
On the fragility and limitations of current Browser-provided Clickjacking
protection schemes

Sebastian Lekies
SAP Research

sebastian.lekies@sap.com

Mario Heiderich
University Bochum

mario.heiderich@rub.de

Dennis Appelt
SAP Research

dennis.appelt@sap.com

Thorsten Holz
University Bochum

thorsten.holz@rub.de

Martin Johns
SAP Research

martin.johns@sap.com

Abstract

An important and timely attack technique on the Web
is Clickjacking (also called UI redressing), in which an
attacker tricks the unsuspicious victim into clicking on
a specific element without his explicit knowledge about
where he is actually clicking. In order to protect their
websites from being exploitable, many web masters de-
ployed different countermeasures to this kind of attack.

In this paper, we explore the limitations and shortcom-
ings of current anti-clickjacking approaches and present
several bypasses of state-of-the-art tools, including an at-
tack we call Nested Clickjacking that enables us to per-
form Clickjacking against the social network Google+.
Furthermore, we present the results of a large scale em-
pirical study on the usage of current anti-clickjacking
mechanisms on about 2 million web pages. The results
of our analysis show that about 15 % of the analyzed web
sites protect themselves against Clickjacking.

1 Introduction

In the last several years, we have observed a move from
server-side attacks to client-side attacks. Especially the
web browser has become an attractive target for attackers
and many different attack vectors ranging from Cross-
Site-Scripting (XSS) over Cross-Site Request Forgery
(CSRF) to pharming attacks and many others have been
developed (see for example [2, 11–14, 21]). Since be-
ing introduced by Hansen and Grossman in 2008 [8], the
Web attacks which are summarized under the term click-
jacking (also called UI redressing [35]) have received
considerable attention both from attackers as well as de-
fenders. The basic idea behind such attacks is that an
adversary can lure an unsuspicious user into interact-
ing with an authenticated user interface to conduct state
changing actions or to extract sensitive information with-
out the user’s consent. This is typically achieved by
changing the user interface in such a way that the user

is tricked into clicking on a specific element without his
explicit knowledge about where he is actually clicking.

Clickjacking is actually an important problem in prac-
tice. For instance, only recently Facebook opened a law-
suit against a company that is suspected to conduct click-
jacking attacks against Facebook users. Solely in this
case the adversaries were able to earn about $1,200,000
per month according to estimations by Facebook [6].
Clickjacking attacks are often reported in practice and
typically social media sites are targeted by these at-
tacks. In order to counter the growing menace imposed
by Clickjacking, several protective measures such as
for example JavaScript-based frame-busting [30] or the
X-Frame-Options header [22] were proposed.

Unfortunately, these mechanisms are only able to pro-
tect against attacks in some cases, but not in others as we
will show in this paper. We have performed an empir-
ical analysis of the currently deployed anti-clickjacking
mechanisms in respect to their flexibility, ability to pro-
tect against novel attack variants, and their current limi-
tations. We were able to identify several weaknesses of
the current state-of-the-art tools that enable us to perform
Clickjacking attacks despite deployed countermeasures.
For example, we introduce an attack vector called nested
Clickjacking that allows Clickjacking via cross-domain
framing despite of a deployed X-Frame-Options re-
sponse header field.We successfully performed such an
attack against the social network Google+ which demon-
strates the practical relevance of these attacks. To assess
the attack surface and to examine the usage of Click-
jacking protection mechanisms in the wild, we also per-
formed a large-scale study in which we analyzed more
than 2 million web pages and studied how widely de-
ployed anti-clickjacking mechanisms are. We found that
from the investigated Top 20,000 Alexa web sites almost
three thousand domains utilize at least one approach for
defending against such attacks. The majority of sites use
some kind of frame busting code, which unfortunately
does not offer a robust mitigation.

In summary, we make the following key contributions
in this paper:

• We perform an in-depth analysis of the current
methods to counter Clickjacking attacks. To this
end, we consolidate existing shortcomings of state-
of-the-art tools and introduce novel attacks, in-
cluding Nested Clickjacking, which we success-
fully demonstrate against Google+. Furthermore,
we present bypasses of the ClearClick technique
introduced by NoScript [20] and an implementa-
tion problem of Safari’s HTML5 offline applica-
tion cache that leads to a circumvention of HTTP
header-based protection schemes such as the X-
Frame-Options header.

• To study the deployment of current countermea-
sures, we conducted an empirical study of more
than 2 million web pages with regards to Clickjack-
ing protection mechanisms. We found that many
sites actually use current anti-clickjacking mecha-
nisms which unfortunately have their specific limi-
tations.

The rest of the paper is structured as follows. While
we outline the basic attack scenario in Section 2, Section
3 cover the latest Clickjacking protection mechanisms.
In Section 4 we then show that the presented mecha-
nisms are either not applicable in many environments or
can be circumvented due to technical flaws. Finally, in
Section 5 we investigate the usage of Clickjacking pro-
tection among the Alexa Top 20,000 websites in order
to gain insights into the threats imposed by Clickjacking
and ineffective protection capabilities.

