives details if a SOAP
request results in an error.

2.3.3 Security in Web Services

Web services are normally used via SOAP messages over HTTP. This allows two possi-
bilities for secure communication:

SSL/TLS can be used, since it relies on a well-known and tested protocol [12]. As
HTTP is used in most cases for message exchange, it is already implemented in
most servers and clients.

XML specified security can be used to encrypt/sign XML Elements (also known as
Message-Level Security).

On a quick peek, the second solution seems to be unnecessary. However, consider a web
service W behind an application firewall A: If a client C wants to use a W , there is the
following message exchange:

C � A�W

C must establish an SSL connection to the firewall A, but then, A has to forward the
message to W . For doing this, A has two possibilities:

12/ 47

2.3 Web Services Basics

1. Establishing a new SSL connection withW , which is computationally intensive for
A.

2. Sending the message unencrypted to W , allowing internal attackers to eavesdrop
the message.

Since both approaches have its downside, this leads to the second idea for web service
security: XML specific security. Therefore, the OASIS group maintained theWeb Service
Security (WS-Security) [13], which standardized how to:

1. Sign and verify (parts of) SOAP messages.

2. Encrypt and decrypt (parts of) SOAP messages.

3. Add security tokens (like timestamps, credentials) to SOAP messages.

If a web service wants to use these security features, it needs a Web Service Security
Policy (WS-Security-Policy) [14], which can be embedded in a WSDL. The WS-Security-
Policy provides details to a client, to which parts of the messages which security features
shall be applied and which concrete algorithms must be used.

13/ 47

Threats to Web Services

3 Threats to Web Services

The following section will give an overview of existing attack classes for web services.
This thesis will not go into detail. For more information about attacks, see [15].

As two examples, SOAPAction Spoofing in Section 3.2 and WS-Addressing Spoofing
in Section 3.3 are described. Both attacks are implemented as attack plugins for WS-
Attacker and SOAPAction Spoofing will be used as an example implementation in Sec-
tion 4.5.4.

3.1 Web Service Specific vs. Non-Specific Attacks

Web services use XML based messages for communication over HTTP. However, they
are also programmed applications, which use a specific programming language and/or
data base queries. Considering these two points of view, a web service is vulnerable to
the following groups of attacks:

Non-specific web service attacks are abusing weaknesses in the back-end of an appli-
cation, e.g Buffer Overflows [16] or SQL Injection [1].

Specific web service attacks exploit vulnerabilities on SOAP and XML. They attack
the parser (DOM, SAX see Section 2.1.4) with Denial of Service attacks or build
unexpected SOAP messages, e.g. change the SOAPAction header (Section 3.2).

The preferred way to build secure web services is checking for security by means of an
attack framework. If the service resists these attacks, it is a good indicator for security.

Non-specific web service attacks are well-known from web applications. Information
about them can be found on the OWASP web site [17]. A good all-in-one tool for testing
web applications is the Web Application Attack and Audit Framework (w3af) [18].

A short overview of some well-known web service specific attacks taken from [19] can be
seen in Table 1. Although there is a large number of attacks, there are only a few tools
which can be used for security testing on web services.

SOAP Sonar by Crosscheck Networks [20] provides an automated one-click security scan,
but it can only do non-specific web services attacks, and the annual licence costs about
$15.000 per year.

14/ 47

3.2 SOAPAction Spoofing Threats to Web Services

Table 1: Overview of existing web service specific attacks taken from [19]

Oversize Payload
Coercive Parsing
SOAPAction Spoofing
XML Injection
WSDL Scanning
Metadata Spoofing
Attack Obfuscation
Oversized Cryptography
BPEL State Deviation
Instantiation Flooding
Indirect Flooding
WS-Addressing Spoofing
Middleware Hijacking

Currently, there is no automated vulnerability scanner which uses web service specific
attacks. The only possibility to attack web services is to do manual tests, e.g. using
soapUI [21]. As this is very time consuming, WS-Attacker is presented as an automated
all-in-one web services attack and penetration testing framework in Section 4.

3.2 SOAPAction Spoofing

SOAPAction Spoofing is a web service specific attack [19]. Each SOAP request has a
special HTTP header named SOAPAction, which indicates the operation that shall be
performed. The goal of this header is to reduce computational time, as the operation
can be detected without parsing the XML content to find the first child of the SOAP
Body.

The idea of SOAPAction Spoofing is to have a SOAP message, which contains a SOAP-
Action header that does not match the SOAP Body element.

Example:

Consider a web service with two operations: OperationA and OperationB. The WSDL
for this service defines the SOAPAction for each operation in the operation element.

15/ 47

3.2 SOAPAction Spoofing Threats to Web Services

Let ActionA and ActionB be the corresponding actions. A valid SOAP message for
OperationA is shown in Listing 4 (namespaces are left out).

Listing 4: A valid SOAP message for OperationA
1 POST /webserv i ce HTTP/1 .1
2 Host : soapAct ionSpoof ingHost
3 SOAPAction: "ActionA"
4 <Envelope>
5 <Header/>
6 <Body>
7 <OperationA/>
8 </Body>
9 </Envelope>

A SOAPAction Spoofing attack will change the SOAPAction header to a different action
as Listing 5 shows.

Listing 5: SOAPAction Spoofing Attack message
1 POST /webserv i ce HTTP/1 .1
2 Host : soapAct ionSpoof ingHost
3 SOAPAction: "ActionB"
4 <Envelope>
5 <Header/>
6 <Body>
7 <OperationA/>
8 </Body>
9 </Envelope>

In some cases, this message can provoke an unwanted reaction.

Example:

Consider an HTTP Firewall, which handles incoming requests and a web service with
two operations. If the firewall only checks the SOAPAction header, the message of
Listing 5 is illegally allowed and will be forwarded to the web service, see Figure 3.
The web service logic executes the SOAP Body operation, because it does not check
authentication – it believes, that the firewall performs this task.

