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Abstract

Single Sign-On with OpenID Connect is a widely adopted delegated authentica-
tion protocol. It is a layer above OAuth 2.0 which provides delegated authoriza-
tion. This protocol framework allows users to connect several Service Providers
with their account, identified from a single Identity Provider. The development of
several extensions and additional features is still in progress. Previous work has
revealed that not all implementations strictly follow the OpenID Connect specifica-
tion.

This master’s thesis has aimed to unveil security flaws in OpenID Connect Certified
implementations with well-known attack methods. For this purpose, we present a
novel and sustainable lab environment based on Docker, which offers an expandable
platform. We intend this lab for developers and penetration-testers to test Service
Providers and Identity Providers in a real-world scenario. It aims to lower the initial
effort to analyze the implementations automatically and manually. Therefore, we
included the tool PrOfESSOS for automatic tests. Together with MitMProxy, we
supplied a debugging interface and created a Command-line Interface to perform
manual tests with support of PrOfESSOS.

In summary, we have selected six Identity Provider and eight Service Provider with
support of Implicit Flow and Hybrid Flow. For a comprehensive security anal-
ysis, we tested them against eleven Service Provider attacks and seven Identity
Provider attacks in different variations. We have disclosed twelve implementa-
tion flaws and reported them to the developers in a responsible disclosure pro-
cess.
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1 Introduction

With the growing usage of cloud services and web-based mobile applications, the
Internet has grown over the last decade. More and more micro services with dedi-
cated functionalities exist. Platform developers allow others to use their services. It
opened a completely new market with Software as a Service (SaaS) delivery model.
Nearly all leading enterprise software companies are offering their business applica-
tions for web browsers or have announced to step into this market. These are, for ex-
ample, services for collaboration, IT management, enterprise resource planning, hu-
man resource management, messaging software or office suites.

It requires access control and authorization to enable these interactions between
multiple micro-services and platforms. In addition, End-Users should be identified
to perform tasks on their behalf. A standard protocol framework is OAuth 2.0
for authorization delegation that has been established since 2012. Two years later
and on top of this protocol, OpenID Connect (OIDC) was designed to authen-
ticate End-Users. An essential part of the protocol is token-based authorization
(OAuth 2.0) and authentication (OIDC). End-Users are no more forced to give their
credentials directly to third-party applications to access resources of another ser-
vice.

Leading companies use OpenID Connect, for example, Amazon, Microsoft, Google,
and Facebook. The Single Sign-On (SSO) service they provide allows users to inter-
act with different services without a complete registration process. It is sufficient for
an End-User, to login at the Identity Provider (IdP) and allow a Service Provider
(SP) to access data to identify them.

Due to complexity and security requirements, OAuth 2.0 and OpenID Connect
are interesting for web security researcher. The Identity Provider manages vari-
ous user accounts and creates tokens to access web services. Users can register
unknown and potential malicious SP clients to the IdP. On the opposite site, a SP
must be able to verify the exchanged tokens and provide user access to granted
resources.
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1.1 Motivation

This thesis focus is on real-life OpenID Connect implementations with support of
Implicit Flow and Hybrid Flow, motivated through the following three Research
Questions (RQs).

RQ I: How secure are OpenID Certified implementations and are they fully com-
pliant to the standard specification? On the one side, the OpenID homepage [6]
lists several SP and IdP implementations, which are OpenID Certified. This grants
libraries and services a higher level of trust, than other implementations in the wild
without a certification. On the other side, new extensions are introduced since OIDC
was published and developers implement these additional features. Towards the up-
coming OAuth 2.1 version, there are preparations to support the required changes.
There are various security recommendations and best practice guides for developers.
If they follow these references and the specification, then the implementations are
supposed to be very secure.

An up-to-date overview about known security vulnerabilities in the implementations
is useful to identify common issues. This can be a hint of missing awareness to newer
attack vectors and can be used to distribute this information to developers. To close
knowledge gaps between developers and security researchers, the following two RQ
should be answered.