2 Technical Background: Clickjacking

Clickjacking (also called UI redressing) [4, 8, 29, 35] is
an attack that lures an unsuspicious user into clicking on
an element that is different to what the user perceives to
click on. The attacker tricks the user to perform such
a click, often in conjunction with an authenticated user
interface to conduct state changing actions or to extract
sensitive information without the user’s consent. This
kind of attack was first reported in June 2002 by Ruder-
man, who noted in the Mozilla bug tracking system that
transparent iframes can lead to security problems [29]. In
2008, Hansen and Grossman rediscovered this problem
and coined the term Clickjacking [8]. They presented
several attack vectors and this work was the starting point
for more research in this area. Callegati and Ramilli pro-
vide an overview of the attack concept and discuss im-
plementation details [4].

In general, a typical clickjacking attack can be broken
down into three different steps:

1. Forcing the browser to render a third party UI to
which the user is authenticated (i.e., where the user
is able to access sensitive information or to con-
duct state changing actions) within a container that
is controlled by the attacker. Examples for such a
container are popup windows and the iframe ele-
ment (see Section 4 for more details).

2. Disguising the third party UI in a fashion that the
user is unable to recognize it. For instance, this
can be achieved by making it transparent, by to-
tally or partly covering it with other elements, by
reducing its size, or by displaying it for only a very
short amount of time (e.g., through rapid page nav-
igation).

3. Luring the user into interacting with the disguised
UI without the user being aware of the presence of
the third party UI.

Contrary to the popular belief, Clickjacking attacks
are not limited to the use of invisible iframes, but can
be conducted in a variety of different ways. The danger-
ous nature of Clickjacking lies in the fact that it can be
conducted against web applications that are free of any
technical flaws since the main attack is performed against
a web browser, in which the victim clicks on an element
without realizing that he in fact interacts with another
website. Furthermore, it is in general harder to detect
on the server-side whether a request was conducted by
the user intentionally or whether the user was tricked
into clicking a certain UI element. Nevertheless, server-
side approaches have the appealing advantage that they
enable an administrator to deploy a protection mecha-
nism for the whole site, without caring of individual web
browsers, and thus they are widely used in practice.

An exemplary Clickjacking attack could therefore
be executed as follows: an attacker creates a website
called funnykittengame.org which contains a game
that lures an unsuspicious user into interacting with
the website. While the user plays the game, the at-
tacker’s website dynamically creates a transparent iframe
element pointing to the user’s banking application at
secure-banking.com. During the game, the attacker
places the iframe directly underneath the user’s cursor.
As the iframe is transparent, the user is not able to spot
the iframe and therefore believes that he is still inter-
acting with the game UI. However, when he clicks the
mouse the next time, the corresponding click is not sent
to the game UI, but to his banking application and can
cause state changes on that site. More technical details
and examples are available in the literature [4, 8].

2

3 Current Defenses Against Clickjacking

After having introduced the necessary background infor-
mation, we now consolidate the state-of-the-art of com-
bating Clickjacking attacks and review related work in
this area. In addition to server-side approaches, which
are the main focus of this paper, we also discuss client-
side protection to provide a comprehensive overview of
the defensive landscape. This serves as a basis for the
attacks we introduce in the next section.

3.1 Client-side Approaches
NoScript ClearClick: One client-side approach to mit-
igate the risk imposed by Clickjacking is the Firefox ex-
tension NoScript, created and maintained by Maone [20].
This tool provides an additional array of protective fea-
tures for Firefox users, including a configurable, domain-
sensitive and selective script execution blocker, mecha-
nisms to enforce secure transport protocols, a tool to pro-
hibit access for websites to possible Intranet origins, and
an add-in called ClearClick. This tool aims for Click-
jacking protection by extending the browser’s functional-
ity and this is achieved in the following way: ClearClick
monitors clicks and other user interactions occurring on
a website framed by a page from a different origin. Once
a user attempts to click a link on a framed website that
appears to be victim of obfuscation attempts from its par-
ent and cross-origin document, the interaction will be
blocked. Consequently, a warning dialog will be shown,
requiring the user to perform at least two confirming in-
teractions to finally allow the possibly malicious process.

Our research shows that ClearClick can be circum-
vented and we presented in the next section an attack
that involves drag&drop interaction. Another attack vec-
tor was recently presented by Kotowicz et al., that also
demonstrates the limitations of ClearClick [15]. In con-
trast, our approach enables a robust handling and preven-
tion of Clickjacking attacks.

Alternative Browser Designs: There are alternative
browser designs like Gazelle [33], OP [7], or the se-
cure web browser [10] that propose novel designs of web
browsers that take security considerations into account.
While such clean-slate approaches offer nice properties
and can also protect against many kinds of attacks, we
aim at techniques that are deployed in practice today.

3.2 Server-side Approaches
Due to the fragile nature of client-side approaches, a
complimentary line of work attempts to solve the prob-
lem at the server-side as we discuss in the following.

Frame Busting: So called frame busting was one
of the first countermeasures that was deployed against

Clickjacking. The basic idea behind frame busting is to
avoid the unauthorized framing of a web page. This is
achieved using a small snippet of JavaScript code, which
first checks if the page that contains the script is currently
framed. If this is the case, the script navigates the top
document of the framing hierarchy away from the fram-
ing page towards the URL of the script’s including page,
effectively “busting out” of the frame [30]. Listing 1 de-
picts an example of framebusting code. Note that many
other ways exist to bust out of a frame, but the basic idea
is mostly the same.

<script type="text/javascript">

if(top != self){

top.location = self.location;

}

</script >

Listing 1: Example for JavaScript framebusting code.