If OperationB is a public operation like getServerTime and OperationA one, that needs
authentication, e.g. deleteAllUsers, the SOAPAction Spoofing attack can be used to
execute deleteAllUsers without any authentication.

16/ 47

3.3 WS-Addressing Spoofing Threats to Web Services

Figure 3: Attacking a web service with SOAPAction Spoofing

This attack may also apply in scenarios without a firewall. Some web services only
check the SOAPAction header and execute the corresponding operation in order to save
computational time. The SOAP message itself is only parsed if the operation needs
additional parameters. If the server does not find them, because the SOAP Body child
is different, it sets all parameters to their default value, e.g. empty strings. This behavior
can be found in .NET services, see Section 5.

A real life example for this attack was published in January 2010 [22]. SourceSec Security
Research found a vulnerability in D-Link routers, which allows administrative access
using SOAPAction Spoofing.

3.3 WS-Addressing Spoofing

WS-Addressing Spoofing is a further web service specific attack [19]. The idea can be
seen in Figure 4: The attacker sends a request to the server, which has a WS-Addressing
Header [23] to provoke the server sending the SOAP response to a different endpoint.

The specification has three different methods for doing this:

ReplyTo: The server sends the response to any different endpoint.

FaultTo: The server sends any SOAP Fault to a different endpoint. For attacking a
web service, a SOAP Body without any children can be used, as this will always
return a SOAP Fault.

To: The server uses a different endpoint for everything.

17/ 47

3.3 WS-Addressing Spoofing Threats to Web Services

Figure 4: Idea of WS-Addressing Spoofing

Using WS-Addressing for asynchronous message exchange raises different attack pos-
sibilities, e.g. flooding another web service, or even Distributed Denial of Service is
possible. Therefore, only one of the three methods mentioned above is sufficient.

A countermeasure against WS-Addressing Spoofing is the verification of the endpoint
reference (Whitelist), ideally before any computation.

18/ 47

WS-Attacker

4 WS-Attacker – A Modular Testing Framework

Based on [15], a new project has started to categorize attacks for web services. The web
services attacks open community project [24] provides information about existing web
service attacks. The goal of this thesis is to build a web service attack framework, which
easily allows an automated vulnerability scan. This section introduces the WS-Attacker
framework, which can be extended via attack plugins. These plugins can contain any
kind of web service attacks, respecting web service specific and non-specific attacks.

Section 4.1 specifies WS-Attacker’s requirements by distinguishing two groups: plugin
developers and framework users. Section 4.3 introduces soapUI as a main part of the
framework, whereas Section 4.4 gives a general overview of WS-Attacker’s internal struc-
ture. In Section 4.5, the attack plugin interface is described in detail.

4.1 Framework Requirements

WS-Attacker shall do a vulnerability scan on every web service and only needs a WSDL
as input. This thesis is only aimed of creating an architecture, which can be used for
implementing attacks. These attacks can be started via an easy understandable GUI3.
Therefore, one has to distinguish the requirement for two groups: plugin developers and
WS-Attacker users.

4.1.1 Requirements for Plugin Developers

The requirements for plugin developers can be summarized to the following aspects:

1. It must be easy to implement new attacks, where each attack is represented by
a WS-Attacker plugin.

2. Any attack category must be supported (spoofing attacks, denial of service,
etc.)

3. Open for extension, that means, there must be support even for prospective,
not yet invented, attacks.

3Graphical User Interface

19/ 47

4.1 Framework Requirements WS-Attacker

In general, a plugin author has the task to create the attack-plugin without knowing WS-
Attacker’s internals. It must be as easy as possible to create new attacks and any kind of
attacks must be supported. This is why WS-Attacker will only provide a plugin interface
and some helper classes. Each attack request must be sent by the plugin itself. This
way, plugins can have multiple or single requests. An attack will get a request-response
pair as a reference to build the attack vector and send it to the server. Receiving the
new responses, each plugin will get some results, which will be published in a special
way, so that the framework can visualize them.

4.1.2 Requirements for Framework Users

The requirements for framework users must be seen from a different point of view. They
can be summarized as followed:

1. The framework must be easy to use.

2. Only a few clicks should be necessary to test a web service.

3. The users do not need any knowledge about XML or web services.

A typical WS-Attacker user might be a company, which provides a web service either
for their clients, or for its internal processes. This service should be secure against all
known attacks to web services. By using WS-Attacker, the company can easily check
for vulnerabilities. In most cases, companies do not have employees who know a lot
about security in web services. Moreover, they even do not know anything about XML,
because they use a framework like Axis2 [9] to provide the service. In such cases, WS-
Attacker is the perfect software solution. WS-Attacker uses a WSDL as input, the user
chooses the operation to be tested and selects the attacks. A further click starts these
attacks and the results will appear on the screen.

4.1.3 Goal of this Thesis

The goal of this thesis is to build the WS-Attacker framework and realize the require-
ments mentioned above. A vulnerability scanner is only as good as the attacks it can
perform. It is not in the scope of this thesis to build a complete penetration testing tool,
as this would imply to build attack plugins for all known attacks.

20/ 47

4.2 Overview WS-Attacker

4.2 Overview

Figure 5: WS-Attacker: General overview

The general idea of WS-Attacker is shown in Figure 5. The program is divided into two
parts:

Framework: This is the main part of WS-Attacker. Its task is to set up the environment
for attacking web services.

Plugin Architecture: WS-Attacker can hold any number of plugins, where each plugin
represents an attack.

The main task of the framework is to set up the configuration for attacking the web
service. This will work as follows:

1. The user has to load a WSDL. This can be a local file or an URL.

2. After that, he has to select the operation which will be attacked.

21/ 47

4.3 SoapUI as Back-end WS-Attacker

3. The framework generates the request content and provides input fields for message
parameters.

4. The user submits a test request, which will be used by the plugins for comparing
attack responses to regular responses.

