
Embedding Trust into Cars—Secure Software

Delivery and Installation

André Adelsbach Ulrich Huber

Andre.Adelsbach@nds.rub.de huber@crypto.rub.de

Ahmad-Reza Sadeghi Christian Stüble

sadeghi@crypto.rub.de stueble@acm.org

Horst Görtz Institute for IT Security

Ruhr-Universität Bochum

Universitätsstraße 150

44780 Bochum, Germany

October 17, 2005

Abstract

Increasingly, software (SW) in vehicles can be updated due to the rising share of flashable
electronic control units (ECUs). However, current SW installation procedures are insecure:
An adversary can install SW in a given ECU without any sender authentication or compatibil-
ity assessment. In addition, SW is installed on an all-or-nothing basis: With the installation,
the vehicle owner acquires full access rights to any functionality. Concepts for solving indi-
vidual deficiencies of current installation procedures have been proposed, and the adoption of
a complete solution considering all requirements is to be expected in the medium term.

In this article we summarize an existing protocol for secure SW delivery and installation
in vehicles. This protocol respects the complex trust relations in the automotive industry and
illustrates typically involved parties. However, we merely use it as an example for an arbitrary
SW delivery protocol. Assuming SW delivery has already occurred, we give three exemplary
design options for the vehicle’s internal security architecture. Based on these options, an
arbitrary installation protocol can be implemented. Specifically, we propose to use Trusted
Computing technology in order to embed a trusted party into each vehicle. This party is
implemented as a light-weight security ECU combining trusted hardware (HW) and SW. It
assumes all security-relevant tasks related to SW delivery and thereby eases the workload
of regular ECUs, which can rely on weaker security assumptions. Finally, we outline the
management of flexible access rights to individual functionalities of the installed SW, thus
enabling new business models.

1 Introduction

Control unit hardware (HW) and software (SW) in vehicles used to be tied together as a single
product and rarely changed once the vehicle had been delivered to its owner. Nowadays, HW
and SW in an ECU have become separate products. SW can be updated or upgraded during the
vehicle’s whole life-cycle and add customer value due to the ubiquitous use of flashable1 ECUs.
Examples are an optimization of the fuel injection parameters to increase engine performance or
reduce emission levels, an upgrade of the navigation system and an update of the navigation data.

1A flashable ECU is a microcontroller capable of reprogramming its memory for application programs and data
based on so-called flash memory technology [9].

1



Current procedures for installing SW in automotive ECUs are insecure; details about the de-
ficiencies will be given in Section 2. Historically, these deficiencies didn’t matter because SW
installation was focused on warranty-based replacement of defective SW. The vehicle owner was
informed of a recall and received the SW updates free of charge, e.g., when safety-relevant sub-
systems like airbags or the Electronic Stability Program (ESP) contained SW bugs. Recently,
a paradigm shift has taken place: SW providers can distribute value-added SW components to
interested owners and extract revenues even after delivery, e.g., annual fees for updated navigation
data.

The secure delivery of SW to vehicles and the management of the corresponding digital rights
differ from any existing DRM system known to the authors. First, the distribution currently
necessitates a skilled intermediary between SW provider and user because the installation process
requires specific skills and equipment. The SW update is carried out via a manufacturer-specific
diagnostic tester that is only intended for maintenance service providers, e.g., dealers, garages and
road service teams.2 Second, different classes of such intermediaries exist: Depending on their
skills and equipment, maintenance service providers usually have different installation rights. For
example, an uncertified garage should not be granted the right to install SW for safety-relevant
ECUs such as the airbag ECU. Third, compatibility is a major issue in the automotive industry.
An SW component may be incompatible with the intended ECU or the SW components running
in other ECUs of the vehicle [3, 19, 22, 17, 26]. The reasons for this incompatibility include the
high number of ECUs—approximately 40 in an average compact-class vehicle—and the number
of different car models, each with a continuously evolving ECU configuration. Last, new business
models for automotive SW will induce new requirements. Due to the high value of the vehicle and
the potential consequences of an accident, non-repudiation may become an important requirement.
For example, if an honest car owner has an accident due to defective SW, his dealer and the SW
provider may not be able to deny the installation of this SW.

We outline an existing protocol for secure SW delivery and installation in vehicles. This
protocol is general and can be used for any embedded system. We will omit its details that can
be found in [1, 2]. The protocol respects the complex trust relations in the automotive industry
and illustrates typically involved parties. While it merely serves as an example for an arbitrary
delivery and installation protocol, it motivates our assumption that such protocols need to fulfill
security requirements and will become relevant for the automotive industry.

For the main contribution of this paper, we will assume that an SW component has already been
securely delivered to the vehicle. Based on this assumption, we will give exemplary design options
for a security architecture within the vehicle. We explain three such options that enable secure
installation of SW components as well as a basic mechanism for enforcement of the SW providers’
terms and conditions. The options visualize the inherent trade-offs between trust assumptions and
flexibility of the implementation. The architectures’ components aren’t idealized black boxes, but
can be implemented with existing technology under realistic assumptions.

We note that it is often assumed that cryptography alone can ensure security requirements
such as confidentiality or authenticity. However, all cryptographic schemes rely on a strong as-
sumption. The HW and SW in which these schemes are executed are assumed to be secure, e.g.,
tamper-resistant. Specifically, it is assumed that the keys used in cryptographic schemes cannot
be extracted from the CPU or the memory in which they are processed. In addition, the SW com-
ponent implementing a cryptographic scheme is assumed to be immune to attacks by malicious
SW components running in parallel.

These assumption are unrealistic due to a variety of known HW and SW attacks; we will
therefore tailor our design options to the prevention of such attacks while avoiding a cumbersome
security architecture. Only a small part of the vehicle’s HW and SW needs to be fully trusted,
while other parts can be implemented with significantly lower trust assumptions. This has strong
implications on the vehicle’s costs: With lower trust assumptions, the HW components become
less expensive.