Unfortunately, the vanilla frame busting technique, as
shown above, exposes flaws that can be potentially uti-
lized to circumvent the protection mechanism [30]. Such
circumvention can be achieved through two distinct tech-
niques. First, the adversary can attempt to avoid the
navigation of the top window, e.g., via 204 flushing [5],
double framing [30], or by simply asking the user not to
leave the website via the onbeforeunload event. Sec-
ond, the attacker can try to disable the frame busting code
itself, for example, by misusing modern XSS-Filters [25]
or by using sandboxed iframes [34].

After an investigation of the frame busters used by the
Alexa Top 500 websites, Rydstedt et al. proposed an
improved frame busting code that avoids the identified
weaknesses [30]. The main idea of their approach is to
disable the rendering process unless the framing test was
successfully executed. This can be implemented by dy-
namically setting cascading style sheets (CSS) properties
(see Listing 2 for details). At the time of this writing,
this method represents (to the best of our knowledge)
the most secure frame busting solution [26]. However,
Clickjacking attacks can also be carried out in other ways
as we show in the next section and thus frame busting
does not offer a full protection.

<style >

body { display:none;}

</style >

<script >

if (self == top) {

document.getElementsByTagName ("body")

[0]. style.display = "block";

} else {

top.location = self.location;

}

</script >

Listing 2: Improved framebusting code from [30]

X-Frame-Options: Microsoft introduced the so
called X-Frame-Options header in order to counter the

3

growing threat imposed by Clickjacking [22]. Similar
to frame busting, the X-Frame-Options header also
aims at preventing framing. However, it does not rely
on JavaScript, but instead it is implemented as a na-
tive capability of the web browser. By attaching an
X-Frame-Options HTTP response header to an out-
going request, a web server can influence the framing
behavior of the corresponding document. The header’s
value can take one of two different tokens: DENY and
SAMEORIGIN. While DENY prevents the browser from
rendering the document within a frame completely,
SAMEORIGIN allows the browser to display a resource
within a frame whenever the top frame was served by the
same origin. Although, the X-Frame-Options header
is nowadays supported by every major browser, it is still
not standardized, leaving room for browser incompati-
bilities. For instance, Internet Explorer supports a third
header value called ALLOW-FROM, which takes exactly
one additional parameter, specifying a domain which is
allowed to frame the delivered resource [17].

Content Security Policy (CSP): The Content Secu-
rity Policy is a mechanism that was developed to miti-
gate the risks imposed by content injection vulnerabil-
ities such as cross-site scripting [32]. The mechanism
itself consists of a declarative policy that is deployed on
the server side and enforced by the client. Thereby, the
policy contains a set of directives that restrict the func-
tionality of a web application to the minimum that is re-
quired to run the application within the browser. Ear-
lier revisions of CSP contained a directive called frame-
ancestors, which aims at combatting Clickjacking. Orig-
inally, this directive allowed developers and site admin-
istrators to supply a list of comma separated domains in-
cluding wildcard identifiers.

However, the current revision of the Content Se-
curity Policy specification does not cover this direc-
tives addressing protection from frame-based Clickjack-
ing attacks anymore. Based on several problems with
CSP’s implementation, the directive was flagged dep-
recated and cannot be found in current versions of
the specification draft. The Internet Draft by Ross
on HTTP Header Frame Options and the W3C Ed-
itor’s Draft by van Kesteren on the From-Origin

Header are currently discussed as possible successors
for either the X-Frame-Options header and the CSP
frame-ancestors directive [28, 31]. However, at the
time of writing, it still remains unclear what approach
will be used eventually.

4 Open Issues With Clickjacking

While the countermeasures presented in Section 3 are
able to prevent standard attack scenarios, they typically
fail in more complex situations. In this section, we pro-

vide a comprehensive review of their current limitations:
For one, we describe application scenarios in which the
current mitigation strategies are not applicable. Further-
more, we cover and introduce sophisticated attacks that
are able to circumvent the current protective approaches.

4.1 Protection Despite Framing
The core assumption of the current defense mechanisms
is that Clickjacking can be avoided by preventing cross-
domain framing of web content. As a result, each of the
described server-side mechanisms provides two different
configuration options: either framing of a webpage can
be forbidden completely, or framing can be limited to
same origin pages only.

However, this is too limiting in practice for various
use cases in which framing is an essential aspect. Es-
pecially in commercial environments, such as corporate
portal solutions or online advertisement, cross-domain
framing is often required and essential. Hence, the cur-
rent anti-framing-based solutions are not applicable here.
Nevertheless, those pages can still be a valuable target for
Clickjacking attacks due to their often sensitive nature.

4.2 Double Clickjacking
Besides utilizing cross-domain iframes, there are further,
lesser known ways to conduct Clickjacking attacks. One
such method is Double Clickjacking [9]. Instead focus-
ing on frames, double Clickjacking relies on opening the
cross-domain content in a new window. More precisely,
the attacked page is opened within a “pop-under” win-
dow, i.e., a window that is hidden under the main win-
dow immediately after it was created via JavaScript. In
general, this process is so fast that the user is not able to
spot the window and its content before it is hidden. Af-
ter opening such a window, the attacker’s page lures the
user into double clicking an element on his page (e.g.,
by letting the user play a game). The first click hits the
element on the attacker’s page. This action immediately
brings the pop-under window to the front (and the click-
able element directly under the user’s cursor). The sec-
ond click then hits the attacked page and triggers the tar-
geted state changing action. Finally, after a very short
amount of time, the attacker’s page then hides and closes
the pop-under window again, preventing the user from
recognizing the true nature of the attack.

