Secure Software Delivery and Installation in Embedded Systems

André Adelsbach, Ulrich Huber, Ahmad-Reza Sadeghi
Horst-Görtz-Institute, Bochum, Germany

ISPEC 2005 Presentation
Singapore, April 13, 2005
HW* and SW* will become separate products within an embedded system, thus providing an additional revenue source to SW providers

CHANGES IN THE ROLE OF SW IN AN EMBEDDED SYSTEM

<table>
<thead>
<tr>
<th>Current situation</th>
<th>Expected future situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HW* and SW* as one product from same supplier</td>
<td>• HW and SW as separate products, potentially from different suppliers</td>
</tr>
<tr>
<td>• SW updates mainly necessary for warranty-based replacement of defective SW</td>
<td>• In addition, SW updates attractive due to new and/or enhanced functionality</td>
</tr>
<tr>
<td>• No revenues for SW provider due to warranty obligations</td>
<td>• Additional revenue source for SW provider due to value-added and customers’ willingness to pay</td>
</tr>
</tbody>
</table>

* HW: hardware, SW: software

There are four major difficulties when a provider installs a SW update in a vehicle

DIFFICULTIES WITH SW UPDATES IN A VEHICLE

- Service provider needs specific equipment, e.g., diagnostic tester, and skills.
- Service providers have different skill sets.
- Compatibility among SW components is not self-evident due to number of ECUs.
- High economic value of vehicle and failure consequences induce tough requirements.

The system model contains five different roles which correspond with current players in the automotive industry

ROLES IN THE SYSTEM MODEL AND THEIR COUNTERPARTS IN THE AUTOMOTIVE INDUSTRY

Overall Equipment Manufacturer (OEM)
- Develops and assembles the user platform in cooperation with his suppliers
- Automotive counterpart: car manufacturers such as Daimler Chrysler, GM, Toyota, etc.

Software Application Programmer (SAP)
- Develops and distributes SW components for the user platform in the form of updates and/or upgrades
- Automotive counterpart: suppliers such as Bosch, Delphi, Denso, Siemens, Visteon, etc.

Installation Service Provider (ISP)
- Maintains the user platform via HW repair/replacement and SW installation with specific equipment
- Automotive counterpart: car dealers, garages, road service teams, etc.

User platform (UP)
- Is an embedded system which consists of several components whose SW can be updated
- Automotive counterpart: car

License Provider (LP)
- Generates licenses for SW from OEM and SAPs, distributes them to user platforms via ISPs
- Automotive counterpart: not existing or assumed by OEMs and SAPs

Additional role: Trusted Third Party (TTP)

* Overall Equipment Manufacturer

There are many scenarios which lead to damage to an innocent party, four of which we detail.

FOUR EXEMPLARY SCENARIOS LEADING TO DAMAGE TO INNOCENT PARTIES

<table>
<thead>
<tr>
<th>Example</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW is not authentic
• An honest garage installs a supposedly correct SW component for the ABS
• The adversary has replaced the SW component with a defective one
• The car fails, leading to an accident</td>
</tr>
<tr>
<td>2</td>
<td>ISP is not qualified*
• An unqualified garage installs SW for the airbags
• Due to wrong parameterization, the airbags do not trigger off properly
• The victim sues the OEM*</td>
</tr>
<tr>
<td>3</td>
<td>Innocent ISP is accused
• A SW component has a known error which might lead to a short circuit and set fire
• A malicious car owner burns his car and accuses his innocent garage of having installed the SW component</td>
</tr>
<tr>
<td>4</td>
<td>SAP is discriminated*
• An honest SAP develops a SW component
• The OEM has a SW component with identical functionality, but higher price
• The OEM configures each car such that only his SW can be installed</td>
</tr>
</tbody>
</table>

* ISP: Installation Service Provider, OEM: Overall Equipment Manufacturer, SAP: Software Application Programmer

Each role in the system model has specific requirements regarding any software installation.

REQUIREMENTS OF ALL ROLES IN THE SYSTEM MODEL

OEM
- Correctness
- Rights enforcement
- Compatibility enforcement
- ISP clearance enforcement
- Confidentiality
- Integrity

Software Application Programmer (SAP)
- All OEM requirements
- Non-discrimination

User
- Correctness
- Non-repudiation
- Unique installation origin
- Authenticity

Installation Service Provider (ISP)
- Correctness
- Non-repudiation
- Clearance enforcement
- Non-discrimination
- Frame-proofness

License Provider (LP)
- Non-repudiation

Three basic protocols are a prerequisite of any SW installation

SYSTEM SETUP – THREE BASIC PROTOCOLS PRECEDING ANY SW INSTALLATION

1. Assignment of clearance levels to ISPs
 - **ISP**
 - ClearReq
 - **TTP**
 - ClearIss
 - \(\xi_{\text{clear}} \)

2. Certification of SW components
 - **OEM/SAP**
 - SWSub
 - **TTP**
 - SWIss
 - \(\xi_{\text{sw}}, \sigma_{\text{integer}} \)
 - \(s_{\text{enc}} = \text{Enc}_{\text{PKBE}}(s), \sigma_{\text{comm}} = \text{PropComm}() \)

3. Distribution of SW licenses
 - **ISP**
 - LicReq
 - **LP**
 - LicIss
 - \(\gamma_{\text{lic}} \)
 - \(\xi_{\text{lic}} \)

Distribution of SW over broadcast channel

Based on asymmetric cryptography

Message flow

- **Party X participates in protocol**

* ISP: Installation Service Provider, TTP: Trusted Third Party, SAP: Software Application Programmer, LP: License Provider

In the SD scheme, each receiver obtains the keys just off his key path within each subtree