RQ II: How can a lab environment be created, to reduce the initial implemen-
tation and setup effort? Before a security researcher can start the analysis, a
target implementation must be setup. It is a time-consuming task to search for
sample implementations, required configurations, and software dependencies. For
a library-only implementation, an example must be written, first. In this case, a
researcher must have a detailed understanding of the programming language, the
basic framework, and the libraries API.

A lab environment intended for security analysis presents a promising improvement.
Reproducible results and a maintainable structure are expected to save a valuable
amount of time. If there is a debug functionality to visualize protocol issues, it
might attract developers to use this environment, too. The attraction arises because
counterparts for testing of different IdPs or SPs exists.

RQ III: How can manual and automatic security tests be performed in a lab
environment? A lab environment can run locally or in a data center. Thus, the
security evaluation tools should run as a part of the lab. This also reduces the initial
setup effort. TLS certificates must be rolled out and several implementations must
be configured first, to use the security tools.
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If easy to use, automatic security tools exist, developers can discover security issues
on their own and before a new version is released. In a collaboration between de-
velopers and security researchers, the penetration testers can concentrate on imple-
menting new security relevant checks to their tools and perform manual penetration
testing.

1.2 Related Work

The security properties of OAuth 2.0 and OpenID Connect have been analyzed using
formal methods [4]. Fett, Küsters and Schmitz [4, 5] have analyzed the security of
OAuth 2.0 and OIDC using their web model. They found eleven OIDC formal attack
vectors and provide a security guideline, therefore.

In a large-scale practical analysis of Google, OpenID Connect implementations Li
Wanpeng et al. [14] have shown that several flaws could be revealed in imple-
mentation of SPs and IdPs. They have also discovered some SP custom Hybrid
Flow implementations, that are not conform to the OIDC specification. This cus-
tomization was implemented to provide an improved user experience. The OpenID
Foundation provides, until now, only a basic and an Implicit Flow [7] development
guide.

With their work on second-order vulnerabilities Vladislav Mladenov and Christian
Mainka [23, 24] have unveiled various specification and implementation flaws since
2014. Towards automated testing of SSO implementations Yuchen Zhou [33] has
published a tool named SSOScan. This tool can analyze the security of OAuth im-
plementations. Based on this previous work and in cooperation with Tobias Wich
[19] the project Practical Offensive Evaluation of Single Sign-On Services (PrOfES-
SOS) has been created. It is an open-source implementation for fully automated
Evaluation-as-a-Service for SSO.

1.3 Thesis Contribution and Organization

This master’s thesis contributes towards a state-of-the-art security analysis of several
OpenID Connect implementations. Therefore, we have selected a comprehensive
number of IdPs and SPs and included them into a lab environment. We have
improved our tool PrOfESSOS for automatic analysis and presenting a method to
allow manual or semi-automatic penetration tests.
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Chapter 2 introduces the basics of SSO protocols based on OAuth 2.0 for End-
User authorization and OpenID Connect on top as identity layer. The front and
back-channel communication between SP and IdP endpoints are explained, along
with the different token usage.

Chapter 3 gives an overview about attacker goals and capabilities. We introduce
seven known Single-Phase and four Cross-Phase attacks on SPs. In addition, we
explain seven attack vectors against IdPs. All attacks are with different variations
implemented in PrOfESSOS.

Chapter 4 explains the base concept of the docker lab environment. It should
require only low effort for developers, to integrate and test their IdP or SP services
automatically with PrOfESSOS. For developers and penetration testers, we have
added Man-in-the-Middle Proxy (MitMProxy) to analyze the TLS web traffic in
front and back-channel communication. With the MitMProxy script interface, we
could enhance the PrOfESSOS capabilities.

Chapter 5 presents the findings from our security analysis with PrOfESSOS. More-
over, we introduce an idea of how manual scripting tests could be supported by
PrOfESSOS.