4.3 Clickjacking via History Navigation
A second Clickjacking attack method that does not
rely on framing was presented by Zalewski [36]. It
utilizes JavaScript’s ability to navigate forward and
backward within the browser window’s history via the

4

JavaScript history object. When a victim visits the at-
tacker’s page, the attacker opens another window (via
window.open()) containing the page that is being at-
tacked. As the attacker’s main page receives the window
handle from window.open(), it is able to instruct the
pop up to navigate to arbitrary URLs. Immediately af-
ter opening it, the main page triggers the other window
to navigate away from the attacked page to another at-
tacker controlled site. Due to the fact that the attacked
site was opened first, the currently opened site is able to
navigate back to it via history.back(). Now the at-
tacker again lures the victim into clicking on different el-
ements of his page. In the right moment (i.e., just before
the user clicks) the page calls history.back(). There-
fore, the browser window navigates back and the click
hits the attacked page that is immediately loaded from
cache. Right after the click the main window again trig-
gers a navigation, so that the user is not able to recognize
that his click was hijacked. As for the attack presented
before, the current protection mechanisms are not effec-
tive at all against this attack.

4.4 Nested Clickjacking
During our research, we explored how current web
browsers handle sites that carry an X-Frame-Options

header. We identified a vulnerability within the
X-Frame-Options mechanism that allows Clickjack-
ing via cross-domain framing despite of a deployed
X-Frame-Options response header field.

Attack Description: The root cause of this vulner-
ability is the way in which browsers verify the frame
origin when the X-Frame-Options header is set to
SAMEORIGIN. In that case, browsers only compare the
origin of the framed page to the origin of the top win-
dow. Thereby, the top window is not necessarily the
window that embeds the frame, but only the topmost
window within the framing hierarchy. In between the
framed page and the top window, there could be multi-
ple other frames of different origins. If an attacker con-
trols a framed page he is, thus, able to conduct Click-
jacking attacks against the embedding page despite of a
deployed X-Frame-Options:SAMEORIGIN header. Due
to the nature of this attack, we call it Nested Clickjack-
ing. To illustrate the attack we now cover a real-world
attack scenario.

Real-World Example – Exploiting Google+ via
Google’s Image Search1: To verify the validity of our
finding, we examined web applications that both uti-
lize frames themselves and use the X-Frame-Options

header. This way, we discovered a Clickjacking vul-
nerability on google.com. On the main page Google
offers a feature that allows an authenticated user to

1This issue has been reported to Google

X-‐Frame-‐Op*ons:	
SAMEORIGIN	

Figure 1: Illustration of Nested Clickjacking

share content on Google+. If unprotected, this fea-
ture could for example be abused to trick a user
into sharing photos from his cellphone via Click-
jacking. Hence, to prevent abuse, Google deployed
X-Frame-Options:SAMEORIGIN headers on this site.

Although direct framing of Google’s homepage is
now forbidden to third-party websites, it is still possi-
ble to clickjack the “share” feature via Goggle’s Image
Search, which utilizes iframes to display image search
results in the context of their original page. The image
search is either available through images.google.com

or via google.com/imgres. While the domain
images.google.com is different from google.com,
the URL google.com/imgres can be used to smuggle
an attacker controlled frame onto the google.com do-
main: the attacker uploads a random image to a web page
that is indexed by Google’s search engine. When search-
ing for the image, Google previews the attacker con-
trolled site within the preview frame. The attacker is now
able to include a frame pointing back to google.com

on his site (see Figure 1 for an illustration). As the top
window’s domain is also google.com, the browser will
not stop the rendering process despite of the deployed
X-Frame-Options header. Hence, the attacker is now
able to conduct Clickjacking attacks by luring a user onto
the search result page.

Assessment: At first sight, it seems to be unlikely that
an attacker is able smuggle a frame onto a third-party
website, but there are multiple ways to realize such a
scenario. On the one hand, an adversary could trigger
the creation of a frame element himself or he could take
control of an already existing one. The former can be
achieved by utilizing a method such as shown in the pre-
vious example or by misusing an HTML injection vul-
nerability at the target site where XSS is not exploitable
due to an XSS filter or any other circumstances. The
later can also be achieved in multiple ways. An attacker
could for example buy large-scale banner advertisements

5

that are loaded within an iframe on a vulnerable websites.
Furthermore, the attacker could misuse a persistent XSS
vulnerability at a page that is framed by the target web-
site. This is important in practice as it demonstrates how
a vulnerability at one site can suddenly open a Clickjack-
ing vulnerability at another site that would otherwise be
protected by the X-Frame-Options header.

In order to avoid Nested Clickjacking vulnerabilities a
Web site could utilize Deny instead of Same-Origin for
its security sensitive Web pages. However, this is only
possible if those sensitive Web pages are not subject to
framing within the Web application.