BROADCAST ENCRYPTION: KEYS OF AN EXEMPLARY USER IN THE SUBSET DIFFERENCE SCHEME

Tree of level 0 (root) Subtrees of level i

<table>
<thead>
<tr>
<th>$i = 0$</th>
<th>$i = 1$</th>
<th>$i = 2$</th>
<th>$i = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_5</td>
<td>U_5</td>
<td>U_5</td>
<td>U_5</td>
</tr>
</tbody>
</table>

Example with $n = 16$ users and tree height $\log_2 n = 4$

| No. of stored keys | 4 | 3 | 2 | 1 | Σ 10 |

Source: The LSD Broadcast Encryption Scheme, CRYPTO 2002, LNCS 2442, pp. 47 - 60
Compared to SD*, the basic LSD** scheme significantly reduces the storage requirements of the users by slightly increasing the message header length.

COMPARISON OF SD* AND BASIC LSD** PERFORMANCE PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>SD</th>
<th>Basic LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>User storage</td>
<td>$O(\log^2 n)$</td>
<td>$O(\log^{3/2} n)$</td>
</tr>
<tr>
<td>Example</td>
<td>406 keys for 2^{28} users</td>
<td>146 keys for 2^{28} users</td>
</tr>
<tr>
<td>Message header</td>
<td>$O(r)$</td>
<td>$O(2 \cdot r) = O(r)$</td>
</tr>
<tr>
<td>User computation</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

* Subset difference
** Layered subset difference, not lysergic acid diethylamide

Source: The LSD Broadcast Encryption Scheme, CRYPTO 2002, LNCS 2442, pp. 47 - 60
A SW installation consists of four basic steps

FOUR STEPS OF A SW INSTALLATION

1. SW request: \(\text{SWReq}(k, m, \bar{r}_n) \)
 - \(\text{UP}^* \)

2. SW delivery: \(\text{SWDel}(\sigma^{\text{enc}}, \gamma^{\text{lic}}) \)
 - \(\text{ISP}^* \)

3. Installation confirmation: \(\text{ExtInstConf}(\gamma^{\text{lic}}, \text{ind}) \)
 - \(\sigma^{\text{inst}} \)

4. Acknowledgment of confirmation: \(\text{ConfAck}(\sigma^{\text{conf}}) \)
 - \(\sigma^{\text{ack}} \)

* UP: User Platform, ISP: Installation Service Provider
** In order to execute \(\text{SWDel}() \), the ISP must have executed \(\text{LicReq}() \) and received \(\gamma^{\text{lic}} \)

In each step of a SW installation, the party in charge verifies several necessary conditions

NECESSARY CONDITIONS FOR EACH SW INSTALLATION STEP (1/2)

① Conditions for a user platform to issue a SW request
- User platform and SW are compatible
- ISP* has sufficient clearance level
- All certificates match
- SW certificate ξ^SW is authentic, i.e., generated by the TTP*
- Property commitment σ^comm is authentic, i.e., generated by the SW provider
- Clearance level certificate is authentic, i.e., generated by the TTP

② Conditions for an ISP to deliver a SW installation package
- SW request is authentic, i.e., generated by the user platform
- The set of requested rights is a subset of the allowed usage rights of the SW, i.e., does not violate the terms and conditions
- License provider issues a valid license
- ISP possesses the requested SW
- User platform has a valid ID

Main criteria
- Compatibility, clearance enforcement, and authenticity
- Authenticity, rights enforcement, and soundness

* ISP: Installation Service Provider, TTP: Trusted Third Party
In each step of a SW installation, the party in charge verifies several necessary conditions

NECESSARY CONDITIONS FOR EACH SW INSTALLATION STEP (2/2)

1. **Conditions for a user platform to deliver an installation confirmation**
 - SW installation package is authentic, i.e., generated by the ISP*
 - License is authentic, i.e., generated by the LP, and grants the requested rights
 - SW is integer, i.e., identical to the SW which the TTP certified
 - Decryption of SW succeeds
 - Internal installation in target component succeeds (details follow)

2. **Conditions for an ISP to deliver an acknowledgment**
 - Installation confirmation is authentic, i.e., generated by the user platform
 - Installation result was "success"

* Installation Service Provider

The user platform has an internal structure consisting of three elements: a trusted component, regular components and an internal communication network.

INTERNAL STRUCTURE OF THE USER PLATFORM

- **u_0**: trusted component based on trusted computing HW
- **u_i**: regular low cost component

Internally, a SW installation within a user platform consists of three basic steps.

THREE INTERNAL STEPS OF A SW INSTALLATION WITHIN A USER PLATFORM

1. **Installation instruction:**
 - **Instlnstr\((i,m,\hat{\rho}^n)\)**
 - **SW installation succeeded internally**

2. **Installation confirmation:**
 - **IntInstConf\((m)\)**
 - Based on symmetric cryptography

3. **Usage instruction:**
 - **UseInstr\((i,m,\hat{\rho}^n)\)**

\(u_0\): Trusted component
\(u_i\): Target component
\(1 \leq i \leq n\)
The paper makes two major contributions

CONCLUSION: TWO MAJOR CONTRIBUTIONS OF THE PAPER

Requirements model for SW installation in embedded systems
- Major roles included in requirements model
- Compatibility of SW components and skill set of ISPs considered
- Basic license and DRM scheme

Secure installation protocol meeting the requirements
- Public Key Broadcast Encryption (PKBE) for achieving non-discrimination
- Trusted Computing for achieving trust in user platform with little additional hardware

Open Problem
Reduced need for TTP in setup phase by aggregating the PKBE key material bottom-up