Shadow Attacks:
Hiding and Replacing Content in Signed PDFs

Christian Mainka
Ruhr University Bochum
christian.mainka @rub.de

Abstract—Digitally signed PDFs are used in contracts and
invoices to guarantee the authenticity and integrity of their
content. A user opening a signed PDF expects to see a warning
in case of any modification. In 2019, Mladenov et al. revealed
various parsing vulnerabilities in PDF viewer implementations.
They showed attacks that could modify PDF documents without
invalidating the signature. As a consequence, affected vendors
of PDF viewers implemented countermeasures preventing all
attacks.

This paper introduces a novel class of attacks, which we
call shadow attacks. The shadow attacks circumvent all existing
countermeasures and break the integrity protection of digitally
signed PDFs. Compared to previous attacks, the shadow attacks
do not abuse implementation issues in a PDF viewer. In contrast,
shadow attacks use the enormous flexibility provided by the
PDF specification so that shadow documents remain standard-
compliant. Since shadow attacks abuse only legitimate features,
they are hard to mitigate.

Our results reveal that 16 (including Adobe Acrobat and
Foxit Reader) of the 29 PDF viewers tested were vulnerable
to shadow attacks. We introduce our tool PDF-Attacker which
can automatically generate shadow attacks. In addition, we
implemented PDF-Detector to prevent shadow documents from
being signed or forensically detect exploits after being applied to
signed PDFs.

I. INTRODUCTION

Digital signatures can protect Portable Document Formats
(PDFs) against manipulations. This feature enables use cases
such as signing contracts, agreements, payments, and invoices.
Regulations like the eSign Act in the USA [1] or the eIDAS
regulation in Europe [2] facilitate the acceptance of digitally
signed documents by companies and governments. Asian and
South American countries also accept digitally signed doc-
uments equivalent to manually signed paper documents [3].
Adobe Cloud, a leading online service for signing PDF doc-
uments, provided 8 billion electronic and digital signature
transactions in 2019 [4]. In the same year, DocuSign processed
15 million documents each day [5].

a) Signed PDFs prepared by single entities: One typ-
ical use case of PDF signatures is that one in which a single
entity creates both the PDF document and the signature.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021

ISBN 1-891562-66-5

https://dx.doi.org/10.14722/ndss.2021.24117
www.ndss-symposium.org

Vladislav Mladenov
Ruhr University Bochum
vladislav.mladenov @rub.de

Simon Rohlmann
Ruhr University Bochum
simon.rohlmann @rub.de

[0 are

red! i :
d! Get oyt |mmediately ‘n

WO L I Q N ‘m
& B
Igned ang all sugnatures are valig
"y ® -
@ «>19n the do¢ \
Ument tq get 3 .

T < &

Figure 1. A shadow PDF document presents a trustworthy content to the
signers (top document). After signing this document, the attackers modify the
document and enforce another view of the document on victims’ side without
invalidating the signature (bottom document).

Invoices created by Amazon are a popular example of this
scenario.

b) Signed PDFs created by multiple entities: Another
typical use case is the signing of a contract. For example,
this is the case for EU grant agreements, where the European
Research Agency and the grant recipients have to sign a PDF
document. We can describe the generic process of digitally
signing a contract as follows: The collaborators first prepare
the PDF contract. Collaborators can be lawyers, designers, or
members of different companies. Once they have they finalized
the PDF document, the involved parties then digitally sign the
contract. The parties sign the PDF sequentially, and the PDF
may be exchanged multiple times between the parties.

c) Security of PDF Signatures: In 2019, a comprehen-
sive analysis of the security of digitally signed PDFs revealed
severe flaws in multiple applications and found almost all of
them to be vulnerable [6]. They used an attacker model in
which the attacker possesses a PDF that has been digitally
signed by a third party and manipulates it after the signature
had been added to the document. The vendors have fixed these
issues in their recent PDF viewer versions.

In this paper, we investigate the security of these patched
versions of PDF viewers. We extend the attacker model

from Mladenov et al. [6] and assume the attacker can plac®etectorcan also analyze signed les and detect manipulations
content of his own choice into the PDF leeforeit is signed. made afterwards.

This assumption is based on real-world usage of signed PDFs
by multiple entities. For instance, the attacRersy prepare a
PDF document containing seemingly harmless content. The,
proceed by replacing this content after the document ha
been signed, see Figure 1. We answer the following researc
guestion:

f) Shadow Attack vs. Previous Attackdn an abstract
level, the shadowattacks resemble the idea of Incremental
aving Attacks (ISAs) [6]. Both attacks allow the manipulation
f digitally signed PDFs without raising any warnings or
rors. Both of them abuse a PDF feature called Incremental
Update. Incremental Update allows changing the content of
a PDF by appending a document modi cation to the le.
However, there are essential differences betweerskizglow
attacks and ISAs. ISAs manipulate a PDF by appending a
malformedincremental Update, wherein objects are missing or
d) Shadow AttacksIn the analog world, a signer typi- not closed properly. This approach was motivated by viewers
cally adds a handwritten signature at the end of the documenroviding either a denylist or allowlist of potentially dangerous
This addition at the end has two major downsides: 1) it isOPjects. Based on malformed Incremental Updates or missing
possible to exchange all pages before the signed page wiffRngerous objects in the deny/allowlists, Mladenov et al. [6]
arbitrary content. 2) Attackers could use empty spaces of€ré able to bypass the veri cation of multiple viewers. As
signed pages to print new content, or they could overpainf result, the PDF viewers extended the Il_sts with potentially
existing content. These manipulations are impossible wheff@ngerous objects, improved the veri cation to detect mal-
using digital signatures because this type of signature protect@'med Incremental Updates, and warned users in the event
the entire content. So it is assumed that transferring such #f inconsistencies.
attack from the analog world to digital signatures is impossible. |n contrast to previous attacks, osihadowattacks do not
use a malformed Incremental Update, imstead are standard-
compliant and use well-formddcremental Updates. Thus, no

Can the visible content of a digitally signed PDF be
altered without invalidating a signature if attackers
manipulate the PDF before it is signed?

This paper shows that this assumption is false by introduc

ing a new attack classhadowattacks. The idea athadow

attacks is that the attackers create a PDF document Witwconsstenmes in the le structure exist. Thitde and Hide-

; . .. and-Replacevariants also bypass even perfectly implemented
two different contents: 1) content expected by the authorlt)éenylistg or allowlists. Thgg none ofpthe cu¥ren?|y imple-

reviewing and signing the PDF and 2) hidden content tha . .y
attackers can reveal after the PDF is signed. In Figure mented countermeasures which detect malicious Incremental
19pdates preventshadowattacks.

an overview of the attack is shown. The attackers prepare
shadowdocument. In the analog world, this is the step in which g) Results: We show the applicability of thahadow

the attackers could explicitly leave empty spaces. $lymers attacks by evaluating 29 PDF applications and revealing vul-
of the PDF receive the document, review it, and sign it. Thenerabilities in 16 of them, including Adobe Reader and Foxit
attackers use the signed document, modify it, and send it tReader. Moreover, we achieve a privilege escalation on Adobe
the victims. In the analog world, the attackers can print theiproducts allowing the attackers to execute high privileged
content on the prepared empty spaces. After opening the signedtions on victims' computers.

PDF, the victims' PDF viewer successfully veri es the digital h) Contributions: This paper makes the following ke
signature. However, the victims see different content than the ibutions: ' pap g Key
Signers We introduce three variants of ttehadowattacks, contributions:

which allow attackers tdide replace and hide-and-replace We introduce an attacker model that is based on real-
content in digitally signed PDFs. Thehadowattacks do not world scenarios and allows an attacker to place shadow
rely on a dynamic content replacement. For example, we do content into a PDF before it is signed (section IlI).

not use JavaScript or content loaded from external resources We are the rst to present thehadowattack class on PDF
that can be modi ed after signing the PDF. We consider such signatures. We found three different variants that allow the
attacks trivial, and according to our observations, all viewers ability to hide to replace and tohide-and-replaceontent
already prevent such attacks by warning the user. without invalidating the signature validation status of a
digitally signed PDF (section 1V).

We implementedPDF-Attacker an open-source Python
toolset for automatic exploit generation (section VI).