4.5 Circumventing Header-based protec-
tion mechanisms in Safari

Additionally to the nested Clickjacking vulnerability, we
discovered a way to remove custom HTTP response
headers within Safari for HTML5 offline applications2.
HTML5 offers a new mechanism that allows a Web ap-
plication to cache certain resources for offline usage. In
order to do so, the application needs to specify a manifest
file that tells the browser to store certain HTML docu-
ments within the so called application cache3. Whenever
an HTTP request is conducted towards a cached docu-
ment, it is not loaded via HTTP but directly loaded from
the App Cache (even if an internet connection is avail-
able). Hence this feature can be used to reduce band-
width consumption and to make Web pages offline avail-
able.

During our research we discovered that Safari’s App
Cache only stores the HTML body of the cached docu-
ment; HTTP response headers are simply dropped. So,
whenever a document is loaded from App Cache custom
HTTP response headers such as the X-Frame-Options
header are not present although the original document
carried these headers. Hence any header-based (security)
mechanism is useless when used in conjunction with the
HTML5 Offline Application feature within Safari.

Given Apple’s (and therewith Safari’s) market leader-
ship with mobile devices and the fact that offline fea-
tures are often deployed in mobile versions of Web ap-
plications [16], this behavior represents a critical and
potentially widespread vulnerability. For example, both
GMail and Hotmail utilize X-Frame-Options in conjunc-
tion with HTML offline features in their mobile versions.
Hence, both applications are vulnerable to Clickjacking
when accessed via the mobile Safari browser.

2This issue has been reported to Apple. However, at the time of this
writing a fix was not available yet

3Note: the App Cache is different from the standard browser cache

4.6 Circumventing ClearClick
Finally, we studied the NoScript ClearClick behavior to
evaluate its robustness in protecting users from classic
Clickjacking attacks. During our research, we noticed
the following classification features that ClearClick al-
lies to tell potentially malicious interactions apart from
benign framing and element overlapping:

• ClearClick analyzes whether an element (collec-
tion) containing an Iframe, object, or embed ele-
ment overlaps with any other element that is receiv-
ing a mouse or keyboard event. This is based on
the principles of classic Clickjacking attacks dis-
cussed in Section 3. Several checks are being ap-
plied on behalf of the overlapping element, to help
ClearClick tell apart potentially malicious intent
from benign interaction.

• ClearClick analyzes the opacity value of the ele-
ment and checks for a specific threshold. Once the
opacity has reached a value below 0.3, the click on
elements framed by the overlapping element is be-
ing considered a possible Clickjacking attack and a
warning dialog is displayed. In general, ClearClick
attempts to judge upon the overlapping element vis-
ibility determined by opacity, size and other factors
to decide whether to display the warning and block
the click or not.

In essence, ClearClick attempts to find out, if the ele-
ment receiving the click is by any chance visible to the
user. If the element is hardly visible or not visible at all,
ClearClick assumes an attack scenario and informs the
user with the mentioned dialog window. The click is be-
ing prevented, the event interrupted.

One exploit to bypass ClearClick has recently been
developed by Kotowicz et al. that exploits the visibil-
ity check by hiding the clicked elements in unexpected
ways [15]. The bypass technique is based on a varia-
tion of the formerly published CursorJacking attack by
Bordi [3]. By using the CSS directive cursor:none, the
cursor is being hidden and replaced by a fake JavaScript
based representation that appears at a different location
having the unsuspecting user think it is the actual pointer.
The actual cursor nevertheless still exists, it is simply in-
visible for the victim. By pointing the fake cursor over
a link or button and performing a click, the victim will
unknowingly click with the invisible cursor pointing to a
different element than the visible fake cursor. A proof of
concept website has been developed and made publicly
available [15].

We also developed a bypass of ClearClick that in-
volves the necessity for a drag&drop interaction by the
victim. The attacker can trick the victim into dragging

6

an element into another element and drop it there. After
that, the click needs to be initiated. The workings of this
exploit are based on the fact that Firefox allows drag-
ging embedded style elements. The unsuspecting user
will drag a CSS style element into an Iframe, where it
potentially sets all elements of the framed document to
a state of opacity. Note that the framed website itself is
applied with an opacity of zero to be hidden, but since no
visibility impairing measurements have been applied for
the Iframe itself, ClearClick must assume a legitimate ac-
tion based on its heuristic and detection rules. Therefore
the click will not be stopped and the Clickjacking attack
can be performed successfully. Both attacks have been
reported to Maone, and are being prevent since NoScript
versions 2.2.7 and 2.2.8. [19]. The code snippet shown
in Listing 3 demonstrates our bypass based on the CSS
drag & drop vulnerability.
// evil.com

<script >

window.onload = function ()

document.execCommand(’SelectAll ’, null ,

true)

</script >

<h2 contenteditable=true

ondragend=test.style.opacity=1>

Drag <style >#foo *{ opacity :0} #target{

position:

absolute;top :0; left :0; height :150;

width :300; display:block}</style > Me

</h2 >

<object id=test

style=overflow:none;opacity :.1;

data="http :// victim.com/"></object >

// victim.com

<body id=foo >

<h1 contenteditable=true >drop me here </h1>

<h1><a id=target href="http ://www.test.de

/">

CLICK </h1>

</body >

Listing 3: Bypassing NoScript ClearClick with
Drag&Drop CSS

Ultimately, we discovered a third novel attack vec-
tor against ClearClick, which is utilizing a quirky be-
havior of the Gecko rendering engine when handling
invalid SVG filter URIs applied via CSS. Once the fil-
ter URI given via CSS is pointing to an invalid or non-
existing SVG filter set, the element requesting those fil-
ters is being rendered invisible. For ClearClick, opacity
and dimensions as well as other criteria are not match-
ing the Clickjacking detection rule-set; therefore clicks
on an element made invisible via invalid SVG filters ap-
peared perfectly visible for ClearClick and accordingly
no Clickjacking alert was raised. Listing 4 shows an ex-
ample attack vector to demonstrate the issue. We sub-
mitted this bug to the NoScript author who created a fix
within few hours; the problem has been marked resolved

with NoScript 2.3.1rc3. Note that this vulnerability, un-
like the aforementioned ones, neither requires exotic user
interaction nor displays any visible traces of the attack
before it occurs.