5. The plugins have to be configured and enabled.

6. The framework starts the enabled plugins.

7. Results generated by the plugins are presented to the user.

The plugin architecture allows to extend the framework with new attacks. Each plugin
represents exactly one attack and the framework uses a plugin manager to hold and
activate these plugins. The plugin structure is described in Section 4.5.

4.3 SoapUI as Back-end

SoapUI by Eviware Software is a tool for using and testing web services [21]. It is
published under LGPL [25], can create requests out of an WSDL and send them to a
server hosting the web service. Since 2005, soapUI is hosted on sourceforge.net and is
one of the most frequently used testing tools in the world.

4.3.1 Advantages of soapUI

A web service testing framework like WS-Attacker needs to

1. create requests from a WSDL

2. edit the request parameters

3. send it to the server

Using Java, there are a few possibilities for doing this:

1. Do it yourself.
This includes building an XML and an XSD parser. To send a request, some
helper methods must be provided unless the plugin authors want to use raw HTTP
sockets.

22/ 47

4.3 SoapUI as Back-end WS-Attacker

2. Use the Java SAAJ tools from javax.xml.soap [26]:
This package can manipulate SOAP messages and provides some helper classes for
sending requests.

3. Use a third party solution.

The first approach is very complex and time-consuming. A lot of tests needs to be
created to find bugs. It is just simpler, faster and safer to rely on standards.

The second approach seems to be very good, since it uses standard Java packages and
SAAJ is very flexible for creating and manipulating SOAP messages. Nevertheless, there
are some problems:

1. Each XML element is saved as one object, but especially for web service specific
attacks, one must be able to create malformed messages, e.g. create only open
tags and no end tags. There are also problems if you try to add greater than or
lesser than signs, because they are automatically escaped.

2. SAAJ does not provide a WSDL parser, so there is no possibility to create the
basic request content for a defined operation.

Where (1) could be wrapped by serializing SAAJ objects and sending a manual request
via custom HTTP sockets, problem (2) can not be solved as easily as (1).

There are two possibilities for creating a request from a WSDL. The first one uses the
WSDL parser wsdl4java, which can parse a WSDL file and extract the operation name
as well as the endpoint URI, but which is not able to generate the request content. It
can only be generated by means of an XSD parser, which can extract the information
from the Types section of a WSDL. The second makes use of the Axis2 tool wsdl2java.
This one can create a request but generates Java code, giving no direct access to the
request content.

All these problems lead to the third approach: Use a third party tool: soapUI is the
perfect solution for doing this. It is written in Java and LGPL allows us to use it for
custom programs. SoapUI is able to parse WSDL files, generate requests out of it and
also to support helper methods for Basic Authentication, WS-Security etc. Sending
requests to the server is just as easy. SoapUI uses strings to save the request content,
which allows us to manipulate them and create malformed requests.

23/ 47

4.4 Program Structure WS-Attacker

4.3.2 The Structure of the soapUI API

This section will give a brief overview of the soapUI API, which is used in the back-end of
WS-Attacker for creating and sending requests. Although plugins can be built without
using soapUI, it can simplify the process. For more details on this API, visit the online
documentation 4.

Figure 6: Overview: The soapUI API

Figure 6 shows the most important model items. The italic names represents the general
Java interface, the bold ones the concrete Java class. The model can be seen as an object
view of a WSDL. There is always a one to many relationship, i.e. one interface can have
many operations. All relations are bidirectional: A request always knows its operation
(like a parent in a tree) and each operation knows all of its requests.

Each model item has its own properties, e.g. the property SOAPAction is a property
defined in WsdlOperation, like it is defined in the WSDL file. Each property can be
changed and overwritten: If one defines another property SOAPAction in aWsdlRequest,
this property will be used when the request is submitted and the equivalent property
defined in WsdlOperation will be ignored.

Listing 6: Submitting a WsdlRequest
1 WsdlSubmit<WsdlRequest> submit = reques t . submit (new y

WsdlSubmitContext (r eque s t) , fa l se) ;

Listing 6 gives an example for submitting a request. The WsdlSubmitContext object
resolves the properties of the given request, that means, it expands properties which are
not directly set by the request and adds them from its parents as in the SOAPAction ex-
ample mentioned above. The second parameter defines whether the request is submitted
asynchronously.

24/ 47

4.4 Program Structure WS-Attacker

Figure 7: The internal structure of WS-Attacker

4.4 Program Structure

This section will give a more detailed overview of WS-Attacker’s internal structure.
Figure 7 shows a class overview of the must important parts: The Plugin Architecture
and the Operation Architecture. Concrete classes have bold names in rectangles, abstract
classes are italic.

Operation Architecture: The operation architecture represents everything that has to
do with creating web service requests and can be seen as the main part of the
framework.

Plugin Architecture: The plugin architecture represents the plugin system.

The Operation Architecture has a Testsuite, which acts like a wrapper for soapUI. It can
load a WSDL and select the CurrentInterface as well as a CurrentOperation to generate

4http://www.soapui.org/apidocs/overview-summary.html

25/ 47

http://www.soapui.org/apidocs/overview-summary.html

4.5 Attack Plugin Interface WS-Attacker

the CurrentRequest. WS-Attacker only needs one operation and one request that will
be used for attacking. The CurrentRequest can also be sent to the web service server so
that each attack plugin can use the response for comparing it to the attack response.

The PluginManager holds all available attack plugins. Each plugin extends the Abstract-
Plugin class and can have one or more AbstractOptions, for example a signature file or
some other configuration parameters. The WS-Attacker GUI will read these options
and present a graphical input method to the framework user. To distinguish between
different data types, sub-interfaces of AbstractOptions like AbstractOptionInteger and
AbstractOptionBoolean have been built.