We show the impact ofhadowattacks by breaking 16 of
29 PDF applications (see section VII).

e) Automatic Generation and Preventiofio contribute
to future research, we present two tooRDF-Attackerand
PDF-Detector Both tools are written in Python, and published
as open source on https://pdf-insecuntg. PDF-Attacker

automatically generates a shadow document by using arbitrary \ye implemented and evaluat@&DF-Detector an open-

les as an input. After the document is signeRIDF-Attacker source shadow attack prevention and detection tool (sec-
executes the manipulation steps automatically and stores the {4, VIIl).

manipulated le.PDF-Detectordetectsshadowattacks at both We applyshadowattacks beyond signed PDFs and reveal

stages of their_ execution: before the le is signed and after the 5 (itical code execution vulnerability in Adobe Reader
nal manipulations. Thus, PDF readers can (eF-Detector (section IX).

to refuse signingshadowdocuments and thus prevent harm. _ _ . _ _
To facilitate the forensic analysis of signed PDF |e€RDF- 1) Responsible DisclosureWe responsibly disclosed
all issues to the respecting vendors. Therefore, we cooperated
1 this paper, we use the gender-neutral pronthay for the following ~ With t_h_e CERT'B_U”d ('BSD and prpwded a dedmateq vul-
entities: victim, attacker, signer, and user. nerability report, including all exploits, to them. They kindly

https://pdf-insecurity.org

Y /Catalog 1 4
/AcroForm 2 0K
/MetaData 3 K

created the initial contact with all vendors and managed the
distribution of the report. In the case of technical queries, we
directly supported the vendors to understand and x the issues.
Some of the vendors contacted us regarding a re-test of their

D

,,,,,,,,,,,,,,,,,,,,,

countermeasures, which we also provided. gJ S ’ RS
ez e
[I. BAsICS o

a) PDF File Structure: The Portable Document Format | | ——
(PDF) is a platform-independent document format. It consists } Ry e
of three main parts, as depicted in Figure 2. S i E’WETTTH]
The rst part de nes thePDF body It contains different [eer _ | o | o ! 3}3
objects, which are identi ed by their object number. The most 1.0 0bj Reference (In Usg)- -~~~ HEREE
important object is the root object, which is called theiog . {2 0 obj Reference (In Usg)- ----------- R
In Figure 2, thecatalog has the object identieri 0. The e {3 0 obj Reference (In Us§)-------------- i L
catalog de nes the whole PDF structure by linking to other "__5., g 3[4 0 obj Reference (in Us§)- -~~~ o 1 :}3
objects in the body. In the example given, thaog links - 3 50 ob) Reference (n Usb) - o
to a form objectacrororm, t0 a PDF metabata Object, and %’- N ! ' L ‘i:
to actual PDFrages object. Thepages object can reference) 96 0 obj Reference (In Usg)----------------—- RN
multiple page Objects, which in turn reference, for example, {7 0 obj Reference (In Us¢)- -~ - 33}
the actualcontent , Font, and images oObjects. These object {8 0 obj Reference (In Usg)------------—-—----—- 133
references are technically |mplemented by using a dedicated 5[5 0 obj Reference (Frepﬂﬁm”m”mmm;i
reference string based on object numbers. For example, the - !

Pages Object references theage object by using the reference

5 0 R. Thesecond partof the PDF is theXref table It contains

references to the byte positions of all objects used in the PDF

body. Objects that are ndn usecan be explicity agged as

free in the Xref table For example, the image objegto is Figure 2. A PDF consists of three parts: bodyef tablg andTrailer. Solid-

free and not displayed in the PDF. Although agged as freelined arrows indicate direct object references. Dashed-lined arrows indicate
: . : byte offset references.

the entry in theXref tablefor objecte o can contain the byte

position of the free object. Ththird part is the Trailer. It

consists of two further references: one to the byte position at

which the Xref table starts, and another link to the identi er algorithm uses. A typical S|gnatureﬁ starts at the rst byte
of the root object { 0).2 and ends at the last byte of the traterOnce a user opens

a PDF containing a PDF signature, the viewer application
b) Incremental UpdateThe content of a PDF may be automatically validates the signature and it provides a warning

updated for different reasons, for example, by adding reviewf the content has been modi ed.

comments or by lling out PDF forms. From a technical .

perspective, it is possible to add this new content directly _ d) Incremental Update on Signed Documertsien on

into the existing PDF body and add new references in th@ Signed PDF, a further Incremental Update can be applied.

Xref table However, this is not the case according to theExamples are review annotations or additional signatures.

PDF speci cation. Changes to a PDF are implemented usingNC€ such Incremental Updates are appended to the signed
Incremental Updates. document, and no changes within the signed area are made,

the signature remains valid.
An Incremental Update adds new objects into a new PDF
body, which is directly appended after the previotrsiler. In 2019, Mladenov et al. [6] showed that an Incremental
To adequately address the new objects, a Xeef tableand ~ Update can change the presentation of the entire signed docu-
Trailer are also appended as well for each Incremental Updaténent. As a countermeasure, the authors recommended letting

Summarized, a PDF can have multiple bodXf tables, and the viewer raise a warning if the PDF provides content outside
Trailers, if Incremental Update is applied. the signature's scope. However, this countermeasure is not

]]]] standard compliant. There are legitimate use cases where an

c) PDF Signature:For protecting the integrity and the |ncremental Update should not lead to a warning, for example,
authenticity of a PDF, digital signatures can be applied. Fop second digital signature. Thus, the vendors implemented
this purpose, aignare object is created and appended to theg different countermeasure by creating a list of potentially
PDF by using Incremental Update. It is also possible to sigrjangerous elements forbidden within an Incremental Update.
a PDF multiple times (e.g., a contract), resulting in multiple cyrrently, the viewers search for such elements within an
Incremental UpdateS. Thﬁ;nature ObjeCt contains all relevant |ncrementa| Update and thI‘OW a Warning on a match.
information for validating the signature, such as the algorithms
used and the signing certi cate. It also de nes which bytes of In this paper, we focused on the elements which viewers
the PDF are protected by the signature, that is, which bytesonsidetharmlesswithin an Incremental Update. We show that
are used to compute the cryptographic hash that the signature

3For technical reasons, there is a gap inside this range that is unprotected.
2The root element does not need to have the identi eo. It contains a PKCS#7 blob of the signature itself.

1ajrely

attackers can still change the signed document's presentatiol/. SHADOW ATTACKS: OVERVIEW AND PRELIMINARIES

by neither invalidating the signature nor raising any warnings. . o1 concept ahadowattacks is that the attackers

prepare a PDF document by injecting invisible content —
[1l. ATTACKER MODEL “shadow content”. We call this prepared PDF aHhadow
) document”. Afterward, the signing entity, for example, a
The attacker model is based on real-world use cases iBerson or an online signing service, receives t@adow
which a PDF document, for example, a contract, is signed. Iijocument, signs it, and sends it back to the attackers. Despite
these use cases, attackers can injeeisible parts (‘shadow the integrity protection provided by the digital signature, the
content”) into a F_’DFbefpre it is S|gn_ed. After the signing, attackers can modify the signetladowdocument and change
the attackers again manipulate the signed PDF. Thereby, th@ye shadowcontent's visibility. Nevertheless, the manipulation
enforce avisible change in its content without invalidating the 5 not detected, and the digital signature remains valid. Finally,

signature. the attackers send the modi ed signstiadowdocument to
the victim. Although the attackers altered it, the signature
Attackers Signers Victims validation is successful. However, the victims see different
! ! content than the signing entity. That is, the victims see the

(1) PDR = createPDF() |

|
1 | shadowcontent.
: D |
| |
| |
| |

|

|

A. Shadow Documents in the Real World

(2) PDR = sign (PDR)
<

' (3) PDR = manipulate (PDR) Considering the applicability cthadowdocuments, we fo-

N cus on the following two questions: (1) How can the attackers
‘ force the signing of ashadowdocument? (2) Why are the

Figure 3. Attacker Model: The attackers prepare Sfeadow Document attackers capable of modifying a signsdadowdocument?

(PDR) which the Signerssign (PDR). Afterward, theAttackersmodify the o .
content of the signed PDRPPR) and send it to thé/ictims a) Signing a Shadow Documentn companies and

authorities, relevant documents like contracts or agreements are

a) Attacker Capabilities:As shown in Figure 3, the often prepared by the employees, which take care of most of

attacker capabilities can be divided into three phases. Thii€ details and technicalities. An authorized person then signs
output of each phase is a PDF le. the document after a careful review. Another scenario is the

signing process of a document within a consortium. Usually,

|
|
|
!
|
T

1) The attackers create the PDF documdPbk = one participant creates the nal version of the document, which
createPDF() that contains the invisible shadow content is then signed by all consortium members. Considering the
(e.g., a text or an image). given examples, a maliciously acting employee or consortium

2) The signers receiveDF (e.g., by email) and create a new Mmember can inject invisiblshadowcontent during the editing.
documen®DF; by signingPDF, i.e.PDR = sign (PDF). Consequentially, this content will be signed.

3) The attackers receiv&DE. They can modify PD_E Additionally, multiple cloud signing services like Adobe
again, for instance, the attackers cred®®k = Cloud, DocuSign, or Digital Signature Service exist. Among
manipulate (PDF). The attackers senflDF to the vic- other functionalities, such services receive a document and sign
tims. it. Such services can also be used to sshadowdocuments.

The main difference to the previous work [6] is that the b) Manipulating a Shadow Documen®ne can assume

attackers are allowed to embed malicious contesforethe that a signed Portable Document Format (PDF) document
PDF is signed instead of solely modifying the PDF after thecannot be changed and that it is nal. This assumption is
signature has been applied. not the case due to the desired features like multiple sig-
o N natures or annotations. For example, a PDF document can
_ b) Winning Conditions: The attackers are successful pe signed multiple times. This process is essential in many
() if the following conditions are ful lled: use cases since it allows stakeholders within a consortium to
. . . . have a single document containing the signatures from all
1) The signers only sigPDE if they do not notice .Of the partners. F?om a technical perspegctive, ea?ch new signature
shadow content. In other words, all changes injected byynends new information to the already signed document (see
the attackers must hievisible to the signers. paragraph 11-Ob). Nevertheless, the document should still be
2) The victims see the shadow content once they &1BB. gy ccessfully veri ed for each signature. Additionally, the PDF
3) The signature veri cation ofPDF is_successful. The gheqication de nes interactive features like annotations (e.g.,
victims trust the signers’ public key. The victims do not gy notes and text highlighting). Since annotations do not
trust any other key. In particular, they do not trust the hange the content but only put remarks on it, these changes

attackers' key. _ are considered harmless. Thus, the PDF speci cation allows
4) OpeningPDF does not show any errors or warmings, for ihe injection of seemingly harmless objects in a signed le
example, due to a malformed le format. without invalidating the signature.