Chapter 6 and 7 describe the responsible disclosure process. Finally, we conclude
this work and give further suggestions for the future.



2 Single Sign-On with OpenID Connect

This chapter provides the basic SSO expertise, required to follow the later explained
and used attacks in this thesis. The basic concept of most SSO specifications is that
an End-User has a single account registered to a trusted IdP. After the user has
authenticated against this IdP, a token is generated, which could be used to access
any allowed resource from a SP. Only precondition is that SP must be known to
the IdP and SP can validate the token. The advantage of SSO for an End-User is,
only one account is required to access several SP and he must remember only one
password. If the SSO protocol provides user authentication information for SP, this
can be used to synchronize profile information like address, email, or phone number.
Disadvantage is that IdP must be secured against several threats, and End-Users
must trust this service. In cases IdP is not reachable or the service is discontinued
the SP cannot be accessed.

2.1 OAuth 2.0

The OpenID Connect (OIDC) Core specification describes itself as a simple identity
layer on top of the OAuth 2.0 protocol [29]. This means both protocols share many
similarities and changes to OAuth protocol can affect the OIDC protocol. OAuth is
a complex protocol with the ability to provide an authorization layer. It defines four
different core grant types Authorization Code, Implicit, Resource Owner Password
Credentials and Client Credentials, which defines different protocol processes. Only
Authorization Code Flow and Implicit Flow are part of OIDC. In addition, OIDC
introduces Hybrid Flow as a third mode.

Two basic types of web application clients are defined. First, a confidential client
which can store client_id and client_secret confidential. Second, a public client
which cannot hide client credentials from an End-User, for example, a native applica-
tion or a Single-Page Application (SPA) executed in a web browser. For the second
client type, the simpler Implicit Flow is often used.

The protocol communication defines several endpoints. A critical detail of the OAuth
communication flow is the redirect URI, to connect different endpoints. OAuth 2.0
defines an Authorization Endpoint and Token Endpoint that represents one major
part of an IdP. Furthermore, a Redirect Endpoint, which represents a web client
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application. Beyond these core features, there are several OAuth 2.0 protocol exten-
sions. The Dynamic Client Registration is one of them and is also used with OIDC.
It introduces an additional Registration Endpoint and a few more protocol steps.
All of these previous steps are required, to generate an Access Token and using the
token to access protected REST API resources.

2.2 Protocol Communication

OpenID Connect refers the OAuth 2.0 authentication servers (IdP) also as OpenID
Providers (OPs) and the clients (SPs) as Relying Parties (RPs) [29]. The third pro-
tocol participant is the End-User using a User-Agent, in most cases a web browser
for user interactions. OP is a trusted authentication server, which manages all user
identity data. After an End-User is registered to this platform, he can use any
connected and authorized RP with the OP. Neither OAuth 2.0 nor OpenID Con-
nect specify how an End-User could authenticate to the OP. For example, a simple
username and password login or an additional, more complex web authentication
protocol can be used. The RP is a web or native application, which can use the
tokens to identify the user and to access further resources from another web server
with the Access Token. This communication is performed via several endpoints. The
related communication channels explained as follows:

Back-channel communication uses normal HTTP request and response formats.
This can be HTTP headers, CRUD methods, query, post data and JSON objects.
In general, this appears outside the purview of a User-Agent directly between a
RP and OP [25]. The client can access a resource server with the token, using a
back-channel communication.

Front-channel communication is the method used to allow indirect communica-
tion between client and server, over an End-Users browser [25]. Usually, RP and
OP are located on different domains. A browser isolates these sessions for security
reasons. Each session has an own cookie, local and session storage per security do-
main. This means the RP client could not directly receive a token after an End-User
has logged into an OP. Through redirection, it is possible to attach parameters to
an URL. The receiving party must parse this information. In general, front-channel
communication is the End-User observable segment, within the OpenID Connect
protocol.