The results of the attack are collected in the Result object. It can be compared to an
advanced log file, which the GUI will use to present the results to the user. Results can
be filtered by the plugin source and a level, which indicates how important a result is.
The user can choose whether he wants to see only the most important results, e.g. which
parts of the attack was successful, or even request and response contents.

4.5 Attack Plugin Interface

4.5.1 Basic Idea

In general, an attack plugin has the following tasks:

1. Running the attack using the given operation, request and plugin options.

2. Generating some results which shall be displayed to the user.

3. Giving a rating about the outcome of the attack.

The first point is obvious – an attack implementation is needed.

While processing the attack, information about what is happening must be saved as
results. The user will see those results and can filter them according to their level. If he
only wants to know the most important pieces of information, he can filter only critical
results. Nevertheless, if he wants to see request/response contents, he chooses the tracing
level.

Furthermore, each plugin needs to rate the attack success. Therefore, a plugin author
has to take the following two steps:

26/ 47

4.5 Attack Plugin Interface WS-Attacker

1. Giving an integer rating for his attack, which means, he has to set a maximum
number of points (integer), that can be reached during the attack and increase the
reached points depending on the attack success.

2. Implementing a wasSucessful() method to give a Boolean result.

It is important to distinguish between these two ways: Although a specific attack might
be successful, it could have a variable attack potential. E.g. a denial of service attack
might stop a server for several minutes or even completely so that a reboot is necessary.
This can be described using such a rating. The wasSucessful() method should just
indicate whether a web service is vulnerable in general or not.

4.5.2 Extending AbstractPlugin

To build attack plugins, each plugin must extend the AbstractPlugin interface. Listing
7 gives an overview of its methods.

Listing 7: The AbstractPlugin interface (shorted).
1 public abstract class AbstractPlug in implements y

Suc c e s s I n t e r f a c e {
2
3 public abstract void i n i t i a l i z e P l u g i n () ;
4
5 // a t t a c k i d e n t i t y
6 public abstract St r ing getName () ;
7 public abstract St r ing ge tDe s c r i p t i on () ;
8 public abstract St r ing [] getCategory () ;
9 public abstract St r ing getAuthor () ;
10 public abstract St r ing getVers ion () ;
11
12 // succe s s i n t e r f a c e
13 public abstract int getMaxPoints () ;
14 public abstract boolean wasSucce s s fu l () ;
15 f ina l public int getCurrentPoints () ;
16 // f o r i n t e r n a l use
17 f ina l protected void se tCurrentPo int s (int po in t s) ;
18 f ina l protected void addOnePoint () ;
19
20 // l o g g e r f o r ou tpu t s l i k e errors , which are no p l u g in y

r e s u l t s
21 f ina l protected Logger l og () ;
22 // genera t ing r e s u l t s

27/ 47

4.5 Attack Plugin Interface WS-Attacker

23 f ina l protected void r e s u l t (Resu l tLeve l l e v e l , S t r ing y

content) ;
24 f ina l protected void c r i t i c a l (S t r ing content) ;
25 f ina l protected void important (S t r ing content) ;
26 f ina l protected void i n f o (S t r ing content) ;
27 f ina l protected void t r a c e (S t r ing content) ;
28
29 // the p l u g in s t a t e
30 f ina l public Plug inState ge tS ta t e () ;
31 f ina l protected void s e tS t a t e (Plug inState s t a t e) ;
32 f ina l public boolean isRunning () .
33 f ina l public boolean isReady () .
34 f ina l public boolean i sF i n i s h ed () .
35 f ina l public boolean i s F a i l e d () .
36
37 // ge t the p l u g in op t i ons
38 f ina l public PluginOptionContainer getPluginOpt ions () ;
39 // the p l u g in w i l l be ob se rve r i f an opt ion va lue changed
40 // t h i s can be used to s e t the p l u g in s t a t e to ready/not y

con f i gured
41 public void optionValueChanged (AbstractOption opt ion) ;
42
43 // r e s t o r i n g an o ld con f i g u r a t i on
44 public void r e s t o r eCon f i gu r a t i on (AbstractPlug in p lug in) ;
45
46 // main par t
47 f ina l public boolean s ta r tAttack () ;
48 // implement the a t t a c k here
49 protected abstract void attackImplementationHook (f ina l y

RequestResponsePair o r i g i n a l) ;
50 // c l ean : prepare p l u g in f o r next run
51 public abstract void c l ean () ;
52 // s top : i f user i n t e r r up t e d the a t t a c k
53 public abstract void stopAttack () ;
54 }

The AbstractPlugin Class contains three types of methods:

Abstract methods must be implemented by the plugin author.

Final methods can not be overridden. They shall be used in the implementation as
helper methods..

28/ 47

4.5 Attack Plugin Interface WS-Attacker

Public methods that are neither abstract nor final can optionally be overridden to
change their default behavior.

The methods can be divided into different parts:

Attack identity contains methods to describe a plugin. This includes an attack name,
an author, a version and a description. The plugin category must be an array of
strings, where the first element is the main category and any further element is a
sub category of its predecessor.

Success interface implements the idea mentioned in Section 4.5.1. The interface im-
plements the wasSucessful() function as well as a success rating, which can be seen
as a fraction: getCurrentPoints()

getMaxPoints() .

A logger is provided via the log() method. It shall be used to log internal errors, e.g.
if a plugin can not start.

Results can be generated. Therefore, some helper methods are given for smarter cre-
ation.

Plugin states are used to describe the status of a plugin. These methods can set
weather the plugin is ready, running, finished etc.

Plugin Options must be accessed by the getPluginOptions() method. This will return
a container where plugin authors can add their own options. The added options
will be automatically observed. If an option value changed, the plugin is notified
with the optionValueChanged() method.

Restoring configuration of plugins is possible via the restoreConfiguration() method.
The default implementation takes each option from getPluginOptions(), gets its
value and resets it on the corresponding option of the current plugin.