2Although diagnostic testers are reported to have been cloned or stolen in some cases, the vast majority of SW
updates is still carried out by maintenance service providers.

2



The design options use Trusted Computing technology in order to embed a small trusted party
into each vehicle. This party is implemented as an ECU combining trusted HW and SW. It
assumes all security-relevant tasks in the SW delivery phase, e.g., decryption or authentication,
and thereby eases the workload of regular ECUs in the SW installation phase.

Section 2 summarizes related work and illustrates deficiencies of current SW installation proto-
cols. Our overall system model is explained in Section 3, while a possible solution is highlighted in
Section 4. In Section 5, we give our design options for the vehicle’s internal security architecture
and conclude in Section 6.

2 Related Work

A typical procedure for installing SW in an automotive ECU is described in [9]. It is performed
by a so-called flashloader, a standard SW environment that allows for in-system re-programming
of ECUs. After initialization of the installation mode, the flashloader erases the programmable
memory of the ECU. Then it writes the new SW into the programmable memory. Finally, the
procedure ends with the deinitialization of the installation mode.

Current installation procedures rarely apply any cryptographic techniques [9, 10, 19]. The
use of signatures has been proposed, but not yet implemented [16, 19, 20]. However, the only
signature mentioned in the proposals is that of the manufacturer.3 If the manufacturer must sign
every SW component prior to installation, he is capable of discriminating individual SW providers
by refusing to sign their SW components.

We illustrate several other deficiencies with some examples. First, the intellectual property con-
tained in the SW is not protected. As the SW is available in unencrypted form, reverse-engineering
attacks may be possible. Second, the installation rights of the maintenance service providers are
not verified in the course of an installation. Hence anyone with the necessary equipment—including
an adversary—can install any (potentially malicious) SW component. Third, the owner cannot
prove that he has legally acquired an SW component that has been installed in his vehicle. Even
if the manufacturer applies a signature, the owner can still be accused of having acquired the
SW illegally, e.g., without payment of license fees. Fourth, compatibility is not checked during
installation. Even if signatures are used, they only prove the source of the SW, not compatibility.
SW might be erroneously accepted by an incompatible vehicle due to the manufacturer’s signa-
ture. Last, no rights management is currently applied. Techniques such as expiry dates or usage
counters are not yet implemented, which prevents the introduction of more flexible business mod-
els. For example, those techniques would allow to sell additional horsepower or country-specific
navigation data for a limited time frame or number of usages.

A framework for international automotive SW installation standards is introduced in [10].
However, it doesn’t consider any DRM or security aspects. An infrastructure for installing SW
from any external interface is proposed in [16]. Compatibility is ensured by checking if the hash
values of all involved SW components form an SW release. An SW release is defined as an SW
configuration which has been released by the vehicle manufacturer, while an SW configuration is
defined as a valid and operational set of SW components and corresponding coding parameters
which can be programmed in the ECUs of a vehicle. However, [16] doesn’t consider any further
security aspects. Requirements such as confidentiality, integrity, non-rejection and authenticity
are mentioned, but not considered in the proposed architecture and left open to the specific
implementation of each vehicle manufacturer. Several other research papers introduce the concept
of distributing SW to vehicles in the field [6, 28], but even if security requirements are mentioned,
no specific proposal to fulfill them is mentioned.

A proposal for “end-to-end security” of SW installation in vehicles is made in [20]. However,
the signing of the SW component by “an authorized party” is the only protective measure, which
provides only a partial solution to the requirements that we will introduce in Section 3.3. For

3The proposals generally do not specify whether they refer to the manufacturer of the vehicle or that of the
relevant ECU.

3



example, it does not prevent discrimination of independent SW providers as the vehicle manufac-
turer is assumed to take over the role of the authorized party. Another proposal for secure SW
installation is made in [19]: It contains an authentication phase, in which the diagnostic tester
is authenticated, as well as an installation routine, which verifies checksums or signatures of the
SW provider. Again, only some of the requirements are fulfilled. For example, signatures on the
receiving end are omitted. Therefore the proposal does not prevent repudiation of a successful
installation by the vehicle owner.

3 Model

3.1 Roles

The following roles (see also Fig. 1) will be used throughout the remainder of this article: The
Overall Equipment Manufacturer (OEM) O develops, assembles and delivers the vehicles. O
cooperates with suppliers that develop and/or manufacture vehicle components. The initial SW
components at production time may be either from O or from O ’s suppliers. Examples are car
manufacturers such as Daimler Chrysler, Ford, GM or Toyota.

An SW Application Programmer (SAP) S develops SW components for the vehicle. S may
either be (i) a supplier that participates in developing and/or assembling the vehicle or (ii) an
independent application programmer that develops and distributes SW components. Automotive
examples are suppliers such as Bosch, Delphi, Denso, Siemens and Visteon. Henceforth, we use
the term SW provider as a synonym for “OEM or any SAP”.

A Maintenance Service Provider (MSP) M maintains the vehicle, i.e., mechanical parts, ECU
HW and SW. As part of the maintenance service, M installs updates and/or upgrades of SW com-
ponents. M has the equipment and capabilities that are necessary for the installation procedure.
Automotive examples are car dealers, garages and road service teams. Each M has individual
installation rights, which may be modeled as clearance levels [1, 2].

The License Provider (LP) L distributes licenses for SW components that the SW providers
O and S have developed. Prior to license distribution, L establishes terms and conditions with
the SW provider, detailing the model for sharing license revenues. To the authors’ knowledge,
automotive examples don’t exist yet, but might be established as spin-offs of OEMs and/or SAPs.

The vehicle V is purchased by the vehicle owner. The owner is interested in SW for V and
willing to pay for it in case of a perceivable value-added. We define V ’s configuration as the
collective information on each SW (and implicitly HW) component that is installed in V .