2.2.1 Discovery Endpoint

The Discovery Endpoint offers OpenID Provider Issuer Discovery and Provider Con-
figuration with well-known locations. Issuer Discovery is an optional feature, to
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determine the location of an OpenID Provider. With this mechanism, a RP can
detect where an End-User account is located. Furthermore, a RP can register
to a new unknown OP with the Dynamic Registration feature explained in sec-
tion 2.2.3. To start discovery an End-User supplies an Identifier to the RP [27].
The Relying Party parses the Identifier information and requests with the speci-
fied WebFinger [13] URI, the OP location (Figure 2.1). For example, WebFinger
specification defines email address syntax, which can figure out domain or realm of
an OP. Alternatively, without Issuer Discovery, a RP requires out-of-band configu-
ration to determine the OP location, and the End-User can only select predefined
providers.

End-User Relying Party OpenID Provider

Identifier

GET Webfinger

Issuer Location

OpenID Provider Issuer DiscoveryOpenID Provider Issuer Discovery

GET Configuration

OP Metadata

OpenID Provider ConfigurationOpenID Provider Configuration

Figure 2.1: Abstract Issuer Discovery and Provider Configuration sequence diagram.

The Provider Configuration provides metadata about the OP. Configuration docu-
ment [27] is a defined JSON object, including all endpoints, public key location and
supported configurations. Thus, clients which want to communicate with the OP,
can read endpoint locations from Provider Configuration. In Listing 2.2, for instance,
the specified registration_endpoint is set to "https://honest.com/register". This
URL route can be different per OP.

Clients can access this data during registration to determine if they are properly
configured to support OP features. For example, a client configured for Implicit
Flow cannot use the OP, if it is not listed in grant_types_supported. OP and RP
must find a consent. The issuer claim is a mandatory part, which must match with
configuration URL and ID Token provided later.
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1 {
2 "issuer": "https://honest.com/",
3 "authorization_endpoint": "https://honest.com/auth-req",
4 "token_endpoint": "https://honest.com/token-req",
5 "token_endpoint_auth_methods_supported": [
6 "client_secret_basic"
7 ],
8 "jwks_uri": "https://honest.com/jwks",
9 "registration_endpoint": "https://honest.com/register",

10 "userinfo_endpoint": "https://honest.com/user-info"
11
12 "grant_types_supported": [
13 "authorization_code",
14 "implicit"
15 ],
16 "id_token_signing_alg_values_supported": [
17 "RS256"
18 ],
19 "response_modes_supported": [
20 "query",
21 "fragment"
22 ],
23 "response_types_supported": [
24 "code",
25 "id_token"
26 ],
27 "subject_types_supported": [
28 "public"
29 ],
30 "scopes_supported": [
31 "openid",
32 "name",
33 "preferred_username",
34 "email"
35 ]
36 }

Listing 2.2: JSON metadata from Provider Configuration.
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2.2.2 JSON Web Key Set Endpoint

JSON Web Key Set (JWKS) [10] is a JSON structure to represent cryptographic
keys. For OIDC it contains keys used to verify or encrypt the ID Token. Sev-
eral algorithms are supported, for instance, RSA, elliptic curves, or symmetric
keys.

The public RSA key in Listing 2.3 represents an example structure. Parameter
key type (kty) is used to identify the cryptographic algorithm. Furthermore,
public key use (use) to determine if this key is used for data encryption (enc)
or to verify a signature (sig). The algorithm (alg), in this case, defines the
used hashing algorithm to generate the signature. A Key ID (kid) can identify
a specific key in the set. For RSA, the public modulus n and exponent e is ex-
posed.

1 {
2 "keys": [
3 {
4 "kty":"RSA",
5 "alg":"RS256",
6 "use":"sig",
7 "n": "KwWjsaK",
8 "e": "AQAB"
9 "kid":"my-unique-key-id"

10 }
11 ]
12 }

Listing 2.3: JWKS for an RSA key.