Main part: A plugin will be started by the startAttack() method. This method is
final but internally calls the attackHook() method, which the plugin author has
to implement. Furthermore, a clean() method must be implemented to reset the
plugin (e.g. to reset the success rating) and prepare it for the next run. The
stopAttack() method will be called, after the user requested to abort the current
attack. The attack thread will be stopped and the stop method can be used to
clean things, e.g. free sockets.

29/ 47

4.5 Attack Plugin Interface WS-Attacker

Most of these methods will be used as subroutines in the main part. The attack will
use the log and result methods depending on its processing; set the current points to a
specific value and finally change the state to finished or failed.

4.5.3 Using Plugin Options

WS-Attacker includes a very expandable plugin option system:

Each plugin option has to extend AbstractOption. Its methods are shown in Listing 8.

Listing 8: The AbstractOption interface (shorted)
1 pub l i c ab s t r a c t c l a s s AbstractOption {
2 // con s t ru c t o r s
3 pub l i c AbstractOption (S t r ing name , S t r ing d e s c r i p t i o n) ;
4 pub l i c AbstractOption (S t r ing name) ;
5
6 // an opt ion at l e a s t has a name and a d e s c r i p t i o n
7 pub l i c S t r ing getName () ;
8 pub l i c S t r ing ge tDe s c r i p t i on () ;
9
10 // each opt ion be longs to one opt ion conta ine r
11 pub l i c f i n a l PluginOptionContainer g e tCo l l e c t i o n () ;
12 pub l i c f i n a l void s e tCo l l e c t i o n (PluginOptionContainer y

c o l l e c t i o n) ;
13
14 // no t i f y i f va lue has changed
15 protec t ed f i n a l void notifyValueChanged () ;
16
17 // check i f a va lue i s va l i d f o r t h i s opt ion
18 pub l i c ab s t r a c t boolean i sVa l i d (S t r ing value) ; // only f o r y

g ene r i c p roposa l s
19
20 // each opt ion can at l e a s t be s e t and read by s t r i n g s
21 pub l i c ab s t r a c t boolean parseValue (S t r ing value) ; // only y

f o r g en e r i c p roposa l s
22 pub l i c ab s t r a c t S t r ing getValueAsStr ing () ; // only f o r y

g ene r i c p roposa l s
23 }

An Option is characterized by its name and a description. The parseValue() and get-
ValueAsString() methods ensure that each option is at least accessible by strings. There

30/ 47

4.5 Attack Plugin Interface WS-Attacker

are further sub interfaces of AbstractOption like AbstractOptionBoolean and Abstract-
OptionInteger, which provides methods to access the value with the specific type. The
GUI will check for these interfaces and provide a fitting input method.

There are also some concrete implementations like OptionSimpleBoolean. This option
is just what the name says: A check-box which can be on or off. However, the clue of
AbstractOption is the isValid() method, which can be used to generate specific options.
Consider two Boolean options, which are disjunct: If A is on, B must be off and vice
versa – or consider just any string option which starts with foo and ends with bar.
To implement such options, you could easily extend the corresponding interfaces and
implement the isValid() method.

WS-Attacker also supports complex options via the AbstractOptionComplex interface.
It can be used if the common options do not fit. Therefore, one has to implement only
one method named getComplexGUI which returns an AbstractOptionGUI component.
This way, any possible option can be implemented, but this is a lot more work, since the
author has to create a GUI by himself.

4.5.4 Minimal Implementation

This Section will give a minimal implementation example for an attack plugin, using
SOAPAction Spoofing as an example. It will not give source code examples, but rather
describe the idea of building a plugin.

In general, there are four steps to take:

1. Implementing the attack identity methods like getName() and getDescription().

2. Implementing the success interface.

3. Implementing the plugin options (configuration parameters), if any are needed.

4. Implementing the attack itself.

The first step is obvious. After this, a success interface has to be implemented. There-
fore, it will be distinguished between the following aspects depending on the SOAP
response:

0. The response has a SOAP Fault. This is the only correct handling for SOAPAction
Spoofing requests.

31/ 47

4.5 Attack Plugin Interface WS-Attacker

1. The response is not a SOAP message. Maybe it does not even contain any XML.
This leads to a server internal error or misconfiguration. Eventually, some internals
can be revealed, as this failure must be unwanted from server side – otherwise, the
server would have sent a SOAP Fault.

2. The server ignores the SOAPAction Header and executes the first child of the SOAP
Body. This could be used to bypass authentication, e.g. if a web service firewall
only checks the SOAPAction header and the web service logic always executes the
operation defined in the SOAP Body.

3. The server just executes the operation defined in the SOAPAction Header. This
can be abused to invoke operations, which do not have any parameters (consider
an operation like deleteAllUsers), because the server will search for them in the
first SOAP Body child, which is different to the one the server expects.

As mentioned before, an attack can have different levels of success: Although (2) and
(3) can be abused to executed operations without any authorization, (3) is easier to
use, as it only needs to change the SOAPAction. The list above will be used for the
integer success interface, so that a framework user can see what was successful and how
dangerous it was. Additionally, a Boolean result will be implemented: wasSucessful()
will return true if the attack reached two or three points. Again: The only correct
handling for such requests is to send a SOAP Fault.

Next step is to implement the plugin options, if necessary. In case of SOAPAction
Spoofing, the attack can have two different modes:

1. An automatic mode, which will generate a list of all possible SOAPAction headers
and send an attack request for each of it.

2. A manual mode, which will let the user set the SOAPAction header manually.
Therefore, a drop-down list with all operations different to the current operation
are shown. The user can select the operation and the corresponding SOAPAction
will be displayed in an input field. This field can also be edited.

In most cases, a user will start the attack in automatic mode, but the manual mode
provides a way to set up a SOAPAction to anything the user chooses – e.g. if the user
only wants to check a specific action, because some action may cause damage to the
system.