The Trusted Third Party (TTP) T has two different certification tasks: First, T creates SW
certificates for O and S . These certificates confirm the properties of each newly developed SW
component. By SW properties we mean characteristic features such as functionality, inter-
faces, supported protocols, memory requirements and necessary environment. Second, T creates
installation right certificates which certify M ’s right to install specific SW components. In the
automotive example, this role is currently taken over by O . This implies a trust model in which
S must trust O . However, an independent T becomes necessary if O is not fully trusted and
discrimination should be avoided. T might evolve out of safety standards authorities such as the
NHTSA4 in the USA or the TÜV and Euro NCAP5 in Europe.

3.2 Assumptions

3.2.1 Trust Relations

All honest parties are assumed to keep their secrets private, e.g., their cryptographic keys. There
are no specific trust assumptions for O , S and M . All SW providers trust L to adhere to their
terms and conditions. Finally, all parties trusts T . For example, this includes correct certification
of SW properties and clearance levels.

4National Highway Traffic Safety Administration, http://www.nhtsa.dot.gov/
5URLS: http://www.tuev-sued.de/ and http://www.euroncap.com/

4



3.2.2 Internal Architecture of the Vehicle

We assume each vehicle to have the internal architecture that is shown on the right-hand side
of Fig. 1. There are several components v1, . . . , vn that represent the multitude of ECUs in a
vehicle. The components are interconnected via an internal communication network, representing
a vehicle’s data busses such as CAN, LIN and MOST. In addition, there is one extra component v0

that handles the SW delivery protocol between M and V . v0 may either represent an additional
ECU or an existing ECU integrating the functionality of v0 and existing SW components.

3.2.3 Communication channels

We assume the existence of the communication channels represented by arrows in Fig. 1. All
of them are assumed to be integer, i.e., free of bit errors. In addition, all but two channels
are assumed to be secure, i.e., authentic and confidential. The first exception is the one-way
broadcast channel between O and M , which is neither authentic nor confidential. However, it
is non-discriminatory: (i) all SW providers can send over the channel and (ii) the channel
has global reach, i.e., each M can receive. The second exception is V ’s internal communication
network. Due to cost constraints on V ’s components, it is only assumed to be integer and reliable.
By reliable we mean that each message sent reaches its recipient after a limited amount of time.
Finally, the channels between L and M as well as between M and V are assumed to be reliable.

3.3 Security Requirements

The solution proposed in [1, 2] fulfills a variety of security requirements. A detailed description
of these requirements is beyond the scope of this paper. However, we summarize them to moti-
vate the need for TC technologies within the vehicle. We will group the requirements into two
categories: (i) straight-forward requirements, which are state-of-the-art for current or planned in-
stallation procedures of the automotive industry and (ii) new requirements, that—to the authors’
knowledge—haven’t been considered yet.

The straightforward requirements include correctness, i.e., the guarantee of a successful in-
stallation in case of an execution of the installation protocol according to specification, confiden-

tiality, i.e., protection of the SW from potential eavesdroppers, integrity, i.e., non-modification
of the SW during delivery and installation, and authenticity, i.e., an unambiguous source of the
non-modified SW. In addition, rights enforcement ensures that the SW providers’ terms and
conditions cannot be circumvented. Compatibility enforcement avoids failure of the vehicle
or its components due to incompatibility of individual components. Finally, clearance enforce-

ment ensures that only a qualified MSP is allowed to install SW, especially for safety-relevant
subsystems such as the airbags or the ESP.
New requirements are non-repudiation, frame-proofness and non-discrimination. Non-repudiation

and frame-proofness ensure that M and V can prove the result of the installation to any honest
party. Neither of them can claim that the installation failed when it succeeded and vice versa.
Non-discrimination prevents unjustified exclusion of individual SAPs and MSPs and therefore
ensures competition. As long as an SAP S proves to the TTP that his SW is correct, e.g., suc-
cessfully tested and compatible, S may distribute this SW and compete with other SAPs. The
same holds for MSPs that have the necessary qualification.6

We stress that even the straightforward requirements such as confidentiality and authenticity
make it practically unavoidable to use cryptographic schemes in an arbitrary SW delivery and
installation protocol. Therefore, our proposed use of TC technology and the embedding of a
trusted party into each vehicle is beneficial not only to the installation procedure of [1, 2], but to
any installation procedure that fulfills the straightforward requirements.

6Non-discrimination is even embodied in law in many countries. For example, the European Commission Reg-
ulation 1400/2002 prevents discrimination of independent MSPs. The OEM must give them access to necessary
material and technical information, e.g., spare parts and diagnostic equipment.

5



TTP (T)

B

2

LP (L)

A

D

MSP (M) Vehicle (V)

2
4

1
3
5
6

OEM (O)/
SAP (S)

C

Setup phase
Installation 
step

V
v0

v1 v2 vn

Figure 1: Installation procedure in six steps (left) and internal vehicle architecture (right)

4 Exemplary Solution

4.1 Overview

This section provides a summary of the SW delivery and installation protocol of [1, 2]. The
protocol consists of a setup period (Phases A–D) and the actual installation (Steps 1–6) (see Fig.
1). In the setup period, the system parameters, e.g., security parameters of the cryptographic
schemes, are chosen. Each M applies for a specific clearance level and is certified by T (Phase A).
This certification is performed once and repeated only if a new M joins the system or existing
certificates expire. In parallel, an SW provider who has developed a new SW component submits
it to T and requests certification of the SW properties (Phase B). After certification, the SW
provider establishes terms and conditions with L (Phase C). Although this needs to be done for
each new component, an SW provider and L might establish more general terms and conditions
covering a whole set of SW components. Finally, the SW component is distributed to each M via
the broadcast channel (Phase D). The use of Public Key Broadcast Encryption (PKBE) ensures
confidentiality and efficiency, e.g., short ciphertexts and little cryptographic key material [11].7

The actual installation of SW s starts with a request from V to M (Step 1). M then obtains
a license l from L (Step 2). After delivery of s and l to V (Step 3), the component v0 of V checks
if s, l and M are legal (Step 4). If so, v0 instructs the target component vi to install s. v0 then
confirms the successful installation to M (Step 5) and awaits M ’s acknowledgement (Step 6). After
receiving the acknowledgement, v0 instructs vi to use s. In addition, v0 continuously monitors all
licenses that V obtained and instructs vi to stop using s (or otherwise adapt the parameters of s)
when l expires.