2.2.3 Client Registration Endpoint

A RP client can be configured out-of-band with a manual registration step in the OP.
The Client Registration Endpoint offers another mechanism with Dynamic Client
Registration. This allows to register a RP to an OP. The OpenID Provider can
require an initial Access Token to allow registration or using a rate-limit to prevent
Denial of Service (DoS) attacks [28].

A RP sends an OP, JSON data to register with the preferred settings and redirect
URIs. The OP responses with a newly created client_id. In addition, confidential
clients receiving a client_secret. The OP can change or reject unsupported client
settings.
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Relying Party OpenID Provider

POST Register

client_id, client_secret, ...

Dynamic Client RegistrationDynamic Client Registration

Figure 2.4: Abstract Dynamic Client Registration protocol extension.

2.2.4 Authorization Endpoint

The End-User is authenticated through the Authorization Endpoint [29, Section
3.1.2]. Therefore, RP redirects the User-Agent with a HTTP 302 redirect response
to the OP. Following parameters are required.

response_type is used to determine the flow regarding Table 2.6. OP must validate
the values with previous client registration data.

Flow response_type

Authorization Code code

Implicit id_token

Implicit id_token token

Hybrid code id_token

Hybrid code token

Hybrid code id_token token

Table 2.6: OIDC response_type values per flow [29].

scope defines the information, presented as content in the ID Token and UserInfo
Endpoint. For OpenID Connect it must be at least openid, some additional standard
claims are name, profile, or email [29, Section 5.1]. An OP can define own addi-
tional scopes, for example, user role or read permissions.

client_id must match a valid previously registered client identifier.
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End-User User-Agent Relying Party OpenID Provider

Login to OP

HTTP/1.1 302 Found
Location: https://honest.com/authorize&
response_type=code
&scope=openid%20profile%20email
&client_id=fdsa8f9asd8f3
&redirect_uri=https%3A%2F%2F
client.example.org%2Fcb

GET /authorize&
response_type=code
&scope=openid%20profile%20email
&client_id=fdsa8f9asd8f3
&redirect_uri=https%3A%2F%2F
client.example.org%2Fcb

Authorization and Consent UI

Auth UI

7. Auth

Authentication and Authorization

HTTP/1.1 302 Found
Location: https://client.example.org/cb
&code=54634589fsgsfd90adsf432z

GET /cb
&code=54634589fsgsfd90adsf432z

Authorization EndpointAuthorization Endpoint

Figure 2.5: Login to an Authorization Endpoint with Authorization Code Flow.

redirect_uri is the location where Authorization Endpoint is supposed to redirect
End-Users after the login process. This must strictly match one of the registered
client’s URIs.

state is used to mitigate a Cross Side Request Forgery (CSRF) attack. It must be
bound to an End-User session.

response_mode is an optional parameter to select if the Authentication Response
parameters should be in the query string or part of the fragment string. The OP
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should send parameters in fragment only in Implicit Flow and query for Authoriza-
tion Code Flow.

nonce is freshness parameter to mitigate token replay attacks. This parameter is
recommended or required depending on the selected flow.

If an End-User is authenticated and authorized at the Authorization Endpoint, it
is possible to accept the set scopes on an optional consent page. In the last step,
OP redirects the User-Agent back to the RP, with a previously chosen token. For
Authorization Code Flow the Authorization Endpoint returns only an Authorization
Code.

2.2.5 Token Endpoint

In Authorization Code Flow and Hybrid Flow, the RP receives an Authorization
Code from the Authorization Endpoint. To redeem this code, the RP sends a re-
quest to the Token Endpoint, as shown in Figure 2.7. A confidential client must
authenticate with the registered authentication method. With a successful response,
the RP obtains an Access Token, an ID Token and optional a Refresh Token [29,
Section 3.1.3].