32/ 47

4.5 Attack Plugin Interface WS-Attacker

As a last implementation step, the concrete attack must be implemented. Therefore,
one has to override the attackHook() method, which will get a RequestResponsePair as
a parameter for comparison. The attack will work as follows:

1. Get a list of SOAPActions to be checked, depending on automatic or manual mode.

2. Generate a new attack request as a copy of the comparison request.

3. Repeat for each SOAPAction while the maximum points are not reached:

3.1. Submit the attack request with the specified SOAPAction.

3.2. Search for the first body child in the response.

3.3. Compare this child to the one from the comparison response, determine the
kind of success and set the points for this.

For a more detailed documentation, a view into the Java source code is recommended.

4.5.5 Adding a plugin to WS-Attacker

The last Section dealt with how to build a plugin. This section now explains how to add
the plugin to the WS-Attacker suite. Therefore, a Jar file must be built.

WS-Attacker’s PluginManager uses Suns Java service loader from java.util.ServiceLoader
to instantiate a plugin. This works as follows:

1. Add all Jar files from folder plugin to the classpath.

2. Search each Jar file for a file named META�INF/services/wsattacker.main. y
composition.plugin.AbstractPlugin.

3. Instantiate the class where the content of this file points to.

For adding Jars to the classpath, the soapUI utility ClasspathHacker.addFile() is used.
Step two and three are realized by using the Java service loader:

33/ 47

4.5 Attack Plugin Interface WS-Attacker

Listing 9: Loading plugins from classpath using Java service load
1 ServiceLoader<AbstractPlugin> loade r = Serv iceLoader . load (y

AbstractPlug in . class) ;
2 for (AbstractPlug in p : l oade r) {
3 p . i n i t i a l i z e P l u g i n () ;
4 addPlugin (p) ;
5 }

Thus, for completing the development of the SOAPAction Spoofing plugin, a Jar file
must be generated, which includes all compiled classes. Additionally, it has to include
the META-INF/services/ -file which points on the name of the absolute Java class that
shall be initialized.

After this, the Jar file can be placed in WS-Attacker’s plugin folder.

34/ 47

Evaluation

5 Evaluation

In this section, WS-Attacker is used for penetration testing on two different web services.
Apart from the SOAPAction Spoofing Plugin, a second attack plugin for WS-Addressing
Spoofing based on Section 3.3 is build analog to Section 4.5.4. These two plugins will
be used for attacking a .NET based web service in Section 5.1 and an Axis2 based web
service in Section 5.2.

5.1 Microsoft .NET

In the first penetration test, a custom web service is created withMicrosoft Visual Studio
2005. It has two operations: HelloName and GoodbyeName.

After starting WS-Attacker, the GUI appears and offers an input field to enter the
location of the WSDL, see Figure 8.

Figure 8: Loading the WSDL

35/ 47

5.1 Microsoft .NET Evaluation

HelloName is chosen as the operation to be tested. The table at the bottom gives a
form based input possibility for all request parameters and in this case, name is set to
John.

Next step is to do a test request: Figure 9 shows the test request and the correspond-
ing response. The request contains a “HelloName” element as first body child and the
response holds the corresponding element “HelloNameResult”. This request is very im-
portant as attack plugins will use its response for comparing it with the responses of the
attack request. This allows to check, what has really changed due to attack modifica-
tions.

Figure 9: Submitting a test request

The next step is to configure the plugins. In this case, the automatic mode is used for
SOAPAction Spoofing (Figure 10) and the WS-Addressing Spoofing plugin detects the
endpoint URL automatically (Figure 11), too – there is nothing to configure manually.
The tree on the left shares different views on the plugins. Active Plugins contains all
plugins which will be used for attacking the server, All Plugins contains all plugins
ordered by their category and Alphabetical Sorted shows all plugins in an alphabetical

36/ 47

5.1 Microsoft .NET Evaluation

Figure 10: Plugin configuration for SOAPAction Spoofing

order.

Figure 11: Plugin configuration for WS-Addressing Spoofing

The last step is to start the attack. Figure 12 shows the overview of a finished attack
run. Active plugins are displayed on the top, their results at the bottom. The slider in
the top part allows to filter the results by their level. The user can choose to see only

37/ 47

5.1 Microsoft .NET Evaluation

the most important results, or see even the request content at the tracing level.

Figure 12: Penetration test on .NET finished.

The .NET web service is vulnerable to SOAPAction Spoofing but resistant to WS-
Addressing Spoofing. This is indicated different aspects:

1. The vulnerable column values show YES for SOAPAction Spoofing and no for
WS-Addressing Spoofing.

2. The SOAPAction Spoofing plugin got the maximum rating – three of three points
in this case – and WS-Addressing Spoofing got zero points.

3. The results show, that the server has executed the operation defined in the SOAP-
Action Header, which is the most critical security issue.

38/ 47

5.2 Apache Axis2 Evaluation

5.2 Apache Axis2

In the second penetration test, a new web service with the same operations and param-
eters as mentioned in Section 5.1 is created for Axis2 (Version 1.5.3) running on Apache
Tomcat/7.0.2 – this means, only recent program versions are used and everything runs
under default configuration.

The plugin configuration is identically to the one from the previous test.

Figure 13: Penetration test on Axis2 finished.

The results can be seen in Figure 13. The Axis2 web service is vulnerable for both
attacks:

. The server executes the operation defined by the SOAPAction Header, which is
the worst case.

. The server understands WS-Addressing and accepts any endpoint for the ReplyTo
and FaultTo methods.

39/ 47

5.2 Apache Axis2 Evaluation

This test shows, that these vulnerabilities even exist on recent program versions (Axis2
Version 1.5.3 was released on 12th November 2010) and accentuate the need of a web
services attack framework like WS-Attacker.