4.2 Security of the Exemplary Solution

All of the requirements defined in Section 3.3 are fulfilled by the protocol of [1, 2]. Due to lack of
space, we refer to the security analysis in the full version of the protocol [2].

7PKBE in [11] uses a Hierarchical Identity-Based Encryption (HIBE) scheme and cites [18, 13] as examples.
However, the currently most efficient HIBE scheme is [7], which was published after [11].

6



5 Implementation

Our proposed method for finding an implementable vehicle architecture employs two basic ideas.
The first idea is to ease the workload of the components v1, . . . , vn by adding a component v0 that
performs all computationally expensive operations in the SW delivery protocol. For example, if
the non-repudiation requirement of Section 3.3 happens to be fulfilled using digital signatures,
then these signatures are generated and verified by v0. The aim of adding v0 is to achieve a
secure SW delivery and installation protocol with small modifications to the existing components
v1, . . . , vn of a vehicle with respect to their tamper resistance and required processing power. We
have already assumed the existence of v0 in our model assumptions of Section 3.

The second idea is to find an implementation-specific compromise between tamper resistance
assumptions on v0 and the cost of implementing v0. The trivial solution is to assume all compo-
nents of v0 to be tamper-resistant; however, this assumption comes at the price of expensive HW
components. Another solution is to assume only some components of v0 to be tamper-resistant, but
extend the security they provide to the remaining components by using cryptographic techniques
and trusted computing methodologies.

5.1 Requirements on v1, . . . , vn

Ideally, the existing ECUs of a vehicle, corresponding to the components v1, . . . , vn, wouldn’t need
to be modified at all. However, the security requirements of Section 3.3 cannot be fulfilled without
any assumptions on v1, . . . , vn. To fulfill these assumptions, the corresponding ECUs will need to
be modified. The reason is straightforward: Existing ECUs can be flashed, allowing an adversary
to install malicious code. For example, even if v0 securely stores an SW component s after delivery,
the adversary may obtain s through the target component vi in which s is to be installed. He
simply flashes the corresponding ECU and inserts code that outputs s in unencrypted form over
the data bus.

As we need to be make modifications in any case, the next natural question is how to make them
as small and cost-efficient as possible. The computational resources of existing ECUs, especially
related to cryptographic techniques, are limited. For example, it would be highly unrealistic to
expect RSA-based signature schemes in every ECU of a vehicle. In an attempt to make small
modifications, we require the components v1, . . . , vn only to share a secret with v0 that allows (i)
to secure the channel between v0 and vi and (ii) to avoid unauthorized flashing. For example, in
the protocol of [1, 2] each vi receives a secret symmetric key ki from its manufacturer at production
time to allow symmetric encryption and authentication. v0 may receive ki by means of a certificate
from vi’s manufacturer in which ki is encrypted with a public key of v0. Subsequently, v0 sends
SW to vi only in encrypted form and authenticates each message to vi with ki. This can be
done with symmetric encryption and message authentication schemes that are computationally
less expensive than asymmetric schemes.

The assumption on vi is simply a secret shared with v0, but the important question is how to
securely implement this idea in HW. A possible solution is the following: The manufacturer of the
ECU corresponding to vi embeds the shared secret directly into a small tamper-resistant area of
the CPU. When the vehicle is assembled, the OEM ensures that vi receives only trustworthy SW
components. Subsequently, vi protects its integrity by only accepting SW components that were
encrypted and authenticated by v0. To avoid a flashing attack, only v0 may deliver the flashloader
used to flash vi. Note that the flashloader is not an integral part of the ECU, but erased after each
flash procedure due to safety reasons. By having v0 as the only source of the flashloader, flashing
attacks are avoided as long as the trust assumptions on v0 hold. For example, the final flashing
policy may be that v0, which is capable of asymmetric cryptography, only uses a flashloader that
was certified and signed by the TTP.

Note that depending on the commercial value of the SW they contain, the ECUs corresponding
to the vi may receive different protection measures. Some of them may be protected as described
in the previous paragraph. Others may receive no protection at all because their SW components
are considered to have a lower value than the additional cost for protection measures. Yet others

7



may even receive tamper-resistant HW because the high value of the SW they contain makes it
probable that an attacker would even try HW attacks. For example, the motor control unit may
obtain higher protection to avoid chip tuning via HW attacks.

5.2 Requirements on v0

Based on the protocol overview of Section 4.1 and the requirements on v1, . . . , vn in the previous
section, we summarize the requirements on v0. It serves as the Trusted Computing Base (TCB) of
the vehicle. The requirements are generic in the sense that any other secure installation protocol
with a central component v0 will have similar requirements.

Cryptographic functionality: v0 implements the cryptographic schemes used during SW de-
livery. Depending on the specific delivery protocol, this includes encryption and message
authentication schemes.

Secure storage: v0 needs to ensure confidentiality and integrity of (i) the keys of all crypto-
graphic schemes used for SW delivery, (ii) the secrets shared between v0 and the vi and (iii)
the SW licenses.

Verifiable boot: When v0 is rebooted after a system shutdown, e.g., due to malicious interrup-
tion of power supply, unauthorized code may not obtain access to the securely stored data,
i.e., keys, secrets and licenses.

Isolation: v0 needs to be isolated from other components to prevent malicious code from obtaining
the securely stored data via shared resources.

Functional requirements: The functional requirements include compatibility assessment, rights
enforcement and, if applicable, the choice of a suitable target ECU for an SW update. Com-

patibility assessment needs to consider the current components vi and the SW component
s to be installed. Based on their properties, v0 needs to decide whether V and s are com-
patible. We propose a possible implementation of this functionality in Section 5.5.1.