Some PDF viewer show avarning even if it validates
the unmanipulatedPDFE. If the signature validation of the
unmanipulated?DFE and the manipulate®DFE show exactly Currently, PDF applications analyze the changes made after
the samavarnings we call the attackers' succelmiited (). signing and try to estimate if these changes are legitimate. For

B. Analysis of Document Modi cations

Figure 4. We show three variants of manipulatingrdowPDF document without being detectddide, Replace andHide-and-Replace

instance, overwriting content on a page of the document is natonsidered harmless. Nevertheless, the visible content changes
allowed, leading to invalid signature veri cation. Such attackswhen opening the PDF le.

were evaluated in 2019 by Miadenov et al. [6] d) Changing Interactive FormsWe observed an un-

In this paper, we rst analyzed which changes are considexpected feature applied to interactive forms, which overlays
ered harmless by the PDF applications and abused these tiwe content of a text eld. By clicking on the text eld, its
exchange the entire content within a PDF document. Noneontent is shown, and the overlay disappears. While we avoid a
of the previous work provides such an in-depth analysisdiscussion regarding the usefulness of this feature, we observed
Thus, a gap concerning the possible manipulations existedhat changes on the overlay are considered harmless and do not
The allowed changes can be summarized as follows. invalidate the signature.

a) Appending newKref table and Trailer. Appending
a new Xref table and Trailer occurs on each change on
PDF documents. For instance, for each signing process using The PDF specication de nes a compromise between
the signature information, a neXref table and Trailer are usability and security by softening the rules regarding the
generated. Thus, appending these at the end of the le igtegrity protection of digitally signed documents. This means
considered harmless. that signed PDF documents can be extended by applying
Incremental Updates. Attackers can inject content within the

b) Overwriting Harmless Objects:In their paper, . ;
. Incremental Update that is appended to the end of the signed
Miadenov et al. [6] were able to append new objects beyon ocument. Since PDF signatures are computed on a xed range

the signed document by overwriting existing objects and thuij bytes of the PDF le, the Incremental Update is outside of

C. Summary

replacing the content. The attack was called an Increment . . ; .
: . at range, and it does not violate that cryptographic protection.
Saving Attack (ISA). Nevertheless, the authors considere y de ning exceptions of allowed and forbidden changes,

?ng%tgﬁfé tgiggz:ctﬁz?e' o?ggéfspziiégrdﬁﬁznﬁc . 'trhh;s C'(‘:’ nte tEe developer teams are responsible for the detection and
) y assi cation of dangerous elements within each Incremental

shown by opening the document. The applications' vendor pdate. Wrong decisions lead to vulnerabilities. In the next

xed the vulnerabilities by detecting the de nition of such : .
: . ; : ection, we show how changes that are classi ed as harmless
objects after the signature was applied. Inspired by Markwoo an enable the exchanging of content without invalidating the

et al. [7], we considered the de nition of further objects like ianature
fonts or metadata, which also in uence the presented content'9 '

c¢) Overlapping ObjectsDuring our analysis, we raised V. SHADOW ATTACKS: HIDE, REPLACE, AND
the question regarding the visible presentation of overlapping HIDE-AND-REPLACE
content. More precisely: “If two objects share the same po-

sition on a page, which object shows the application in the

. : X . _attacks: Hide, Replace and Hide-and-ReplaceEach attack
foreground and which one in the background?”. We determine . . . - X
that the declaration of the object within the document is@Ias:s introduces a different technique to stealthily manipulate a

decisive. In the case of overlapping, the rst object is displayeaSlgned PDF without causing any warnings or exceptions during

on top of the second one. Thus, we can append the sarr\tg signature validation.
objects to a PDF le but in a different order. Since the content Each attack is based on two manipulation steps made by
of the objects is not changed, this Incremental Update is alsthe attackers as depicted in Figure 3. In Step 1, the attackers

In this section, we present three different classeshafdow

(&) A shadowPDF document digitally signed by the victims containing a (b) Manipulated PDF document after signing which contains attackers'
donation amount. account data (top row).

Figure 5. Form-based Attack. On the left side, the victims sign a donation to a non-pro t organization. On the right side, the attackers manipulate the signec
document to display different bank account information. The validity status of the digital signature remains untouched. Apart from the account information, both
documents are indistinguishable.

prepare the document by injecting teeadowcontent. This a) Step 1 — Injecting the shadow contets shown in

shadowdocument is sent to the signers. In Step 2, the attackerBigure 4, the attackers inject one or multiple images and place
receive the signed document and make #shadowcontent them over the original content. The images could overlay an
visible. This document is sent to the victims. entire page or only parts of the content, for example, a digit

] . .] . or passage of text. The attackers entirely control the position
All'in all, we created eight different exploits covering all and visibility of the placed image.

attack variances. In the following sections, we explain the idea . . .
of each attack and its execution. b) Step 2 — Making shadow content visibl€he sim-

plest method for this is to create an Incremental Update, which
only updates th&Xref tableby setting the overlay object feee
A. Shadow Attack: Hide However, many viewers (e.g., Adobe) classify this change as
| | dangerous and throw an error or a warning. For this reason,
This class ofshadowattacks aims to hide the content We use another approach: we use the same object ID within
relevant to the victims behind a visible layer. For examplethe Incremental Update, but we de ne it as a different object
the attackers can hide the text “You are red!” behind a full- type. For example, we change the overlay typge to xvu
page picture showing “Sign me to get the reward!”. Once thevetadata . Additionally, we added aiXref tableupdate pointing
attackers receive the signed document, they manipulate tHe the metadata object but keeping the object ID of the overlay.

document so that the viewer application no longer renders the \yhen opening this manipulated document the overlay is

picture. hidden because Metadata cannot be shown. Since adding Meta-
data to a signed PDF using Incremental Update is considered

Hide attacks have two advantages from the attackers X . X
harmless, the signature remains valid.

perspective:
Moreover, we observed that attackers could hide form
1) Many viewers show warnings if new visible content is elds if they changed their references to empty objects. To
added using Incremental Update. However, they do noexecute the attack, the attackers place the malicious form elds
warn in most cases if content is removed. above the original ones in which the attackers place prede ned
2) The objects are still accessible within the PDF. In thevalues. The manipulated document is sent to signers. They
example above, the text “You are red!” can still be only see the malicious form elds. After receiving the signed
detected by a search function. This detection might belocument, the attackers let the malicious elds disappear by
necessary if an online signing service is used, and iteferencing them to empty objects. In this way, the original
reviews the document by searching for speci ¢ keywords.form elds, including the attackers' prede ned values, are
shown to the victims.
We identied two variants of this attack class, which are 2) Variant 2: Hide Content via Object's OrdeDuring our
explained further. analysis, we observed that for two different form elds with the

1) Variant 1: Hide Content via Referenced Objedt: this same size and at the same x-y position within the document,

attack variant, the attackers create overlay objects such &9 the last one is shown. Furthermore, the same form elds
Can be re-declared within an Incremental Update as long as

images or form elds and hide them after the document is .
signed to reveal the content below these objects. We creaté{}ﬁggkg;hfaﬁoﬁﬁgttﬁgafgﬁgvsv'in%aiglg? both observations, the

three different exploits that hide content via malicious image,
hide form elds via malicious form elds, and hide content a) Step 1 — Injecting the shadow contefithe attackers
via malicious form elds. inject into the original unsigned document thefradowform

elds at the same x-y position as that of the content they wantliffer from the signed values. If the values have been changed

to hide, but they declare their form objedteforethe original and differ from the signed values, the signature validation fails.

ones. The signers see only the original form elds since theySince the attackers do not change any values stored ithe

are de ned after theshadowones. signature remainsalid. The viewer then processes each text

eld object and shows thessox value if it maps to the signed

e. Otherwise, the value storedninis presented. Since the

ackers change thesox value, the valuev (being Attacker

|) is shown, and the corresponding malicious transaction slips
through.

b) Step 2 — Making shadow content visibléfter
receiving the document, the attackers append an Increment%ﬂ
Update which copies and pastes the original andsthedow d
form elds. In this case, however, they rst place the original
and then theshadowform elds. As a result, theshadow
form elds and their values are shown instead of the original As a result, the signers and the victims have different views
ones. Since the objects themselves have not modi ed, but onlgn the same document, which should be prevented by the
their declaration order, the Incremental Update is consideredigital signature. For each attack variant, we create one exploit.

harmless. 2) Variant 2: Replace via OverwriteThe idea of the
_ attack is based on the ISA described by Mladenov et al.
B. Shadow Attack: Replace [6]. Consequently, the vendors implemented a list of objects

