Secure Software Delivery and Installation in Embedded Systems

André Adelsbach, Ulrich Huber, Ahmad-Reza Sadeghi Horst-Görtz-Institute, Bochum, Germany

ISPEC 2005 Presentation Singapore, April 13, 2005

HW* and SW* will become separate products within an embedded system, thus providing an additional revenue source to SW providers

CHANGES IN THE ROLE OF SW IN AN EMBEDDED SYSTEM

Current situation

- HW* and SW* as one product from same supplier
- SW updates mainly necessary for warrantybased replacement of defective SW
- No revenues for SW provider due to warranty obligations

Expected future situation

- HW and SW as separate products, potentially from different suppliers
- In addition, SW updates attractive due to new and/or enhanced functionality
- Additional revenue source for SW provider due to valueadded and customers' willingness to pay

^{*} HW: hardware, SW: software

There are four major difficulties when a provider installs a SW update in a vehicle

DIFFICULTIES WITH SW UPDATES IN A VEHICLE

The system model contains five different roles which correspond with current players in the automotive industry

ROLES IN THE SYSTEM MODEL AND THEIR COUNTERPARTS IN THE AUTOMOTIVE INDUSTRY

^{*} Overall Equipment Manufacturer

There are many scenarios which lead to damage to an innocent party, four of which we detail

FOUR EXEMPLARY SCENARIOS LEADING TO DAMAGE TO INNOCENT PARTIES

EXAMPLES

1

SW is not authentic

- An honest garage installs a supposedly correct SW component for the ABS
- The adversary has replaced the SW component with a defective one
- The car fails, leading to an accident

2

ISP* is not qualified

- An unqualified garage installs SW for the airbags
- Due to wrong parameterization, the airbags do not trigger off properly
- The victim sues the OEM*

3

Innocent ISP is accused

- A SW component has a known error which might lead to a short circuit and set fire
- A malicious car owner burns his car and accuses his innocent garage of having installed the SW component

SAP* is discriminated

- An honest SAP develops a SW component
- The OEM has a SW component with identical functionality, but higher price
- The OEM configures each car such that only his SW can be installed

^{*} ISP: Installation Service Provider, OEM: Overall Equipment Manufacturer, SAP: Software Application Programmer

Each role in the system model has specific requirements regarding any software installation

REQUIREMENTS OF ALL ROLES IN THE SYSTEM MODEL

Three basic protocols are a prerequisite of any SW installation

^{*} ISP: Installation Service Provider, TTP: Trusted Third Party, SAP: Software Application Programmer, LP: License Provider

In the SD scheme, each receiver obtains the keys just off his key path within each subtree

BROADCAST ENCRYPTION: KEYS OF AN EXEMPLARY USER IN THE SUBSET DIFFERENCE SCHEME

Exemplary user U₅

 \bigcirc Key, stored by $\mathrm{U_5}$

Source: The LSD Broadcast Encryption Scheme, CRYPTO 2002, LNCS 2442, pp. 47 - 60

Compared to SD*, the basic LSD** scheme significantly reduces the storage requirements of the users by slightly increasing the message header length

COMPARISON OF SD* AND BASIC LSD** PERFORMANCE PARAMETERS

Main difference

n Number of users

r Number of revoked users

SD

 User storage : $O(\log^2 n)$

- Example : 406 keys for

2²⁸ users

• Message header : O(r)

• User computation: $O(\log n)$

Basic LSD

• User storage : $O(\log^{3/2} n)$

- Example : 146 keys for

2²⁸ users

• Message header : $O(2 \cdot r) = O(r)$

• User computation: $O(\log n)$

^{*} Subset difference

^{**} Layered subset difference, not lysergic acid diethylamide

A SW installation consists of four basic steps

FOUR STEPS OF A SW INSTALLATION

^{*} UP: User Platform, ISP: Installation Service Provider

^{**} In order to execute SWDel(), the ISP must have executed LicReq() and received ylic

In each step of a SW installation, the party in charge verifies several necessary conditions

NECESSARY CONDITIONS FOR EACH SW INSTALLATION STEP (1/2)

- (1) Conditions for a user platform to issue a SW request
 - User platform and SW are compatible
 - ISP* has sufficient clearance level
 - All certificates match
 - SW certificate ξ^{SW} is authentic, i.e., generated by the TTP*
 - Property commitment σ^{comm} is authentic, i.e., generated by the SW provider
 - Clearance level certificate is authentic, i.e., generated by the TTP

Main criteria

Compatibility, clearance enforcement, and authenticity

- 2 Conditions for an ISP to deliver a SW installation package
 - SW request is authentic, i.e., generated by the user platform
 - The set of requested rights is a subset of the allowed usage rights of the SW, i.e., does not violate the terms and conditions
 - License provider issues a valid license
 - ISP possesses the requested SW
 - User platform has a valid ID

Authenticity, rights enforcement, and soundness

^{*} ISP: Installation Service Provider, TTP: Trusted Third Party

In each step of a SW installation, the party in charge verifies several necessary conditions

NECESSARY CONDITIONS FOR EACH SW INSTALLATION STEP (2/2)

- (3) Conditions for a user platform to deliver an installation confirmation
 - SW installation package is authentic, i.e., generated by the ISP*
 - License is authentic, i.e., generated by the LP, and grants the requested rights
 - SW is integer, i.e., identical to the SW which the TTP certified
 - Decryption of SW succeeds
 - Internal installation in target component succeeds (details follow)

Main criteria

Authenticity, integrity and soundness

- 4 Conditions for an ISP to deliver an acknowledgment
 - Installation confirmation is authentic, i.e., generated by the user platform
 - Installation result was "success"

Authenticity and soundness

^{*} Installation Service Provider

The user platform has an internal structure consisting of three elements: a trusted component, regular components and an internal communication network

INTERNAL STRUCTURE OF THE USER PLATFORM

Internally, a SW installation within a user platform consists of three basic steps

THREE INTERNAL STEPS OF A SW INSTALLATION WITHIN A USER PLATFORM

- u_0 . Trusted component
- u_i : Target component $1 \le i \le n$

The paper makes two major contributions

CONCLUSION: TWO MAJOR CONTRIBUTIONS OF THE PAPER

Requirements model for SW installation in embedded systems

- Major roles included in requirements model
- Compatibility of SW components and skill set of ISPs considered
- Basic license and DRM scheme

Secure installation protocol meeting the requirements

- Public Key Broadcast Encryption (PKBE) for achieving non-discrimination
- Trusted Computing for achieving trust in user platform with little additional hardware
- Security analysis in Technical Report

Open Problem

Reduced need for TTP in setup phase by aggregating the PKBE key material bottom-up