For rights enforcement, v0 needs to continuously monitor the rights granted to V . Fol-
lowing [1, 2], we propose to grant these rights using licenses that V acquires during the
delivery of SW s. For details, we refer to Section 5.5.2.

For determination of the installation target, v0 needs to find the most appropriate
target component vi in which to install the SW s. The choice depends on the vehicle prop-
erties, e.g., HW components and available memory, and the properties of s, e.g., necessary
run-time environment and memory space. We give further details in Section 5.5.3.

5.3 Assumptions on Available HW and SW components

For the implementation of v0, we assume the following components to be available:
1. Tamper-resistant memory, CPU and communication channels between them. Such components
are obviously more expensive than insecure components. Therefore, we will try to minimize the
need for them, especially for tamper-resistant memory.
2. A secure operating system (OS) providing isolation of the processes that it executes with respect
to code and data. A secure OS can be based on microkernel architectures—even in embedded
systems, e.g., using PERSEUS [23]. For a discussion of microkernel architectures, we refer to [24].
3. Insecure mass memory such as hard-disks or RAM chips. Due to their lower cost per byte of
memory, we prefer to use such memory, especially when memory requirements are high.
4. A Trusted Module (TM) with security functionalities that we will define in the sequel.

An example for a TM is the Trusted Platform Module (TPM) of the Trusted Computing
Group8 (TCG). It provides the following four security functionalities: attestation, tamper-resistant

8URL: https://www.trustedcomputinggroup.org/.

8



storage, sealing and random number generation [31, 30, 29]. The basic idea of attestation is
to assess the current system configuration by observing the boot sequence from boot loader to
application SW. An alternative to the current attestation mechanism of the TCG is property-based
attestation as described in [25] and [14, 15]. Sealing ensures that, when an adversary changes the
system configuration, e.g., by booting a malicious OS, the TPM refuses to use any cryptographic
secrets that were defined to belong to the original configuration. This is achieved by comparing
the current boot sequence with a reference boot sequence that is securely stored in the TPM in
compressed form. Using sealing, confidential data can be stored in insecure memory. The TPM
encrypts the data with a sealed secret and stores the encrypted data in insecure memory without
comprising confidentiality.

Remark 1 Note that perfect tamper-resistance is considered to be impossible [4]. In the constant
competition between designers of secure HW systems and hackers, tamper-resistance has always
been temporary. With sufficient resources, e.g., time, money and expertise, a determined hacker
may eventually break any HW. However, we stress that for most practical applications, sufficiently
tamper-resistant HW can be developed. This means that an ordinary user and even a realistic
adversary with limited resources cannot break the tamper-resistance of this HW. 2

5.4 Design Options for Implementation of v0

When the TCB v0 is implemented, we find a multitude of different architectures comprising HW
and SW components. It is of course desirable to determine the optimal architecture. However, this
is impossible without additional implementation-specific information such as the cost per byte of
memory, the storage requirements and the cost of a TM. As an analytical approach fails due to the
lack of this information, we qualitatively discuss three different architectures that all implement
v0 and fulfill the requirements of Section 5.2. However, they differ in their tamper resistance
assumptions and the shared use of HW components.

The trivial option is to exclusively rely on the components of type 1, i.e., tamper-resistant
memory, CPU and communication channels. Although this option avoids the need for secure OS
and TM, it has other inconveniences such as a high cost per byte of memory. Another option uses
a secure OS and a TM to incorporate an insecure mass memory. This increases flexibility, but also
incurs additional costs for OS and TM. This investment only pays off if the savings in cost per
byte of memory offset the cost of TM and OS. To illustrate these inherent tradeoffs, we discuss
the following three options: (i) an independent tamper-resistant ECU, exclusively implementing
v0, (ii) a central tamper-resistant ECU hosting v0 and other SW components, using only secure
memory components and (iii) a central ECU for v0 and other SW components, using secure and
insecure memory components. The security of options (i) and (ii) relies on their closed-ness, while
option (iii) is a fully open system.

5.4.1 Independent Tamper-resistant ECU

This is the least complex, but also the most expensive option with respect to the cost per byte of
memory and the relative cost of the CPU. The functionality of v0 is isolated in a single security
ECU that is implemented with (i) tamper-resistant HW according to item 1 of Section 5.3 and (ii)
SW certified by a TTP T . Specifically, each party that assumes one of the roles in our model (see
Section 3.1) may derive the trust in v0 from an independent evaluation by a TTP, e.g., according
to the Common Criteria [8] or other security criteria. In short, v0 is a typical example of a closed
subsystem that resides in a virtual safe preventing all attacks (see Fig. 2). Physically, this ECU
should reside in an individual casing that could also be mechanically sealed to indicate intrusion.
This is similar to the trust assumptions on consumer electronics devices such as pay-TV decoders.
Note that the isolation and verifiable boot requirements of Section 5.2 are trivially fulfilled by
implementing v0 as a closed (sub-)system.

As v0 is trusted by all parties and might be maliciously modified in a flash process, only T
may perform updates of SW in v0; modification of this SW needs to be inaccessible to all parties

9



s0 s1 sm· · ·

OS

Memory CPU

s0 s1 sm· · ·

OS

Memory CPU

Mass memory TM

v0

Figure 2: Security architecture for options 5.4.1 (left), 5.4.2 (middle) and 5.4.3 (right)

except T . Although possible, an update seems rather impractical as M cannot execute the update
like in the usual SW update protocol. If M should nevertheless execute the update, then it may
flash v0 only partially while a dedicated self-update part of v0 must remain in memory and ensure
that the update originated from T .

The advantage of option 5.4.1 is that it isolates the SW delivery and installation functionality
such that the corresponding ECU may be jointly developed and certified by several OEMs, leading
to an industry standard and significant economies of scale that reduce the production costs of v0.
The inconvenience is that v0 is a single-purpose ECU that prevents the parallel execution of any
other SW component in the same ECU. The cost of v0’s HW is only attributable to v0 and cannot
be “shared” with other SW components using the same CPU.