The main idea of thisshadowattack class is to use an considered dangerous and disallowed their occurrence in In-
Incremental Update that directly changes previously declare@femental Updates. However, in many applications, fonts are
objects. Since the modi cation is not allowed for all types of considered harmless, and thus, they can be de ned within an
objects, the attacker only changes objects that are consider&dcremental Update. This attack variant proves the opposite.
harmless but can nevertheless change the document's visible a) Step 1 — Injecting the shadow contefitie attackers

content. For instance, the (re)de nition of fonts does notynaiv;e’the fonts used in the original document and distillate

change the content directly. However, it in uences the view of nich are relevant for the content. Second, default fonts like

the displayed content and makes number or character SwappiNgrqana or Times New Roman are usually not included in

possible. We identi ed two variants of this attack class. the PDF. In this case, the attackers need to inject the font
1) Variant 1: Replace via OverlayPDF Forms support description as shown in Figure 4.

different input masks, such as text elds, text areas, and _ o

radio/selection buttons. Forms can have default values, for b) Step 2 — Making shadow content visiblefter the

example, a prede ned text. Users can dynamically chang€locument is signed, the attackers append a new font descrip-

these values and store them in the PDF document. tion and overwrite the previous one. The new font description

. completely changes the presentation of the original text. For
The attack abuses a dedicated property of PDF text eldsgyample. we created an exploit changing the presentation of the

A text eld can show two differentalues the real eld value original textUS90 5628 3174 5628 3174 USO1 2345 6789

and an overlay value, which disappears as soon as the €355 5789 since the de nition of new fonts is considered
eld is selected. A form eld's real value is contained in an

biect k & Th £ th | I .. harmless, the applications verifying the signature do not warn
object key nameav. The content of the overlay element Is f iq changes made. A popular software to create a malicious
de ned within a/Beox object. Theeox Object is comparable

X font description is FontForge.

to the hint labels known from HTML forms. For example, the P g

hint usernameindicates that the username should be entered o

into a speci ¢ login eld. In contrastto HTML, in PDF there ~C- Shadow Attack: Hide-and-Replace

is no visual difference between tiént and theactual value. In this shadowattack class, the attackers createshadow
We depict an example attack in Figure 5. PDF document which is sent to the signers. The PDF docu-
a) Step 1 — Injecting the shadow conterfEirst, the ~ment contains a hidden description of another document with

attackers create a transfer sIR) containing an interactive different content. Since the signers cannot detect the hidden
form which the signers complete before signing the documen{malicious) content, they sign the document. After signing,
The attackers initialize some of the form elements with defaulthe attackers receive the document and solely append a new
values. In the example provided in Figure 5, the attackers seffef tableandTrailer that enables the hidden objects.

the valuesv of the rst three form elds toatacker - and the We identi ed two variants of this attack class. Both variants
attackers'iean andsic. Second, the attackers set the overlayitter in the way the attackers enable the hidden content after

values [gBox) to unicet and the correspondingan andeic. the document had been signed. For each attack variant, we
As long as the signers do not focus on the prepared valueg eaied one exploit.

they believe that the correct values are already pre- lled. 1) Variant 1: Change Object ReferenceBhe idea of this

b) Step 2 — Making shadow content visiblehe signers attack variant is to use théref tablefor changing the reference
sign the PDF without changing the pre-lled forms. Once to the document'satalog (0r any other hidden object) to point
the attacker receive®DFE, they update the text elds by totheshadowdocument. In Figure 6, an example of the attack
replacing the overlay stored iBeox with different values. The is depicted and will be explained further.
values stored inv remain unchanged. Viewers consider this

replacement harmless since the original text eld value is not a) Step 1 — Injecting the shadow contefihe attackers
changed but rather only the overlay. create a PDF le containing two objects with the same object

o i o ID (e.g.,4 O obj) but different content: “Sign the document
Once the victims opePDF, the viewer rst veri es if the

values stored inv within each text eld have been changed and “https://fontforgeorg/en-US/

© ® N g A W N e

i
=y

Figure 6. The attackers successfully manipulate a signed document and force different viewssigmehgand thevictims by using theHide-and-Replace
attack variant.

to get a reward!” and “You are red. Get out immediately”. As,
shown On. the left side in Figure 6.’ within theef tablese_ctlon, rtlg{;sting 1. The attackers manipulate the original document by injecting new
the Se?m|ng|y harmles_s content is referenced. The signers ondyjects. in the given example, this is te0 obj . The attackers hide this
see this content and sign the PDF le. object by disabling its usage via theef table

1

b) Step 2 — Making shadow content visibléfter b) Step 2 — Making shadow content visibl@nce,
receiving the signed PDF, the attackers append aXrefitable ~ the attackers receive the signed manipulated document, they
and exchange the reference to the object (e.g.obj) with ~ append a newref table The newXref tableenables the hidden
the malicious content “You are red. Get out immediately”. A content and disables the original one.
new Tra|_le(is also appended- Since the II"IC|!.ISI.OI"I Of)a!ef 1| %%9%ref table in the document sent to the signers. %%%
table pointing to an already de ned object within the signed % Original Xref table

area is considered harmless, there is no warning of the chari¢ ¢! . b SO OF W 2OE i
. . . . 2418 % 8 objects starting with the object Id 1
madg. The signature veri cation is successful. Nevertheleg; 0000000010 00000 n % Object 1 at offset 10 is in use
the victims see different content than what the signers seeg| 0000000099 00000 f % Object 2 at offset 99 is free
7| ... % Further object references

2) Vanant 2 Che;nge Objects Usagerhe idea .of this g a4 % 1 object starting with the object Id 5
attack variant is again to use tixef table However, insteado| 0000006666 00000 n % Object 9 at offset 6666 is in use
of changing the reference to the objects, the attackers specr;— _ _ .
Wwhich objects are ‘n use” and which are notused (.e., “free”) (3 2 Toe Sisecrs Tanbust Baredunert by sepenng e
Usmg ,th,ltc‘ Xref tabl_e featqre enables. attackers FO modify contentgof a page is disab%ed and thg o’bject Wijﬂﬁlds enabled an% thus
the visibility of previously included objects. By this means, yisiple.
attackers can hide “in use” objects and show “free” objects.

This is possible without changing the objects themselves. Th .

attackers only touch th¥ref table but the signed document's B. Stealthiness of Shadow Attacks

presentation can be changed entirely. Shadow attacks require interactions with the signers and

the victims. Thus, the attackers must create the document so

a) Step 1 — Injecting the shadow contefimilar to the that neither of the two entities becomes suspicious by merely

rst attack variant, the attackers insert the malicious contenbpening and reviewing the document. This is truly the case for

which is correctly referenced but marked in tKeef tableas all attack variants. However, further actions like text selection,

not in use Thus, only the content of the original document is copy-pasting text, or searching within the document might

shown to the signers. expose the attack’s stealthiness.

%%96ref table in the document sent to the signers. 9%6%% For all attack classes, we require that the victim cannot
% Original ~ Xref table detect theshadowcontent inany way Thus, we concentrate
e . (90 GiETE @ (gD 24 on cases in which the signers might detect the attacks.

18 % 8 objects starting with the object Id 1

0000000010 00000 n % Object 1 at offset 10 is in use

0000000099 00000 N % Object 2 at offset 99 is in use . The Hlde—and-replaceslgss IS ent'.rely conce'aled from '.[h.e.
% Further object references signers. From the signers' perspective, there is no possibility
oo Inect - icious but hidden obiect of detecting theshadow content. Variant 2 of the attack

0 Injection point: new malicious bu laaen objects B
91 O 1 ohies Senig) T 10D @ [o| s restricted only to form elds since its disappearance is
0000006666 00000 f % Object 9 at offset 6666 is free considered harmless by many viewers.

Hide Variant 1 (Hide via Referenced Objeabight be o 0w atacks | Forbidden Ioaig o easures

i . g Invalid Missing Missing
detected by searching for a speci c text behind the overlay or Objects Objects Xref table Trailer
selecting the overlayed content. With respect to this restriction, Hide
the overlayed content can be only a number or a text area thafeplace ®

Hide-and-Replace

makes the attack hard to detect. ConsideNagiant 2 (Hide
; At : . Countermeasure insufcient & Countermeasure partially successful
via Object's Order)the attack is entirely concealed for form . Countermeasure suf cient

elds since we can hide previously shown elds. Table I. EVALUATING THE ISA COUNTERMEASURES REVEALS THEIR
_)) INEFFECTIVENESS AGAINST THEShadowATTACKS. NO CURRENTLY
ConcerningReplace Variant 1 (Replace via Overlayhe IMPLEMENTED COUNTERMEASURE IS SUFFICIENT

attack can be detected only if a form eld is editable and the

user clicks into the eld. Noteworthy is that the attackers de ne

the capabilities of the form elds and can always deactivate th ;

editability. TheReplace Variant 2 (Replace via Object's Order) ?)nycﬁgriglr?%aup%lz' All other countermeasures target malformed

. = pdate.

can be detected by searching for the original content or copy-

pasting the manipulated content. The copied text contains the Shadowattacks are not affected by any of these counter-

original value. measures since they do not rely on malformed Incremental

Update. Only theReplace via Overwritezariant is restricted

since the de nition of a new font could be detected by extend-

ing the current lists with forbidden objects. Nevertheless, the
In this section, we highlight the differences between ourReplace via Overlays not affected. Thédide and Hide-and-

Shadow attack and the attacks known I&# [6] to avoid Replacevariants are always applicable as long as the viewers

confusion between both attack concepts. First, we providallow Incremental Update.

details regarding the ISA by analyzing all known and publicly

available ISA attack vectors plus their corresponding counter-

measures. Second, we explain why these countermeasures

insuf cient to mitigate the Shadow attack.