Relying Party OpenID Provider

POST /token
Host: op.example.org
Content-type: application/x-www-form-urlencoded
Authentication: Basic cDa9awe98r439asd8f3fasdf==
grant_type=authentication_code
&code=54634589fsgsfd90adsf432z
&redirect_url=https%3A%2F%2F
client.example.org%2Fcb

HTTP/1.1 200 OK
Content Type: application/json
{
"access_token": "H324SDD324DAD",
"token_type": "bearer",
"refresh_token": "ZA3232S46AdFD",
"id_token": "abasdfasdf.eyu33243.jif4328dsfJ"
}

Token EndpointToken Endpoint

Figure 2.7: Token Endpoint sequence diagram.
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Authentication Method is used to authenticate a RP against the Token End-
point. Per default HTTP basic authentication scheme is allowed with base64 en-
coded client_id and client_secret in HTTP header (Figure 2.7). A HTTP Post
method is permitted, where client credentials are part of the request body. In ad-
dition, two JSON Web Token (JWT) variants exist, one with client_secret as a
shared key and one with a private key.

grant_type is set to authorization_code to redeem the Authorization Code in
code parameter. Optionally, to use a Refresh Token it can be set to refresh_token.

redirect_uri is the destination to where Token Endpoint sends its response. It must
be identical to the redirect URI used at Authorization Endpoint.

2.2.6 UserInfo Endpoint

The UserInfo Endpoint returns an End-User requested claim with the associated
Access Token [29, Section 5.3]. UserInfo response can be a JSON object or a JWT.
At least, the sub claim must be issued to RP and verified against the sub claim in
the ID Token. Other claims depend on requested scope during the Authentication
Request.

Relying Party OpenID Provider

GET /userinfo
Authentication: Bearer HASDD324DAD

Content Type: application/json
{
"sub": "12345667778879",
"name": "Muster Max",
"given_name": "Max",
"preferred_username": "MaxMuster"
"email": "max@example.com"
}

Userinfo EndpointUserinfo Endpoint

Figure 2.8: Abstract UserInfo Endpoint protocol flow.

For clients using Implicit Flow with only ID Token, all claims are stored in the ID To-
ken, since no Access Token is available to access the UserInfo Endpoint.
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2.3 Token Types and Structure

In this section the OIDC tokens and their structures are explained. OAuth 2.0 itself
defines Authorization Code and Access Token with unspecified content to access
server resources. The ID Token is an additional token, specified in OpenID Connect
for End-User authentication.

2.3.1 Authorization Code

The Authorization Endpoint issues an Authorization Code in Hybrid Flow and Au-
thorization Code Flow. Afterwards, the Authorization Code is used to obtain an
Access Token and ID Token from a Token Endpoint.

Since Authorization Code is received over the User-Agent via redirection in the
front-channel, it is the only disclosed secret. Therefore, it is designed as a short
lived and single-use secret [9]. An OP must ensure that this token is unguessable
and is not issued to another RP. The format for this token is not defined and
must only be understood by the OP. Generally, it is only a cryptographically secure
pseudo-random number.

For Implicit Flow, where all tokens are potentially and intentionally revealed to the
User-Agent, an Authorization Code is not utilized.

2.3.2 Access Token

To access a protected resource from RP server, an Access Token could be used as
credential [9]. The Bearer Token authentication method is used accordingly. The
Access Token is an opaque string for the RP client in OpenID Connect. Differ-
ent Access Token can be created for several endpoints and access privileges [29].
With an expiration time, an Access Token has a limited lifetime. The period is
configurable.