5.4.2 Central Tamper-resistant ECU Using Secure Storage

This option is more flexible and complex, but possibly restricted in the available memory space.
The idea is to have s0 share its ECU with other SW components s1, . . . , sm, where s0 is the SW
component of v0. For example, v0 may be implemented in the car radio or the dashboard ECU. In
addition to tamper-resistant memory and processor (item 1 of Section 5.3), this option necessitates
a secure OS (item 2 of Section 5.3) that isolates s0 from the si. The trusted components of this
architecture are shaded in grey. As the memory and the CPU are assumed to be tamper-resistant,
the interaction between s0 and these components is secure. For example, s0 may use them to
store the keys of cryptographic schemes and execute their algorithms. Again, the trust in s0,
OS, memory and CPU is derived from an independent evaluation by a TTP. In summary, the
grey-shaded components of the architecture in Fig. 2 are still considered to be a closed subsystem,
i.e., inaccessible to the attacker. Note that depending on the security requirements on s1, . . . , sm,
these SW components may also profit from an OS providing isolation.

It is instructive to compare how the requirements on the TCB v0 are fulfilled in this option. The
cryptographic schemes are implemented in SW certified by a TTP. Secure storage is provided by
the tamper-resistant memory which is protected from the other SW components through isolation.
Isolation originates from the secure OS. To achieve a verifiable boot, an adversary may not succeed
in changing the ECU’s memory and restarting the ECU with a different OS. This is achieved with
the tamper resistance of CPU and memory.

An update of s0 is possible, but has the same restrictions as the option of Section 5.4.1.
However, there is an additional alternative: The OS can contain a secure and dedicated installation
procedure for s0, which is separate from the regular installation procedure for SW components.
As the OS is trusted and doesn’t change during an update of s0, it can ensure that the update
was certified by the TTP.

The advantage of this option is that it allows to execute several SW components in parallel on
a single ECU. The cost of the ECU is shared among these SW components. The HW and the OS
of v0 might be jointly developed and certified by several OEMs, leading to an industry standard

10



and economies of scale. However, compared to Section 5.4.1 this seems less likely and feasible
as the standard would have to cover the requirements of all participating OEMs regarding the
si—a compromise that is more difficult to achieve than for a single-purpose component v0. The
inconvenience of this option is that it exclusively relies on tamper-resistant memory. This may
be acceptable if the OS and the SW components are small. Otherwise, the next option is more
appropriate.

5.4.3 Central Tamper-resistant ECU Using Partially Insecure Storage

This option is the most flexible and even allows execution of components vi with large memory
requirements. For example, navigation data, music or video files can be securely stored using
inexpensive mass memory. The basic idea is to add insecure mass memory, but maintain security
through the use of a TM that at least enables attestation and sealing. Note that we do not require
all functionalities of the TPM. As shown in Fig. 2, mass memory and TM are the only additional
components compared to the previous option.

In this option, the requirements on the TCB v0 are fulfilled as follows: The cryptographic
schemes are again implemented in SW certified by a TTP; if a scheme happens to be available in
the TM, it may of course also be executed there. Secure storage is achieved by either using the
small tamper-resistant memory part or by storing in encrypted form on the insecure mass memory.
The TM helps to verify that the overall ECU is in a trustworthy configuration before decryption
keys are released. Specifically, a verifiable boot is achieved using the sealing mechanism of the
TM. Isolation is provided by the secure OS as in the previous option.

As the TM can assess the ECU configuration during every boot sequence using the attestation
mechanism, we can use this functionality to make the ECU an open system. All SW components
and even the OS can be updated as long as the update is accompanied by an SW certificate of
a TTP, confirming its security. When an adversary changes the mass memory, e.g., to insert an
insecure OS, and causes the ECU to reboot, e.g., by temporarily interrupting the power supply,
the stored secrets remain locked as the TM detects the changed configuration.

The advantage of this option is that it not only allows to execute several SW components in
parallel, but also uses cost-efficient mass memory in a secure way and implements an open system.
Again, the cost of the ECU is shared among the SW components. Even if it is unlikely that the
whole ECU will become an industry standard, individual components such as the TM and the
secure OS may be jointly developed and certified, allowing a flexible use of all other related HW
components. The inconvenience is that the investment in the TM will only pay off if the memory
requirements are high. When the memory requirements increase, there is a threshold where the
reduced cost per byte of memory compensates the additional cost for the TM.

5.5 Details on Functional Requirements

To show the practical relevance of our proposed design guidelines and the exemplary security
architectures, we show how they can fulfill the functional requirements of Section 5.2.

5.5.1 Details on Compatibility Assessment

Current SW installation procedures in the automotive industry rely on a description of allowed
SW configurations to determine compatibility [16]. The description of an allowed configuration
is a logical expression of the following form: “SW s1 in component v1 and SW s2 in component
v2 and . . . and SW sn in component vn”. To give an artificial, but illustrative example, an SW
configuration may be version 1.4 of the Adaptive Cruise Control (ACC) SW, version 1.7 of the
engine control SW and version 2.3 of the ABS SW. However, upward/downward compatibility
is not necessarily given. An SW may work fine with ACC version 1.4, but not with 1.2. When
versions change frequently, the list of allowed SW configurations can become very long—there can
easily be 40 ECUs in a vehicle. The list needs to be delivered as fresh information at installation

11



time; whenever a new SW component is developed, the compatibility information needs to be
updated.

If these inconveniences are acceptable, the compatibility assessment may be based on SW
configurations and implemented as follows: Together with each SW component, v0 receives a
list of allowed SW configurations. For example, an SW provider may experimentally establish
this list in a testing series and ask the TTP to certify it. v0 stores the current version of each
SW component within V , with an initial list generated at production time. The compatibility
assessment function of v0 simply evaluates compatibility by comparing the version of the SW
component s to be installed and the current versions of the other SW components with the allowed
configurations in the list. If a match is found, v0 outputs “compatible”, otherwise “incompatible”.
v0 refreshes the version list by updating the version of s.