E. Shadow Attack vs. Incremental Saving Attack

To summarize, PDF viewers have to choose between be-
standard-compliant (by allowing Incremental Update) and
vulnerable, or being secure and not standard-compliant.

a) Attack Vectors:ISA overwrites content objects di- VI. PDF-ATTACKER
rectly or by using a malformed Incremental Update to bypass . .
the protection mechanisms. We analyzed all available ISA N this ﬁectlon, we hprgsent PDII(:-Att(':I\cker, a toolset that
attack vectors [8] and classied them into four categories;2utomatically creates shadow attack exploits.

forbidden objects, invalid objects, missiXgef table and miss- a) Design of PDF-AttackerPDF-Attacker is written in

ing Trailer. We estimated that none of the four categories isPython using Jupyter Notebooks. This design enables the high
generic. Every category depends on the corresponding viewegxibility that is necessary to resemble the shadow attacks.
and even on its version. Additionally, each of them inter-For each attack variant of eacthadow attack class, we
prets malformed objects and Incremental Updates differentlycreated a separate Jupyter Notebook, so that all exploits can
Finally, one can say that ISA is less generic and softwarepe investigated and extended independently.

dependent. . . ,
Initially, our goal was to use a single Python PDF library

In contrast, theshadowattack relies on a well-formed for all attacks. It turned out that this is not ideal since every
Incremental Update and thus does not depend on each viewegstack addresses different PDF features. For example, for
speci ¢ interpretation, but on standard-compliant features. attacks using forms, theportlablibrary provides many useful

features. In contrast, theide-and-replaceattacks require low

Considering the creation of malicious PDF documents, Isﬁevel access to PDF objects, which is possible wigpdfd
scales better than thghadowattacks. To carry out ISA, the D) ' . POS: v .
Ia1 the end, we used different libraries for different attacks in

attackers possess one signed le by a trusted authority, an e . .
they can cpreate maliciousgPDF docﬁments with any co};tenf?rder to maximize the functionality of the tool.

The attackers can display only content, which was hidden b) Con guration of PDF-Attacker: Before starting to
during the signing process and which is already part of thevork with PDF-Attacker some con guration steps need to
signed document. As a result, the amount of malicious PDfbe executed. The con guration steps can be summarized as

documents, which the attackers can create, is limited. follows:

b) Attacker Model: Both attacks rely on different at- ~ Content to manipulate: Independent of the attack variant,
tacker models: ISA relies on an attacker possessing a digi- PDFE-Attacker needs to know which content is in the
tally signed PDF document. Thehadowattack additionally attack scope. This could be an entire page, a eld value,
assumes that the attackers inject malicious content before the or a font description.

PDF is signed. Shadowcontent: Depending on the attack variant, the

shadow content also needs to be prepared. This content
could be an image overlapping some content, a malicious
font, a malicious value, or an entire document with a

¢) Countermeasuresie summarized the implemented
ISA countermeasures in Table I.

The rst countermeasure is the de nition dbrbidden speci ¢ content.
objects within an Incremental Updatée., blacklisting the Key material: Many PDF applications offer the ability
objects /pages , /Page , /Contents . This is reasonable because to digitally signa PDF only in the commercial version.

each of these objects directly in uences the presented content Since we do not want to rely on an external software, we

decided to implement a signing module. The correspondthe signed PDF is manipulated, so that #imdowcontent is
ing key material can also be speci ed by using differentshown.

keys than those provided. d) Running PDF-Attacker:The deployment of PDF-

c) Exploit Generation with PDF-AttackerThe exploit ~ Attacker is challenging because many Python libraries rely on
generation with PDF-Attacker is separated in three phases, g&ternal tools. For example, to convert an arbitrary PDF into a
depicted in Figure 7. In the rst phase “Generate ShadowPNG, a dedicateiinagemagigackage must be installed, and a

properpolicy.xml must be con gured. To minimize the ef-
fort of using or extending PDF-Attacker, we used VSCode with

q ror P por remote docker containes deployment. By this means, using
PDF-Attacker i PDE-Detector i PDF-Attacker only requires VSCode and Docker. Everything
L e 1198 g ignedn 125 else, including downloading all relevant packages and setting
Phase 1: Generate Shadow PDF | 3 up the execution environment, is automatically con gured.
Q, P ED Module 1: Prevention | resu

e) Limitations: We are aware of the limitations con-

Phi 2: Sign Shad PDF
78 & o Shadow Execute Module 1, cerning the PDF documents used as an input. Manipulations

47 i if no active Shadow|
1 elements found on encrypted documents are not supported. Also, documents
IFIEEDD €8 (EIED Sheslay =y X ecult having one or multiple Incremental Updates have not yet
P LLLTIA R been tested. This limitation also includes documents that have
already been signed and is a natural limitation due to the 1300-
P Shadow Document pages PDF speci cation's complexity.

_ _ _ o Considering theReplace via Overwritattack, we created
Figure 7. ThePDF-Attacker takes an arbitrary PDF as input, builds-in the one malicious font. Thus onIy les having this font. can be
shadow objects (Phase 1), signs the document (Phase 2), and nalizes thett ked. This limitati ! be ci ted b t’ ticall
attack by enabling the shadow content (Phase 3).ADE-Detectoris a tool attac e : IS imitation Ca_n e g:wcumven €d by au O,ma Ically
to detect malicious documents generated in Phase 1 and Phase 3. It can af$tracting the fonts contained in a PDF le and using tools
take an arbitrary PDF as input and is described in section VIII. like FontForge5 to generate malicious fonts on the y. Due to

the high complexity and variants of fonts, we considered this
PDF”, PDF-Attacker takes an arbitrary PDF as input andfunctionality out-of-scope.

inserts the shadow elements according to the chosen attack _
variant. This phase is the most complex part of the attack. The Conceming the shadow content, we prepared proofs-of-
reason is the complexity and exibility of the PDF standard. concept for each attack variant. We allow variations regarding
The tool should be able to process different PDF versiondliS content. However, more complex changes, including ma-
new features, and interactive elements. The tool should be néiPulations on multiple forms or pages, are not or only partially
the relevant content within complex structures and place th&UPPorted.

attack vector in a usable way. We were able to reduce this

complexity by using multiple libraries that parse the PDF les VII. EVALUATION

for us, and nd the relevant content. The relevant libraries can

) In this section we present the results of our evaluation. The
be summarized as follows:

manipulated PDF documents created during the research were
tested as black box procedures under all viewing applications

Hide: The wand library allows the conversion of an lllisted in Table II.

arbitrary PDF to an image, which can be used as a
overlay. .
Replace The python librariegeportlab and tz provide A Test Environment

interfaces to work with forms and change their values. Three computer systems were used for the simulation of
Some attack variants require low-level access to PDkhe three entitiesattackers signers and victims While the
source code to manipulate the appearance or exchange thgackers' and signers' systems are based on Windows 10,
existing fonts. For such cases, we use piygdf4library \ye divided the victims' systems into Windows 10, macOS
in addition. _ _ ~ Catalina, and Ubuntu 18.04.3 LTS as a Linux distribution.
Hide-and-ReplaceThe preparation of this attack requires Thys, we could test the effects of the manipulations on all
creating a complete shadow document and the correstandard operating systems. As part of a digital ID created
sponding Xref table Only the pypdf4 library provides iy Adobe Acrobat, the signing system is the only system
such a low-level interface allowing us to automate thesgnat contains the private key for digital signing. To sign the
steps. Some of the attack steps, however, are not SUppDE documents, we used the Apache PDFBox library, Adobe
ported by any library. Thus, we directly manipulated the ocrobat Pro 2017, and PDF-Attacker. We created 8 different
PDF. exploits for all attack variants and evaluated the manipulations

The “Sign Shadow PDF” phase. This step prepares the pppnder all viewing programs on the victims' systems.
that will be signed. We decided to simulate the signing process o
in Python, using theendesivelibrary. This decision allows B- Applications
simulating both the preparation and the modi cation phase e included PDF viewing applications that could correctly

easily. Generally, this step could also be executed externall(?rocess signed PDF documents. In total, we found 29 PDF
for example, by using Adobe Acrobat to sign the prepare

PDF. The “making shadow content visible” phase. In this step, Shttps://fontforgeorg/docs/scripting/pythohtml

10

Shadow Attack Category Summary Fixed
Application Version Hide Replace Hide-and-Replac (Dec. 7th, 2020)