<style >

iframe{

height: 100px;

width: 100px;

opacity: .3;

filter: url(invalid);

}

</style >

<iframe src="http :// example.com/victim.html

"></iframe >

Listing 4: Bypassing NoScript ClearClick with invalid
SVG filters

5 An Empirical Study on Clickjacking
Protection in the Wild

To investigate the perceived threat imposed by Clickjack-
ing, we examined the usage of Clickjacking protection
mechanisms in the wild. The usage of protection mecha-
nisms will yield insights into how web masters assess the
risk imposed by this kind of attack. If the risk is consid-
ered high, we expect that more websites use some kind
of protection measures. In several related studies, dif-
ferent researchers analyzed the prevalence of malicious
web pages and drive-by downloads attacks on the Inter-
net [18,23,24,27]. Closely related to the work presented
in this section is a study by Balduzzi et al., who intro-
duced a system to automatically detect Clickjacking at-
tacks and analyzed over one million unique web pages
for such attacks [1]. Their system simulates user clicks
on all clickable elements of a given website and detects
the consequences of these clicks in terms of Clickjacking
attacks. We also perform a large-scale study, but study
the empirical deployment of three Clickjacking protec-
tion mechanisms as discussed next. This provides a thor-
ough overview of current mitigation techniques and ex-
tends previous studies in this area.

5.1 Methodology

In order to assess the current usage of Clickjacking pro-
tection mechanisms, we decided to conduct a large-scale
measurement study of the Alexa Top Sites since these
sites are an interesting target for this kind of attacks.
Thereby, we were mainly interested in the following re-
search questions when crawling these sites:

(RQ1) How many websites make use of frame busters,
X-Frame-Options or CSP?

7

(RQ2) How many websites have cross-domain frames
deployed on their websites (and hence are vul-
nerable to Nested Clickjacking)?

(RQ3) How many websites are framed by cross-
domain websites and are thus not able to deploy
X-Frame-Options header?

Crawling Scope: As stated by Rydstedt et al., we ex-
pect that frame busting code is often not placed on the
main page of a website, but on login or password reset
pages [30]. Therefore, we decided to focus on the Alexa
Top 20,000 websites and the first level subpages of each
domain. The subpages where discovered by following
any link on the main page that pointed towards a resource
on the same domain or a subdomain of the corresponding
website.

Frame Busting Detection: In order to detect frame
busting code on a website, we conducted a simple but
effective test: we simply framed the page under inves-
tigation and checked whether the top frame conducted
some kind of redirect. If such a redirect was observed,
we conclude that frame busting was present on the stud-
ied page.

5.2 Results
In this section, we present the results of our survey and
discuss these results in the context of the identified re-
search questions.

5.2.1 General Overview

In total, our crawling infrastructure was able to crawl
2,039,679 unique web pages, from which 139,216
(6,8 %) returned an error code or where unreachable at
the time of analysis. Therefore, we were able to success-
fully investigate 1,900,463 web pages for Clickjacking
protection mechanisms. Out of the investigated 20,000
Alexa web sites, a total of 2,975 (14.88 %) domains uti-
lized at least one approach for defending against Click-
jacking. Note that some of the sites actually utilize mul-
tiple defense mechanisms. While 972 (4.86 %) domains
deployed X-Frame-Options headers, a total of 2,230
(11.15 %) sites utilized a JavaScript-based approach and
only two (0.01 %) made use of CSP for preventing fram-
ing. Table 1 provides a summarized overview of these
numbers.

Mechanism Pages Websites % Sites
X-Frame-Options 10,982 972 4.86 %
Frame-Busting 87,685 2,230 11.15 %
CSP 13 2 0.01 %

Table 1: General overview of crawling results

In the following, we discuss the results for the individual
research questions mentioned above.

5.2.2 RQ1: Protection mechanisms

In total, we discovered that 87,685 unique web pages
busted out of the frame in our testing scenario. Com-
pared to the total number of 1,900,463 pages, this rep-
resents only 4.61 %. However, if we aggregate those
numbers for each website (i.e., mainpage + subpages),
we can observe that 2,230 sites (which corresponds to
11.15 % of all sites) deploy frame busters on at least one
subpage. This means that web masters are not deploy-
ing frame busters throughout all of their pages, but only
to certain spots. This assumption is strengthened by an-
other observation: while 899 websites deploy frame bust-
ing directly on the main page, 1,331 only protect some of
their subpages.