There is a more efficient alternative to this approach. Suppose that all involved parties agree
on SW properties in a standardized way. For example, the engine control SW provides a property
“controllability of engine speed” and the brake control SW a property “controllability of decel-
eration rate”. It is unimportant which SW version provides these properties as long as they are
present. If properties are standardized, then it is sufficient for compatibility assessment to check
whether the SW to be installed requires only properties that are already present in the vehicle. If
the SW is an update that replaces an existing SW, it must at least provide the same properties as
the SW that it replaces. To continue the ACC example, when installing this SW the availability
of the two cited properties is a prerequisite for compatibility.9

If this alternative approach is chosen, v0 simply receives an initial list of V ’s properties at
production time. Each entry in the list indicates the SW component that provides this property.
At each installation, the SW s is delivered together with a list of necessary properties of V and a
list of properties that s adds to V after installation. Prior to installation, v0 verifies that (i) V
has the properties demanded by s and (ii) s provides at least the properties of the SW it replaces.
After the installation, v0 refreshes the property list by incorporating the properties added by s.
For example, when installing an arbitrary ACC SW, v0 verifies that all necessary properties are
present, e.g., the interfaces to engine control and brake control as described before. Afterwards,
v0 stores ACC as a new property that is now available for future updates.

Note that both approaches are similar in the sense that an ordered list containing information
on the current SW configuration is stored and updated at each installation. However, the second
approach reduces this list to the truly relevant information in an explicit form. In the first
approach, relevant properties are derived from a version number. In the second approach, they
become explicit and easily interpretable by all involved parties.

5.5.2 Details on Rights Enforcement

In [1, 2], the authors describe a light-weight approach for enforcing the terms and conditions
related to an SW component s. This approach can be securely implemented in the TCB v0.
Based on the terms and conditions, the license provider L generates licenses containing the usage
rights of vehicle V related to s. As these licenses need to be authentic, L signs them with the
private key of a digital signature scheme. The TCB v0 verifies these signatures and translates the
rights granted in the license into a set of simple parameters, e.g., the value of a counter or an expiry
date. Instead of the whole license, v0 sends these simple parameters to the installation target vi,
authenticating them with the secret shared with vi. Thereby the workload of vi is considerably
reduced to updating a parameter instead of interpreting a license.

5.5.3 Details on Determination of Installation Target

With current installation procedures, each SW s is intended for a specific type of ECU, often from
a specific HW supplier. Therefore, s is delivered together with specific instructions on the target
ECU. The SW provider and/or the OEM determines the target ECU. This variant of determining

9The ACC example is of course explanatory and not complete. ACC obviously needs other properties such as
“measurability of distance to obstacles ahead”.

12



the installation target can be implemented by delivering the target ECU as part of the properties
of s. As the properties are authentic and certified by the TTP, the information on the target ECU
is trustworthy.

AUTOSAR10 is an initiative of the automotive industry aiming to establish standards for SW
and electronics. The AUTOSAR Run-Time Environment (RTE) [5] provides abstraction from
specific HW versions and standardization of interfaces between the RTE and SW components.
Therefore, the target ECU may be determined at installation time and depend on the vehicle’s
current state. There may be several candidate ECUs for installing s. Possible criteria for selecting
one of them are the available flash memory, optimization of the communication flow between
ECUs and their physical location. If several SW components communicate with each other, they
should preferably reside in the same ECU and use the internal communication channels of the
ECU instead of the slower and less reliable channels between ECUs. Safety-relevant ECUs might
need to be physically close to the mechanical parts that they operate, e.g., it might be preferable
to have an airbag ECU close to the airbag for reasons of compartmentalization.

To implement this variant of determining the installation target, there are several options. To
give an example, v0 stores the available memory of each ECU in a list. In addition, it stores
the physical location of each ECU in a separate list. When a new SW s is to be installed,
v0 can calculate a weighted average of the aforementioned criteria, i.e., available flash memory,
communication flow and physical location, for all candidate components vi and base its decision on
the resulting averages. The SW provider might even deliver s with individually selected coefficients
for the weighted average.

6 Conclusion

In this article we describe a protocol for secure SW delivery and installation in vehicles and other
embedded systems. The protocol serves as an example for an arbitrary secure protocol and shows
one of many possible ways to securely deliver SW to a vehicle. Assuming that such delivery
has already taken place, we give three design options for the architecture of a trusted computing
base within the vehicle. The three design options illustrate the inherent trade-offs between trust
assumptions and flexibility of the implementation. Although the architectures remain simple,
requiring only a small part of the vehicle’s HW and SW to be fully trusted, they allow secure
SW installation and basic management of usage rights related to SW components. By embedding
a single trusted ECU based on trusted computing technology into each vehicle, all other ECUs
rely on significantly lower trust assumptions. The trusted ECU assumes all security-relevant tasks
related to SW delivery and thereby eases the workload of the other ECUs.

References

[1] André Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi, Secure software delivery and
installation in embedded systems, ISPEC 2005 (Robert H. Deng, ed.), Lecture Notes in Com-
puter Science, vol. 3439, Springer, 2005, pp. 255–267.

[2] , Secure software delivery and installation in embedded systems, Technical Report,
full version of [1], Horst Görtz Institute for IT Security, http://www.prosec.rub.de/

publications, 2005.

[3] H. Alminger and O. Josefsson, Software handling during the vehicle lifecycle, in VDI Society
for Automotive and Traffic Systems Technology [32], pp. 1047–1055.

[4] Ross J. Anderson, Security engineering: A guide to building dependable distributed systems,
first ed., John Wiley & Sons, New York, USA, 2001.

10URL: http://www.autosar.org/

13



[5] AUTOSAR, AUTomotive Open System ARchitecture development partnership information
pack, Informative material, URL http://www.autosar.org/download/AUTOSAR Standard

InfoPack V3 6 f.pdf - mailto: request@autosar.org - file size: 282 kB, January 21, 2003.