Adobe Acrobat Reader DC ~ 2019.021.20061 E
Adobe Acrobat Pro 2017 2017.011.30156 E
Expert PDF 14 14.0.25.3456 64-bit B B B B [o]
Foxit Reader 9.7.0.29455 # E
Foxit PhantomPDF 9.7.0.29478 # E
LibreOf ce Draw 6.4.2.2 # B B B E
Master PDF Editor 5.4.38, 64 bit # o
Nitro Pro 12.16.3.574 g Eo2] B B B o
Nitro Reader 55.9.2 3 B B B B o}
PDF Architect 7 7.0.26.3193 64-bit £ B B B B E
PDF Editor 6 Pro 6.5.0.3929 s [o]
PDFelement 7.4.0.4670 E
PDF-XChange Editor 8.0 (Build 331.0) 2] B B] o
Perfect PDF Reader V14.0.9 (29.0) B B B B o]
Perfect PDF 8 Reader 8.0.3.5 o)
Perfect PDF 10 Premium 10.0.0.1 o)
Power PDF Standard 3.0 (Patch-19154.100) E
Soda PDF Desktop 11.1.09.4184 64-bit # B B B E
Adobe Acrobat Reader DC 2019.021.20061 E
Adobe Acrobat Pro 2017 2017.011.30156 E
Foxit Reader 3.4.0.1012 3 E
Foxit PhantomPDF 3.4.0.1012 8 E
LibreOf ce Draw 6.4.2.2 € # 2] B B E
Master PDF Editor 5.4.38, 64 bit # # # # -
PDF Editor 6 Pro 6.8.1.3450 # # # # -
PDFelement 7.5.7.2895 # # # # -
Master PDF Editor 5.4.38, 64 bit X5 # o
LibreOf ce Draw 6.4.2.2 £ # 2] B B E
Okular 1.9.3 (]
" 29 \ 12 66 16 108 16 106 \ 16 108 \ 155 11o
Application vulnerable. % Vulnerability Timited. # Not vulnerable.
E All reported vulnerabilities are xed. 0 Unxed application.
Table II. EVALUATION RESULTS . OF THE TESTED APPLICATIONS 16 OUT OF 29 APPLICATIONS ARE VULNERABLE TO AT LEAST ONE ATTACK(). IN

10 CASES THE APPLICATIONS SHOW THE SAME WARNING FOR Anallowed chang€E.G. SIGNING THE DOCUMENT AGAIN) AND A prohibited chang€E.G.
CHANGING CONTENT). WE CALL THIS BEHAVIOR limited vulnerability(&).

applications for Windows, macOS, and Linux. Even if theble Il. For 12 PDF viewers, surprisingly, all three attack classes
version numbers do not directly indicate this, the applicationsvere successful. Some applications have limited vulnerabilities
PDF Editor 6 Pro, and PDFelement were released in the late$®). A limited vulnerability means that the application always
available version in January 2020 for macOS and Windows. throws a warning, even if a legitimate modi cation, such as
signing the document a second time (e.g., used for contracts).
As a result, users do not differentiate between legitimate
hanges and malicious ones, such as revealingstizow

a) Excluded Applications:We only considered appli-
cations supporting signature validation. By this means, w
excluded popular Linux PDF applications, such as Evince an
Okulaf. For the same reason, we excluded Sumatra (Win-
dows) as well as Preview and Skim (MacOS). We excluded a) Differences in Operating Systemgvhile we could

outdated applications that are no longer maintained by th@ot nd differences for the Adobe products between Windows
manufacturer, for example, Adobe Reader 9 for Linux. Weand macOS versions, we identi ed signi cant differences in
further excluded online signing services, such as DocuSigBignature validation of Master PDF Editor, PDF Editor 6
and AdobeSign, because they do not provide a visibilitypro, and PDFelement in these operating systems. No tested
layer. These services output a report that denotes whethektack on the three viewing applications was successful. The
the PDF signature is valid or invalid. However, it does notreason for these differences lies in the different validation
prOV|de any information if thehadowcontent is shown or not. messages shown after opening the Signed PDF. On macOS, the
Since libraries do not provide the functionality to view PDF three applications throw a warning stating that the signature
documents, we cannot evaluate the attacks' success. Thus, \einvalid every time an Incremental Update is detected. In
considered libraries out of scope. comparison, on Windows, the viewers show that the signature
is valid and, in some cases, warn that changes have been made.

C. Results . . L A
The different versions of the applications justify another

Overall, 16 out of 29 PDF viewing applications were reason for the divergent results in the operating system's
vulnerable to at least one presented attackds shown in Ta- dependence. For instance, on Windows, the Foxit Reader has
version 9.7, but on macQS, it has version 3.4. This observation
SDue to the chosen Linux distribution, the installed Okular version did notjegds to the assumption that both applications can vary in

support signature validation for the time we provided our evaluation. In th
meantime, this support was added. We found multiple vulnerabilities, whicethe way PDFs are processed. This assumption is con rmed in

we immediately reported as part of the responsible disclosure process. Thi ble |'|- Both applications vary widely regarding the Signature
process is not nished yet. validation, which leads to different results concerning the

11

shadow attacks. Interestingly, under macOS, Foxit's appli- E Fixed applications We veri ed the vendors' xes for 15
cations have the unique feature that the signature status only PDF applications. For PDF Architect, PDFelement and
changes from unknown to valid if macOS's keychain contains Soda PDF, it is necessary to upgrade to the next program
the private key. version: PDF Architect 8, PDFelement 8, Soda PDF 12.

. . Un xed applications The security gaps in six of the
b) Hide: The Hideshadowattack class was successful vulnerable PDF applications have not yet been closed

for 12 PDF viewing applications. For the exploit, the over- (Master PDF in Windows and Linux, Nitro Pro, PDF-

lay image le was re-declared asubtype/xMLIType/Metadata XChange Editor, Perfect PDF Reader). Five applications

with /Subtype /image /Type /XObject when using Incremental (Expert PDF 14, Nitro Reader, PDF Editor 6 Pro, Perfect
Updates. The Adobe Acrobat applications then faded out the ppE g Reader. Perfect PDF 10 Premium) have not been

image le, but at the same time, the applications conrmed & ,nqated in the meantime. Hence, the reported vulnerabil-
valid signature for the PDF document in Ul-Layers 1 and 2. A iti%s are still present in tHese ele;/en caspes.

manually initiated signature check returns the error code 109,

but the signature status remains unaffected. To nd out how the vendors xed the vulnerabilities, we
contacted all 15 vendors and asked for details of their xes.
We used multiple-choice answers (see section A) that we

. . . derived from ourPDF-Detectorimplementation (cf. subsec-
two different attack variantseplace via overlayand replace tion VIII-C) to be able to compare the xes. We received

Exchange as an unauthorized incremental Update, the signatSP01ISeS fom ve vendors. Adobe and PDF Archtect re-
remains valid when exchanging eld text within the form. sSonded: If there exists an Incremental Upda!te after signing,
[?:e compare the parsed document with and without this Incre-

c) Replace:In total, 16 PDF viewing applications were
vulnerable to the Replacghadowattack class. They split into

We observed the exact opposite case with PDF Editor 6 Pr ental Update”. PDF Architect also reported: “If an Incremen-

and PDFelement. While we could successfully manipulate th : v i
fonts, the signature status changed to invalid when the el al Update contains a font that overwrites an existing font, we

content was exchanged. The Foxit Reader showed anothgggégoﬂgn?: ngﬁﬂ? igtnasa'rgﬁgdt;iﬁggg.zcrslgﬁﬂigﬂ.af?grk
behavior worth mentioning. After the update from version P P '

9.5.0.20723 to 9.7.0.29455, Incremental Updates allow th&cPlace and Hide-and-Replace, our solution is to analyze the

exchange of fonts without invalidating the signature. Since‘|ncremental part after the signature, and check whether there is

LibreOf ce Draw ignores the fonts contained in the PDF m%’isanrct)ttgﬁg&aeg bt?]em;?é;drg\tlgmni;r;ﬁvzﬁgpﬁ gigiﬂg\';:gm'
document, the application is immune to this type of attack : ' '

L ; . it will show that there is modi cation”. LibreOf ce always
m\?gﬁjvaetgﬁg;ttése gic;sns;t)llﬁeto exchange the eld text without informs the user about a partially signed document if there

were further Incremental Updates after the signature. Before
d) Hide-and-Replaceln 16 PDF viewing applications, our security report, LibreOf ce marked signed documents as
we could identify Hide-and-Replace vulnerabilities. The twoinvalid only if there were changes in the signed area (“byte
Adobe viewing applications successfully displayed the contentange”). Using theshadowattacks, we could show that the
hidden in the document. In contrast, they displayed the signawhole document can be changed with Incremental Updates and
ture as valid in Ul-Layers 1 and 2. A manually started signaturvithout manipulating the signed area. In a bilateral exchange,
check provides a message about an invalid node within thee were able to convince the LibreOf ce development team
page structure data, but the signature status remains unaffecté@d.mark signed PDF documents as invalid even if the signed
area remains cryptographically untouched and an Incremental

~ €) Responsible Disclosuréiccording to the evaluation ypdate modi es the content. Master PDF and Okular wrote
depicted in Table II, we started the responsible disclosure prahat the vulnerabilities should be closed soon.

cess for 26 vulnerable applications — 16 fully vulnerable and 10) o)
with limited vulnerabilities. We cooperated with CERT-Bund Besides the applications, we also found out that two online
(BSI) for the responsible disclosure and created a dedicate®igning and validation services recognized the impact of the
vulnerability report. The CERT-Bund thankfully contacted all attacks and implemented countermeasures [9, 10].

affected vendors and also related organisations working with

digitally signed PDFs. Some vendors responded quickly and VIll. PDF-DETECTOR

informed us that xes were already implemented (Adobe,)

Foxit, LibreOf ce, Power PDF, Soda PDF). In some cases, the On an abstract leveshadowattacks are executed in two
vendors contacted us for technical queries. In other cases, vweps. First, the attackers preparsfadowdocument, which

got a message con rmation but no feedback regarding patchdydes malicious content. This document is then signed. Second,
(Master PDF, Nitro, PDF Architect, PDF-XChange, Powerthe attackers manipulate the signed document to show the
PDF). In four cases, we could not get any feedback, despitBidden content while keeping the signature stataisd.

multiple contact attempts within more than seven months We develo
. pedPDF-Detector a tool to prevent and de-
(Expert PDF, PDF Editor Pro, Perfect PDF , PDFelement). o0t shadow attacks. PDF-Detector proposes two different

Seven months after our report, we re-evaluated all PDF agaPproaches to mitigate and detsbadowdocuments concern-
plications listed in Table I, using the latest available softwardnd the countermeasures. In subsection VIII-A, we discuss
versiorl. The current status of the xes can be summarized ag countermeasure detectirgpadow documents before they

follows. are signed. Thus, we prevesihadowattacks in the rst step
of their execution. This countermeasure is suitable for every
"Status as of Dec. 7th, 2020 PDF viewer or application capable of signing PDF documents.