As already stated in Section 3.2, future versions of the
Content Security Policy (CSP) will not support the anti-
framing directive frame-ancestors any more. There-
fore, it is not surprising that only two websites utilize this
feature for header-based framing protection. More inter-
esting are the numbers gained for the X-Frame-Options
header: while we were able to identify 972 websites uti-
lizing this header, only 265 of these sites deployed it
on the main page. The vast majority of 707 sites de-
ployed it only on some of their subpages. As discussed
above, a very similar behavior can also be observed for
frame busting code. This very telling data point raises an
interesting question: Why are web masters not rolling
out the protective measurements on a wide scale, but
only on some very specific spots? Wouldn’t it be easier
for them to configure their web servers in a less gran-
ular fashion? One answer to this question are potential
limitations of the investigated approaches: as most anti-
clickjacking protections follow the “disable-framing-to-
be-secure” approach, many webmasters could be forced
to trade off between functionality (by enabling framing)
and security (by disabling framing). Hence, protection is
only applied to neuralgic points of a website, where the
desired functionality can still be achieved with deployed
protective measures.

5.2.3 RQ2 & RQ3: Framing Behavior

Besides the protection mechanisms itself, we are also in-
terested in the framing behavior of the investigated sites.

Value Pages
SAME-ORIGIN 7,906 (72 %)
DENY 3,076 (28 %)

Table 2: X-Frame-Options values

8

573967	

116598	 103897	

47681	 37527	 30289	 29107	 28322	 26754	 26572	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

Figure 2: Top Ten of the framed domains

On the one hand, this enables us to learn more about the
applicability of frame-based security solutions, and on
the other hand we are able to measure the impact of the
Nested Clickjacking attack presented in Section 4.4.

In total, we were able to count 4,007,176 million
iframe elements on 14,449 (72.25 %) of the 20,000 Alexa
sites and their subpages. About 2,812,274 (70.18 %)
of those frames are pointing towards cross-domain re-
sources (we exclude subdomain frames from this num-
ber) and hence are potentially vulnerable to the Nested
Clickjacking attack. Given the fact, that 72% of all
the observed X-Frame-Options header (See Table 2 for
details) utilize the same-origin value, it is very likely
that Nested Clickjacking attacks can successfully be
conducted in practice.While the raw number of cross-
domain iframes is surprisingly high, the number of
framed web sites is small. In total, we identified 17,496
unique domains that were being framed. While these
sites are not able to deploy frame-based anti-clickjacking
solutions, they are also a valuable target for attackers
to conduct a nested Clickjacking attack. Especially, if
an attacker is able to gain control over a domain that is
framed often, he is able to increase the available attack
surface by the amount of frames pointing to that domain.
As shown in Figure 2, the top ten domains, for example,
are represented in about 36.29 % of all the investigated
cross-domain iframe elements.

6 Conclusion

In this paper we investigated the current state-of-the-
art browser-provided Clickjacking protection schemes.
Clickjacking is an attack in which an adversary tricks the
unsuspicious victim into clicking on a specific element
without the victim’s explicit consent. Thereby, the cur-

rent defensive tools can be divided into client-side and
server-side approaches. While we investigated NoScript
Clearclick as a representative for the client-side, we con-
ducted an in-depth analysis of Frame Busting, the X-
Frame-Options header and the Content Security Policy
for the server-side.

We consolidated little known bypasses and limitations
and also discovered two novel attack scenarios includ-
ing Nested Clickjacking which we successfully demon-
strate against Google+, and a CSS-based bypass of the
ClearClick technique introduced by NoScript.

Furthermore, we studied the deployment of these
countermeasures by conducting an empirical study of
more than 2 million web pages. Thereby, we discovered
that many sites protect themselves against Clickjacking
attacks. However, we also discovered that many web-
sites are still susceptible to attacks due to the identified
bypasses and weaknesses of the presented countermea-
sures. These problems clearly demonstrate that the na-
ture of Clickjacking attacks is far more complex than
previously assumed by the research community. Novel
countermeasures are needed that take these more com-
plex scenarios and attacks into consideration to success-
fully counter the threats imposed by Clickjacking.

References

[1] BALDUZZI, M., EGELE, M., KIRDA, E.,
BALZAROTTI, D., AND KRUEGEL, C. A solution
for the automated detection of clickjacking attacks.
In ACM Symposium on Information, Computer and
Communications Security (AsiaCCS) (2010).

[2] BARTH, A., JACKSON, C., AND MITCHELL, J. C.
Robust defenses for cross-site request forgery. In
ACM Conference on Computer and Communica-
tions Security (2008).

[3] BORDI, E. Cursorjacking.
http://eddy.bordi.fr/securite/cursorjacking.html,
February 2011.

[4] CALLEGATI, F., AND RAMILLI, M. Frightened by
links. IEEE Security & Privacy 7 (2009), 72–76.

[5] CODERRR. Preventing frame bust-
ing and click jacking (ui redressing).
http://coderrr.wordpress.com/2009/02/13/preventing-
frame-busting-and-click-jacking-ui-redressing,
February 2009.

[6] FACEBOOK SECURITY. Facebook, Washing-
ton State AG Target Clickjackers. [online],
https://www.facebook.com/notes/facebook-
security/facebook-washington-state-ag-target-

9

clickjackers/10150494427000766, last accessed
02/12/12, January 2012.

[7] GRIER, C., TANG, S., AND KING, S. T. Secure
Web Browsing with the OP Web Browser. In IEEE
Symposium on Security and Privacy (2008).