40/ 47

Conclusion and Outlook

6 Conclusion and Outlook

Web services are widely used. However, until now, mainly manual security testing
is possible, which is very time and money consuming. This requires a lot of special
knowledge about how a web service works, its internals and, of course what kinds of
attacks exist. WS-Attacker is a modular framework, which allows a user to do web
services penetration testing, without requiring any of this knowledge for using it. It is
an all-in-one security checking tool, which can be used with only a few clicks. The user
has to load a WSDL, activate the attacks and start them. Afterwards, an overview of
the results is shown. The user is able to filter the displayed results by a level, e.g. critical
or tracing, and sees which attack was successful including the level of success.

For plugin developers, WS-Attacker provides some helper utilities for attack implemen-
tation, like plugin options and conversation tools5 from strings to SAAJ objects. It
is possible to distinguish between different levels of success to rate the impact of an
attack.

The development of WS-Attacker has just started, the framework itself is usable and
already two attacks are implemented as a proof of concept. More attack implementations
are needed, as WS-Attacker is only as good as its attacks. If this comes into truth, WS-
Attacker will be the web services equivalent to web application testing frameworks like
w3af [18]. Companies and web service framework developers can use WS-Attacker to
check their applications for security issues. Even the Axis2 Framework, which is one
of the most deployed web service framework in the world, is vulnerable to WS specific
attacks like SOAPAction Spoofing and WS-Addressing Spoofing as show in Section 5.
There are also attacks like signature wrapping [27] which are known for many years, but
still not fixed in many web services implementations. These issues can be detected by
simply using WS-Attacker and its plugins.

WS-Attacker also has its limits. Even if all known attacks are implemented, it can never
say for sure that a web service is secure, as there might be unknown attacks in the
future, unimaginable at the moment. It is only possible to say, that a web service is
secure against existing implemented attacks. With the help of the web services attacks
open community project [24], new attacks can instantly be reported and new plugins
can be built to extend WS-Attacker’s functionality.

5See class wsattacker.util.SoapUtilities

41/ 47

Conclusion and Outlook

The fundamentals are set up, web service attacks can be categorized and attack plugins
can be built. Now it is up to the community to extend the possibilities and securing
web services by using WS-Attacker.

42/ 47

Appendix

Appendix

References

[1] SQL Injection. http://www.owasp.org/index.php/SQL_Injection, visited on
18th October 2010.

[2] Bray, Tim, Jean Paoli, Eve Maler, François Yergeau, and C. M. Sperberg-McQueen:
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation,
W3C, November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

[3] Tobin, Richard, Andrew Layman, Tim Bray, and Dave Hollander: Namespaces
in XML 1.1 (Second Edition). W3C Recommendation, W3C, August 2006.
http://www.w3.org/TR/2006/REC-xml-names11-20060816.

[4] Sperberg-McQueen, C. M., Henry S. Thompson, Murray Maloney, Henry S. Thomp-
son, David Beech, Noah Mendelsohn, and Shudi (Sandy) Gao: W3C XML Schema
Definition Language (XSD) 1.1 Part 1: Structures. Last Call WD, W3C, December
2009. http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/.

[5] Christensen, Erik, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana:
XML Path Language (XPath) Version 1.0. Technical report, World Wide Web
Consortium, 1999. http://www.w3.org/TR/2001/NOTE-wsdl-20010315, visited on
13th October 2010.

[6] Melzer, Ingo: Service-orientierte Architekturen mit Web Services: Konzepte -
Standards - Praxis (German Edition). Spektrum Akademischer Verlag, 2010,
ISBN 3827425492.

[7] Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana: Web Services Des-
cription Language (WSDL) 1.1. W3C Note, World Wide Web Consortium, March
2001. http://www.w3.org/TR/wsdl.

[8] Moreau, Jean J., Roberto Chinnici, Arthur Ryman, and Sanjiva Weerawarana:
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
Candidate Recommendation, W3C, March 2006.

[9] Apache Axix2 - Next Generation Web Services. http://ws.apache.org/axis2/,
visited on 16th October 2010.

43/ 47

http://www.owasp.org/index.php/SQL_Injection
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/wsdl
http://ws.apache.org/axis2/

Appendix

[10] Box, D., D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S.
Thatte, and D. Winer: Simple Object Access Protocol (SOAP) 1.1, 2000. http:

//www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[11] Gudgin, Martin, Marc Hadley, Noah Mendelsohn, Jean Jacques Moreau, Henrik F.
Nielsen, Anish Karmarkar, and Yves Lafon: SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition). Technical report, April 2007. http://www.w3.org/

TR/soap12-part1/.

[12] Dierks, T. and C. Allen: RFC 2246: The TLS Protocol Version 1, Jan-
uary 1999. ftp://ftp.internic.net/rfc/rfc2246.txt,acknowledgement=

ack-nhfb,format=, Status: PROPOSED STANDARD.

[13] WS-Security. http://www.oasis-open.org/specs/#wssv1.1, visited on 16th Oc-
tober 2010.

[14] Vedamuthu, Asir S., David Orchard, Frederick Hirsch, Maryann Hondo, Prasad
Yendluri, Toufic Boubez, and Ümit Yalçinalp:Web Services Policy 1.5 - Framework.
Technical report, September 2007. http://www.w3.org/TR/ws-policy/.

[15] Categorization and description of attacks on web services, 2010.

[16] Buffer overflow. http://www.owasp.org/index.php/Buffer_overflow, visited on
18th October 2010.

[17] The Free and Open Application Security Community. http://www.owasp.org/,
visited on 18th October 2010.

[18] w3af - Web Application Attack and Audit Framework. http://w3af.sourceforge.
net/, visited on 18th October 2010.

[19] Jensen, Meiko, Nils Gruschka, and Ralph Herkenhöner: A survey of attacks on web
services. Computer Science - R&D, 24(4):185–197, 2009.