12

In subsection VIII-B, we propose an algorithm encounter-image object. In contrast, in the second stepHide-and-
ing shadowdocuments that have already been signed. Thifkeplace attackers deliver a different overall content compared
countermeasure addresses the forensic analysis of signed PBfthe unsigned document. The detection dReplaceattack
documents assuming that previous software did not prevenh the Font variant is less complex. For this purpose, it is
the signing ofshadowdocuments. By combining both coun- sufcient to scan updates after signing for addeghtrile
termeasures, we can prevesfiadowattacks in both phases of objects and to comparing their object number with already
their execution. containedrontFiles

We implemented botipreventionanddetection and tested

our code against all exploit les. See subsection VIII-C for ourC' Implementation Details

results. PDF-Detector uses combination of the Python libraries
PDFMiner and pdfrw. In practice, PDF documents are often
A. Prevention compressed, which further complicates the analysis of the

)))) content, sincepdfrw cannot handle the De ate compression
In this section, we introduce an algorithm capable ofzigorithm used in PDF [12, 13]. For this reason tABF-
detecting hidden content. Thus, users can be warned befof§atectordecompresses the whole PDF document upingiftk

signing.)) o and pdftk if necessary.

To nd hidden (inactive) shadow content, it is necessary) i

to reliably extract text, images, and forms from the PDF__ The command-line tool accepts a PDF document as input.
document for analysis. The attacks of titide category First, it checks if the document alreaqu contains a signature
use overlays of different objects, for example, hiding a text© Select the correct mode. If no signature is found, the
under an image. To detect these overl®BF-Detectormust preventionmode starts and analyzes the document as described
extract the objects' rectangular coordinates within the PDHN subsection VIII-A. If the document has already been signed,
document. It can then use these coordinates (left, bottonthe detectionmode starts and checks the document for any
right, top) to determine an object's exact position within aVisible shadowcontent as described in subsection VIII-B. If
page. An image that overlays a text box can be identi ed by visibleshadowcontent is found, the analysis is additionally
calculating a collision of both objects using the coordinatesStarted inpreventionmode to search for hidden (inactive)
[11]. When creating a PDF document, a slight overlappingshadowcontent.

of images and text boxes is not unusual. For this reason, For assuring that all exploits are correctly detected, we used
the collision calculation should calculate the value of thethe PDF |es generated by OlRDF_Attackerimplementation'
OVerIay in percent. The lower the Value, the less content |a’h|s processing ensures that both pha%\/ention and
covered by the object. For triReplacecategory, grevention getection can be tested. We were able to verify and ne-tune
phase cannot be sensibly implemented. The rst step “injectinghe correct analysis based on these 26 PDF documents, in-
For example, inserting multiple fonts when creating a PDF7 sjgned but inactivehadowdocuments, and 8 actighadow
document is not an unusual malicious behavior. ForHite- gocument. We plan to train the tool with additional documents

and-Replacecategory, this does not apply at all. Here, thetg strengthen the detection rate and minimize the false positive
rst step can be detected, because #fdowdocument path (ate.

is contained in the document. A promising way to recognize

this is to exchange the references to the objects for all |x. sSpapow ATTACK: BEYOND SIGNATURE BYPASSES

Pages Objects. Subsequently, all correctly referenced objects i o

of the newly created PDF document are compared with the The concept of theshadowattack is not limited to the
source document. In an unmanipulated PDF document, onl@ttacks on PDF signatures. Analyzing the PDF speci cation
the positions of the contained pages are swapped. Suppose f#ad Adobe products, we observed exciting features and con-

PDF document contairshadowcontent of the categorilide- ~ guration possibilities.

and-Replaceln that case, the attackers make it visible in the a) High Privileged Actions in PDF:The PDF speci -

second step by referencing it. Thus, it can be identi ed. cation basically de nes two kinds of Code Execution (CE):
PDF actions and JavaScript. Actions are limited in their

B. Detection functionality. A popular example of actions is URL invocation.

In contrast, JavaScript provides a huge function set, including
control structures (e.g., if, while). For security reasons, both

types of CE are restricted in PDF. For example, URL invoca-

tions require user con rmation, and access to other documents
and les is blocked.

While active (hiddenyhadowcontent should be discovered
during thepreventionphase, active (visibleghadowcontent is
in the focus of thedetectionphase. In practice, this means at-
tackers created shadowdocument, which the signers signed.
Afterwards, the attackers made tlsbadowcontent visible.
For detectingHide, Hide-and-Replacand the overlay variant During our research, we determined that both CE variants
of Replaceattack classesPDF-Detector can compare the can run in privileged mode. This mode allows the execution of
current document with the document before it was signed. Thisecurity-critical actions without any restriction or user consent.
comparison can be technically implemented by removing alFor example, privileged JavaScript can change the Ul and
data, that is, all Incremental Updates, after the rst signaturefunctionality of the viewer application's menu items. It can
The discrepancy between the two documents becomes appareead the content of other opened PDF tabs or even les
in the second step of thelide attacks, by the absence of stored on the machine. It can also invoke URLs without any
an object in the signed document, for example, a missingon rmation.

13

Typically, a PDF is not allowed to execute privileged X. RELATED WORK

JavaScript or actions without user con rmation or con gura- . o
tion changes in the PDF viewer. a) PDF Signatures: Attacks on electronic signatures

which abuse the missing cryptographic protection were de-

One exception exists by using digitally signed PDFs, morescribed in 2008 and 2012 by Grigg [15, 14]. In 2010, Raynal
concretecerti ed PDFs. Adobe Products users can con gure €t al. [16] considered potential security issues regarding the
PDFs signed with a speci ¢ certi cate to be given permission Signature veri cation by criticizing the design of the certi cate
to execute high privileged operations. This setting is disabledust establishment. The rst attack that bypassed the cryp-
by default for most precongured CAs and all manually tography in PDFs was introduced in 2017 by Stevens et al.
trusted certi cates. To our surprise, we found an exception ifl17]- The researchers attacked the collision resistance of SHA-
Adobe Productsif the private key for a certi cate is known, 1 and created two different PDF les containing the same
PDF documents signed with this particular certi cate are digest value but different content. In 2019, Mladenov et al. [6]
automatically allowed to execute high privileged code published a comprehensive study regarding the security of PDF

signatures and they discovered three novel attacks and revealed
b) Attack Idea:Inspired by the shadow attacks concept, &ll current applications to be vulnerable. More details regarding
we raised the question whether attackers could isidedow their relation to our work is discussed in subsection V-E.
actions orshadowJavaScript in the PDF so that it is executed

after its signing. b) Content Masking AttacksA polymorphic attack

containing two different les, a PDF and TIFF, have been in-

For this purpose, we create a new attack based on th}éoduced in 2009 by Buccafurri et al. [18] and re-implemented

following simplied attacker model. We assume that the ater by Popescu [19]. Depending on the viewer used, different

signers and the victims are the same entities. Additionallycontem s shown. This risk exists Iif the victims sign the

the attackers do not need to manipulate the PDF doCumert‘itocument and are unaware of the hidden content. A similar ap-

N . : roach was introduced in 2014 by Albertini [20]. He combined
after its signing. When taking note of Figure 3, the only ste ; .
executed %y tghe attackers igs to cre&t@gE and to emged pg PDF and a JPEG into a single polyglot le. In 2015, Lax et al.

the high privileged code inside. Once tR®R is signed, the [21] systematized potential security topics related to digitally

high privileged code is executeditomatically on the signers' s!gned documents mclud_m_g the signature generation process,
machine. signed documents containing dynamic content like macros or

JavaScript, and polymorphic documents similar to Popescu
[19]. All of the attacks rely either on different viewers'
usage to open the malicious PDF or loading dynamic content

1) The attackers generate a PDF containing malicious, higﬂ'om attackers' controlled source. None of these requirements