[6] BMW Car IT, Das Potenzial von Software im Fahrzeug, Press report, BMW Group,
URL http://www.bmw-carit.de/pdf/plakate.pdf - mailto: info@bmw-carit.de - file size:
2050 kB, July 22, 2002.

[7] Dan Boneh, Xavier Boyen, and Eu-Jin Goh, Hierarchical identity based encryption with con-
stant size ciphertext, EUROCRYPT 2005 (Ronald Cramer, ed.), Lecture Notes in Computer
Science, vol. 3494, Springer, 2005, pp. 440–456.

[8] Common Criteria Project Sponsoring Organisations, Common criteria for information tech-
nology security evaluation, Norm Version 2.1, CCIMB-99-031 – 33, August 1999, URL http:

//csrc.nist.gov/cc/CC-v2.1.html.

[9] Daimler Chrysler AG, Functional specification of a flash driver version 1.3, Specification, Her-
stellerinitiative Software, URL http://www.automotive-his.de/download/HIS%20flash%

20driver%20v130.pdf - mailto: his@mbtech-services.net - file size: 224 kB, June 06, 2002.

[10] Christoph Dallmayr and Oliver Schlüter, ECU software development with diagnostics and
flash down-loading according to international standards (SAE Technical Paper Series 2004-
01-0273), in Society of Automotive Engineers (SAE) [27], URL http://www.sae.org/.

[11] Yevgeniy Dodis and Nelly Fazio, Public key broadcast encryption for stateless receivers, Digital
Rights Management Workshop (Joan Feigenbaum, ed.), Lecture Notes in Computer Science,
vol. 2696, Springer, 2003, pp. 61–80.

[12] Jahrestagung Elektronik-Systeme im Automobil, Fachtag Design – Test – Diagnose elektron-
ischer Systeme, Munich, Germany, February 12, 2004, Euroforum, 2004.

[13] Craig Gentry and Alice Silverberg, Hierarchical ID-based cryptography, ASIACRYPT 2002
(Yuliang Zheng, ed.), Lecture Notes in Computer Science, vol. 2501, Springer, 2002, pp. 548–
566.

[14] Vivek Haldar, Deepak Chandra, and Michael Franz, Semantic remote attestation—a virtual
machine directed approach to trusted computing, Proceedings of the 3rd Virtual Machine
Research and Technology Symposium (May 6–7, 2004, San Jose, CA, USA) (2004), 29–41,
URL http://www.usenix.org/events/vm04/tech/haldar/haldar.pdf.

[15] Vivek Haldar and Michael Franz, Symmetric behavior-based trust: A new paradigm for Inter-
net computing, in NSPW 2004 [21], 79–84.

[16] Cornelia Heinisch and Martin Simons, Loading flashware from external interfaces such as CD-
ROM or W-LAN and programming ECUs by an on-board SW-component (SAE Technical
Paper Series 2004-01-0678), in Society of Automotive Engineers (SAE) [27], URL http:

//www.sae.org/.

[17] A. Heinrich, K. Müller, J. Fehrling, A. Paggel, and I. Schneider, Version management for
transparency and process reliability in the ECU development, in VDI Society for Automotive
and Traffic Systems Technology [32], pp. 219–230.

[18] Jeremy Horwitz and Ben Lynn, Toward hierarchical identity-based encryption, EUROCRYPT
2002 (Lars R. Knudsen, ed.), Lecture Notes in Computer Science, vol. 2332, Springer, 2002,
pp. 466–481.

[19] M. Huber, T. Weber, and T. Miehling, Standard software for in-vehicle flash reprogram-
ming, in VDI Society for Automotive and Traffic Systems Technology [32], URL http://www.

automotive-his.de/download/presentation-baden-baden-2003-german.zip, pp. 1011–
1020.

14



[20] Markus Müller, IT-Security in Fahrzeugnetzen, Elektronik Automotive (2004), no. 4, 54–59,
ISSN: 1614-0125.

[21] Proceedings of the 2004 New Security Paradigms Workshop, Nova Scotia, Canada, Septem-
ber 20–23, 2004, ACM Press, 2005.

[22] Uwe Oeftiger, Diagnose und Reparatur elektronisch unterstützter Fahrzeuge, in Euroforum
2004 [12].

[23] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and A. Weber, The PERSEUS system
architecture, IBM Technical Report RZ 3335 (#93381), IBM Research Division, Zurich Lab-
oratory, 2001.

[24] Ahmad-Reza Sadeghi and Christian Stüble, Taming “Trusted Computing” by operating system
design, Proceedings of the 4th International Workshop on Information Security Applications
(WISA’03) (Cheju Island, Korea), 2003.

[25] , Property-based attestation for computing platforms: Caring about properties, not
mechanisms, in NSPW 2004 [21], pp. 67–77.

[26] Martin Schmitt, Software-update, configuration and programming of individual vehicles on the
aftermarket with an intelligent data-configurator, in VDI Society for Automotive and Traffic
Systems Technology [32], pp. 1021–1046.

[27] Society of Automotive Engineers (SAE) (ed.), SAE World Congress, Detroit, Michigan,
March 8–11, 2004, URL http://www.sae.org/.

[28] S. Stölzl, Software products for vehicles, in VDI Society for Automotive and Traffic Systems
Technology [32], pp. 1073–1088.

[29] Trusted Computing Group (TCG), TCG Software Stack Specification, Version 1.1, Technical
specification, URL https://trustedcomputinggroup.org/, August 2003.

[30] , TPM Main Specification, Version 1.2, Technical specification, URL https://

trustedcomputinggroup.org/, November 2003.

[31] Trusted Computing Platform Alliance (TCPA), Main Specification, Version 1.1b, Technical
specification, February 2002.

[32] VDI Society for Automotive and Traffic Systems Technology (ed.), Electronic Systems for Ve-
hicles, VDI Berichte 1789, Congress, Baden-Baden, Germany, VDI Verlag GmbH Düsseldorf,
September 25–26, 2003.

15