[8] HANSEN, R., AND GROSSMAN, J. Clickjack-
ing. [online], http://www.sectheory.com/

clickjacking.htm, last accessed 02/13/12, Au-
gust 2008.

[9] HUANG, L.-S., AND JACKSON, C. Clickjacking
attacks unresolved. White paper, CyLab, July 2011.
Available online.

[10] IOANNIDIS, S., AND BELLOVIN, S. M. Building
a secure web browser. In USENIX Technical Con-
ference (2001).

[11] JACKSON, C., BARTH, A., BORTZ, A., SHAO,
W., AND BONEH, D. Protecting browsers from
DNS rebinding attacks. In ACM Conference on
Computer and Communications Security (2007).

[12] JACKSON, C., BORTZ, A., BONEH, D., AND
MITCHELL, J. C. Protecting browser state from
web privacy attacks. In World Wide Web Confer-
ence Series (2006).

[13] JOHNS, M., AND WINTER, J. Requestrodeo:
Client side protection against session riding. In
Proceedings of the OWASP Europe 2006 Confer-
ence (May 2006).

[14] KARLOF, C., SHANKAR, U., TYGAR, J. D., AND
WAGNER, D. Dynamic pharming attacks and
locked same-origin policies for web browsers. In
ACM Conference on Computer and Communica-
tions Security (2007).

[15] KOTOWICZ, K. Cursorjacking again.
http://blog.kotowicz.net/2012/01/

cursorjacking-again.html, January 2012.

[16] KRUEGER, D. Create offline web ap-
plications on mobile devices with html5.
http://www.ibm.com/developerworks/

web/library/wa-offlineweb/, may 2010.

[17] LAW, E. Combating clickjacking with x-
frame-options. http://blogs.msdn.com/

b/ieinternals/archive/2010/03/30/

combating-clickjacking-with-x-frame-options.

aspx, March 2010.

[18] LU, L., YEGNESWARAN, V., PORRAS, P. A.,
AND LEE, W. Blade: an attack-agnostic approach

for preventing drive-by malware infections. In
ACM Conference on Computer and Communica-
tions Security (2010).

[19] MAONE, G. Noscript changelog.
http://noscript.net/changelog, January 2012.

[20] MAONE, G. Noscript clearclick. http://

noscript.net/faq#clearclick, January 2012.

[21] MARTIN, M., AND LAM, M. S. Automatic gen-
eration of xss and sql injection attacks with goal-
directed model checking. In USENIX Security Sym-
posium (2008).

[22] MICROSOFT. Ie8 security part vii: Clickjacking
defenses, 2009.

[23] MIN WANG, Y., BECK, D., AND JIANG, X. Au-
tomated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabil-
ities. In Network and Distributed System Security
Symposium (NDSS) (2005).

[24] MOSHCHUK, A., BRAGIN, T., GRIBBLE, S. D.,
AND LEVY, H. M. A crawler-based study of spy-
ware in the web. In Network and Distributed System
Security Symposium (NDSS) (2006).

[25] NAVA, E. V., AND LINDSAY, D. Our fa-
vorite xss filters and how to attack them.
http://www.blackhat.com/presentations/bh-
usa-09/VELANAVA/BHUSA09-VelaNava-
FavoriteXSS-SLIDES.pdf, July 2009.

[26] OWASP. Clickjacking.
https://www.owasp.org/index.php/Clickjacking#Best-
for-now implementation, July 2011.

[27] PROVOS, N., MCNAMEE, D., MAVROMMATIS,
P., WANG, K., AND MODADUGU, N. The ghost
in the browser analysis of web-based malware. In
Usenix Security Symposium (2007).

[28] ROSS, D. draft-gondrom-frame-options-
01 - HTTP header frame options.
http://tools.ietf.org/html/draft-gondrom-frame-
options-01#section-2.4, September 2011.

[29] RUDERMAN, J. Bug 154957 – iframe con-
tent background defaults to transparent, June
2002. https://bugzilla.mozilla.org/show_
bug.cgi?id=154957.

[30] RYDSTEDT, G., BURSZTEIN, E., BONEH, D.,
AND JACKSON, C. Busting frame busting: a
study of clickjacking vulnerabilities at popular
sites. In IEEE Oakland Web 2.0 Security and Pri-
vacy (W2SP 2010) (2010).

10

[31] V. KESTEREN, A. The From-Origin
header. http://dvcs.w3.org/hg/from-origin/raw-
file/tip/Overview.html, December 2011.

[32] W3C. Content security policy, November 2011.
http://www.w3.org/TR/CSP/.

[33] WANG, H. J., GRIER, C., MOSHCHUK, A.,
KING, S. T., CHOUDHURY, P., AND VENTER, H.
The Multi-Principal OS Construction of the Gazelle
Web Browser. In USENIX Security Symposium
(2009).

[34] WHATWG. The iframe element, 2010.

[35] ZALEWSKI, M. Arbitrary page mashups (UI
redressing). [online], http://code.google.

com/p/browsersec/wiki/Part2#Arbitrary_

page_mashups_(UI_redressing), last accessed
02/12/12.

[36] ZALEWSKI, M. X-frame-options is worth less than
you think. Website, December 2011. Available on-
line: http://lcamtuf.coredump.cx/clickit/.

11