L re needed for the attacks presented in this paper. In 2017,
E:g/ SIIeL?Seir(]j gcgﬂSi,I Jg; de)szr\?;é%ri;)etaqrr? g Cfosj et?s OST oer:e OF; [())'f/larkwood et al. [7] introduced a novel attack related to content

= Speci eiecuon event hal wil be irggerater 250 1Y LSO TN encadng, As & resut e esenchers
signing the document, for example, during thiélClose yzing P

event, or any other event which is triggered after thed|fferent data than the data displayed.

signing (e.g.willSave didSavg. _ c) PDF Malware: Since 2010, Raynal et al. [16] abuse
2) The PDF is sent to the signers. They sign the documentggitimate features in PDFs to carry out attacks such as Denial-
3) After the. signing, the victims save and glose the PDF. 5f.service (DoS), Server-Side-Request-Forgery (SSRF), and
4) The closing of the document triggers théliClose event jnformation leakage. In 2013 and 2014, multiple vulnerabilities
and the malicious code inside the PDF is executed. iy Adobe Reader were reported to be abusing legitimate PDF
5) Typically, the privileged JavaScript is not executed be<eatyres, JavaScript, and XML [22, 23]. In 2015, Uhf [24]
cause the special permission for this is not grantedsystematized the current risks related to features in PDFs,
However, the application sees that the private key for th§yhich lead to security issues. Valentin [25] published a study
certi cate used to sign the PDF is known. This mistakenly reyealing weaknesses related to malicious URI invocation. In
convinces the application to execute privileged JavaScripbp18, these attack vectors were extended by Franken et al. [26]
— the application assumes that the signer intended tQho revealed weaknesses in two PDF readers by forcing them
execute the script, because they signed it. to call arbitrary URIs. In the same year, multiple vulnerabil-
ities in Adobe Reader and different Microsoft products were

This attack is limited to Adobe products since they de ne giscovered, leading to URI invocation and NTLM credentials
a special policy regarding the CE and handigned PDFs leakage [27, 28].

differently than unsigned.

c¢) Attack Description:The attack works as follows:

Motivated by the discovered attacks since 2010, different

d) Responsible DisclosuréiVhen we initially reported security tools were implemented to detect maliciously crafted

this issue to Adobe, their security team rejected to classify oudocuments [29, 30, 31, 32]. Such tools relied on the detection

ndings as a vulnerability. They assumed that all collaboratorsof known attack patterns and structural analysis of PDFs. The

who are working on the document trust each other. After dist of tools was extended by new malware classi ers based on
short discussion, we convinced them that this is not always thmachine learning [33, 34, 35, 36, 37, 38, 39, 40]. Motivated

case. As a direct result of our nding, Adobe has implementedby previously discovered problems regarding the detection of
security controls in their May 2020 release, which “prevent[sjmalicious PDF les [41, 42], Chen et al. [43] published in 2020
signing until warnings are reviewed”. a methodology for robust classi cation of PDF Malware. The

14

authors achieved 92.27% accuracy and a 0.56% false positive XIl. CONCLUSION

rate. PDF signatures are designed to protect the integrity and

authenticity of PDFs. In contrast to the classical digital sig-

Xl. FUTURE WORK nature use cases that apply a signature only once on a target,

. . . PDF signatures address more complex use cases. A signed
In this section, we discuss several problems that should bgocument is allowed to be updated without invalidating its
addressed by future research. signature, but only in particular cases. Additionally, a PDF

a) Secure and Insecure Document Updaté@ne of can be signed several times in succession. In this paper, we

the main features we abused is Incremental Update. Usingqo.wed how this exibility could be abused to replace the
Incremental Update, previously hidden content could be dis¢ ntire content of the PDF without |r_1val_|dat|ng the signature.
played without raising security warnings. The main problemAS a result, we found 16 of 29 applications to be vulnerable.

is the exibility of the current speci cation allowing multiple The reasons for this state can be found in the current PDF
Incremental Updates without invalidating the signature. How-speci cation: (1) It describes imprecisely how the signature
ever, the developers of the applications are left to themselveglidation may be implemented. (2) It does not document
to address the problem. They differ between dangerous angige cases and does not propose a solution or a guideline.
harmless Incremental Updates on their own. As a resultas a result, developers must solve these problems on their
inconsistencies regarding the signature validation status anslvn. (3) The PDF speci cation should reconsider the feature-
the displayed content exist, depending on which PDF viewefichness which weakens the security. Instead, it should apply
is used. Future research should systematically discover adftricter and more limited handling regarding cryptographic
allowed and forbidden changes to address these inconsisteprotection. As a reaction to our research, we became a member
cies, analyze their impact regarding security, and propose gf the ISO/TC 171/SC 2 technical committee to contribute to
countermeasure if needed. Our attacks only considered ong@iture PDF standards.
time signed documents. The attacker model could be adjusted
to simulate use cases in which multiple signer entities are
involved. In such cases, the attackers can insert content before
the next signature is applied. It is currently unclear what kind The authors would like to thank Sebastian Lauer, Paul
of changes they can apply and which kind of content could bggsler, Marcus Niemietz, andty Schwenk for their valuable
shadowed discussions, feedback, and support. Simon Rohlmann was
__ . . . supported by the German Federal Ministry of Economics and
_ Establishing a systematic evaluation approach is not &g nnology (BMWi) project “Industrie 4.0 Recht-Testbed”
trivial task. For instance, theatalog 0bject can contain up 13140V002C). In addition, this work was supported by the

to 28 attributes. One of these attributes is the reference {8, o Research Foundation (DFG) within the framework of
the /pages Object, which can also have up to 30 attrlbutes,'_£

ACKNOWLEDGMENT

. ; he Excell f the F | h
and it can refer to further objects. Due to the large amoun e Excellence Strategy of the Federal Government and the

) . . tates — EXC 2092 £3a.

of test cases, a tool for (semi-)automatically generating PD
test cases should be implemented. One possible approach to
achieve this is to implement a tool producing a series of test REFERENCES
cases_that (_:ontains many varieti«_as of manipulation_s, foIIowingil] United States Government Printing Of ce, “Electronic
a fuzzing alike approach. The main challenge here is to create & * gjgnatures in global and national commerce act,” 2000.
meanmgful Incremgntal 'Ulpdate vylthou; invalidating the digital [Online]. Available: https://wwwgovinfo.gov/content/
signature by applying trivial manipulations. pkg/PLAW-106publ229/pdf/PLAW-106publ238if

b) Updates and Parsing ErrorsWhile our research [2] E. Union, “Regulation (eu) no 910/2014 of the european
concentrated on PDF standard compliant documents, previous ~Parliament and of the council on electronic identi cation
research focused on Incremental Updates that are not standard 2nd trust services for electronic transactions in the
compliant [6]. A combination of both techniques could reveal internal market and repealing directive 1999/93/ec,
new insights. For example, during the responsible disclosure 2014 [Online]. Available: _rlttps://eu.r-Iee:uropaeu/legal-
period, we could bypass the implemented countermeasure? content/EN/TXT/PDF/2uri=CELEX:32014R0910
several times by just removing (or commenting out) code [3] Wikipedia. (2019) Electronic signatures and law. [On-
fragments within the PDF document. We encourage the de- line]. Available: https://emwikipediaorg/wiki/Electronic

velopment of fuzzing techniques capable of covering a large. . Signaturesand law
numrl;er of documengtJ variant(l. P g g [4] Adobe. (2018, Nov.) Adobe fast facts. [On-

line]. Available: https://wwwadobecom/about-adobe/
A recently published research article by Kuchta et al. [44] fast-factshtml

revealed new insights into this problem. The authors analyzed[5] DocuSign. (2019) Docusign 2019 annual report.
230 000 real-word PDF documents provided by Gar nkel et al. [Online]. Available: https://s2214cdncom/408980645/
[45] and discovered that 13.5% of the PDFs were improperly les/doc_ nancials/2019/Annual/DocuSign-FY2019-
rendered. The authors concentrated only on inconsistencies Annual-Reporipdf
during rendering without evaluating the security implications. [6] V. Mladenov, C. Mainka, K. Meyer zu Selhausen,
The second study could be provided by extending the scope M. Grothe, and J. Schwenk, “1 trillion dollar refund —
to security and considering more real-world examples than how to spoof pdf signatures,” iMCM Conference on
mentioned by Gar nkel et al. [45]. Computer and Communications Securijov. 2019.

15

	Introduction
	Basics
	Attacker Model
	Shadow Attacks: Overview and Preliminaries
	Shadow Documents in the Real World
	Analysis of Document Modifications
	Summary

	Shadow Attacks: Hide, Replace, and Hide-and-Replace
	Shadow Attack: Hide
	Variant 1: Hide Content via Referenced Object
	Variant 2: Hide Content via Object's Order

	Shadow Attack: Replace
	Variant 1: Replace via Overlay
	Variant 2: Replace via Overwrite

	Shadow Attack: Hide-and-Replace
	Variant 1: Change Object References
	Variant 2: Change Objects Usage

	Stealthiness of Shadow Attacks
	Shadow Attack vs. Incremental Saving Attack

	PDF-Attacker
	Evaluation
	Test Environment
	Applications
	Results

	PDF-Detector
	Prevention
	Detection
	Implementation Details

	Shadow Attack: Beyond Signature Bypasses
	Related Work
	Future Work
	Conclusion
	Appendix