[20] SOAPSonar Enterprise. http://www.crosschecknet.com/products/

soapsonardetails_platinum.php, visited on 18th October 2010.

[21] soapUI. http://www.eviware.com/, visited on 18th October 2010.

[22] Hacking D-Link Routers With HNAP. http://www.sourcesec.com/Lab/dlink_

hnap_captcha.pdf, visited on 4th October 2010.

44/ 47

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
ftp://ftp.internic.net/rfc/rfc2246.txt, acknowledgement = ack-nhfb, format =
ftp://ftp.internic.net/rfc/rfc2246.txt, acknowledgement = ack-nhfb, format =
http://www.oasis-open.org/specs/#wssv1.1
http://www.w3.org/TR/ws-policy/
http://www.owasp.org/index.php/Buffer_overflow
http://www.owasp.org/
http://w3af.sourceforge.net/
http://w3af.sourceforge.net/
http://www.crosschecknet.com/products/soapsonardetails_platinum.php
http://www.crosschecknet.com/products/soapsonardetails_platinum.php
http://www.eviware.com/
http://www.sourcesec.com/Lab/dlink_hnap_captcha.pdf
http://www.sourcesec.com/Lab/dlink_hnap_captcha.pdf

Appendix

[23] Box, Don, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey Frey,
Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad Lovering, Ste-
ve Lucco, Steve Millet, Nirmal Mukhi, Mark Nottingham, David Orchard, John She-
wchuk, Eugène Sindambiwe, Tony Storey, Sanjiva Weerawarana, and Steve Winkler:
Web Services Addressing (WS-Addressing). Technical report, W3C, August 2004.
http://www.w3.org/Submission/ws-addressing/.

[24] The web services attacks open community project. http://ws-attacks.org/.

[25] GNU Lesser General Public License (LGPL). http://www.gnu.org/licenses/

lgpl.html, visited on 22nd October 2010.

[26] Hewitt, Eben: Java SOA Cookbook. O’Reilly Media, Inc., 2009,
ISBN 0596520727, 9780596520724.

[27] McIntosh, Michael and Paula Austel: XML signature element wrapping attacks and
countermeasures. In Proceedings of the 2005 workshop on Secure web services, SWS
’05, pages 20–27, New York, NY, USA, 2005. ACM, ISBN 1-59593-234-8. http:

//doi.acm.org/10.1145/1103022.1103026.

List of Figures

1 Comparison of WSDL 1.1 and WSDL 2.0 10
2 Structure of a SOAP Message (Namespaces are omitted). 12
3 Attacking a web service with SOAPAction Spoofing 17
4 Idea of WS-Addressing Spoofing . 18
5 WS-Attacker: General overview . 21
6 Overview: The soapUI API . 24
7 The internal structure of WS-Attacker 25
8 Loading the WSDL . 35
9 Submitting a test request . 36
10 Plugin configuration for SOAPAction Spoofing 37
11 Plugin configuration for WS-Addressing Spoofing 37
12 Penetration test on .NET finished. 38
13 Penetration test on Axis2 finished. 39

45/ 47

http://www.w3.org/Submission/ws-addressing/
http://ws-attacks.org/
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://doi.acm.org/10.1145/1103022.1103026
http://doi.acm.org/10.1145/1103022.1103026

Appendix

Listings

1 XML Example for a person . 7
2 XML namespaces . 7
3 XML namespaces with prefixes . 8
4 A valid SOAP message for OperationA 16
5 SOAPAction Spoofing Attack message 16
6 Submitting a WsdlRequest . 24
7 The AbstractPlugin interface (shorted). 27
8 The AbstractOption interface (shorted) 30
9 Loading plugins from classpath using Java service load 34

Used Software

The list below gives a detailed description of used software and libraries for creating
WS-Attacker.

Name Version Company Used for/as

OpenJDK 6.b20 Sun Microsystems Java compiler
Eclipse 3.6.1 Eclipse Foundation IDE, Released under the terms of

the Eclipse Public License, Eclipse
is free and open source software

soapUI 3.5.1 Eviware Software Back-end library for parsing WSDL
and creating requests, LGPL

Jigloo 4.6.2 CloudGarden Assistant for building the GUI, free
for non-commercial use

Checkboxtree 3.2 zeus.pin.unifi.it Categorize plugins in a tree, GPL

46/ 47

zeus.pin.unifi.it

Appendix

Eigenständigkeitserklärung

Hiermit versichere ich, Christian Mainka (Matrikelnummer: 108007212667), dass ich die
Arbeit selbständig angefertigt, außer den im Quellen- und Literaturverzeichnis sowie in
den Anmerkungen genannten Hilfsmitteln keine weiteren benutzt und alle Stellen der
Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, unter
Angabe der Quellen als Entlehnung kenntlich gemacht habe.

Ort, Datum Christian Mainka

47/ 47

	Introduction
	Basics
	XML – Extensible Markup Language
	XML in General
	Namespaces
	XML Schema
	DOM and SAX

	SOA – Service-Oriented Architectures
	Web Services
	WSDL – Web Service Description Language
	SOAP – Simple Object Access Protocol
	Security in Web Services

	Threats to Web Services
	Web Service Specific vs. Non-Specific Attacks
	SOAPAction Spoofing
	WS-Addressing Spoofing

	WS-Attacker
	Framework Requirements
	Requirements for Plugin Developers
	Requirements for Framework Users
	Goal of this Thesis

	Overview
	SoapUI as Back-end
	Advantages of soapUI
	The Structure of the soapUI API

	Program Structure
	Attack Plugin Interface
	Basic Idea
	Extending AbstractPlugin
	Using Plugin Options
	Minimal Implementation
	Adding a plugin to WS-Attacker

	Evaluation
	Microsoft .NET
	Apache Axis2

	Conclusion and Outlook
	Appendix
	List of Figures
	Listings
	Used Software
	Eigenständigkeitserklärung