2.3.3 ID Token

The ID Token contains claims to authenticate an End-User. This is the primary
extension of OpenID Connect, to provide a standardized data structure for authen-
tication, together with the defined UserInfo Endpoint. It is allowed for the OP
developers to add additional claims. The RP must know these claims to use them
or ignores the additional information. JSON Web Token format is used to represent
an ID Token [29].
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The JWT object is represented with a JOSE header, to describe the used crypto-
graphic operations. JSON Web Signature (JWS) is used to sign a payload to pro-
vide authentication, integrity, and non-repudiation (Listing 2.9). For confidentiality
JSON Web Encryption (JWE) format shall be used. Thus, ID Token must be signed
and afterwards encrypted to create a nested JWT [12, 29].

1 header = {
2 "typ": "JWT"
3 "alg": "RS256",
4 }
5
6 payload = {
7 "iss": "https://honest.example.com",
8 "sub": "BgDltc1AfF223sc3BCc4",
9 "aud": "honest-client-id",

10 "iat": 1492728260,
11 "exp": 1492728320,
12 "nonce": "i87yhOySCQCGYQwXbFKK7aDhqDIyERH0G2AfDaWSCYg",
13 "at_hash": "BGkvIFNRqH6YJr7u4g3NEA"
14 "c_hash": "7u88ogKxDy6V2XxEZntg8g",
15 "name": "Honest User",
16 "preferred_username": "honest-user-name",
17 "email": "user@honest.com"
18 }
19
20 signature = RSA-SHA256(
21 private-key,
22 base64urlEncoding(header) + ’.’ +
23 base64urlEncoding(payload))
24
25 ID Token = base64urlEncoding(header) + ’.’ +
26 base64urlEncoding(payload) + ’.’ +
27 base64urlEncoding(signature)
28
29 // ID Token = eyJ0BeXAiO.eyJhdFSoYXNoIjoia.GSoMTGzQQ

Listing 2.9: Pseudo-Code to generate an ID Token.

The algorithm (alg) value, defined in the header, is used to determine which crypto-
graphic algorithm is applied to sign or encrypt a JWT. Only secure algorithms should
be allowed. All other insecure, broken algorithms and the special none value should
be blocked by default. These algorithms should only be explicitly allowed, in cases
the RP requested them during client registration [29].
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Regarding Listing 2.9, the following claims are important for the later executed
security analysis and the used OIDC flows. It is to ensure that claims are vali-
dated upon RP receives the ID Token and the JWT is signed with a valid signa-
ture.

iss Issuer Identifier must contain the complete URL of an OP and must match the
issuer in Provider Configuration as described in Section 2.2.1.

sub Subject Identifier is used to assign an unique and not reused identity per OP,
to an End-User. The combination of iss and sub claim should be used to identify
an End-User.

aud Audience claim must contain the client_id from the RP, for which the ID
Token is intended for. The RP is required to ensure that the ID Token is not issued
for another client.

iat Issued at Time is a token freshness claim. The RP must validate at time
of receiving, if ID Token is issued in an appropriate time frame. A clock skew
tolerance should be provided for not exactly synchronized systems and network
latency.

exp Expiration time after an ID Token becomes invalid. A RP must reject old,
expired ID Tokens.

nonce is another freshness parameter to mitigate replay attacks. RP sends it with
the Authentication Request and the OP adds it unmodified to the ID Token. The
RP must ensure that the sent nonce is equal to nonce in the ID Token. This claim
is required for Implicit Flow and Hybrid Flow.

at_hash is the left-most half of an Access Token hashed with algorithm used in
JWT alg header parameter. For Hybrid Flow and Implicit Flow, it is mandatory to
validate the Access Token, which is received over the front-channel.

c_hash is the left-most half of an Authorization Code hashed with algorithm used
in JWT alg header parameter. This is a mandatory hash for Hybrid Flow, which
must be validated before the code is used by the intended RP part.
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standard claims typical examples are name, email, preferred_username or address.
For Implicit Flow, these arguments are included in the ID Token, since only an Access
Token grants access to an UserInfo Endpoint to retrieve the claims.

2.4 OpenID Connect Flows

All previously described components can be combined, in subsequent explained,
OpenID Connect flows. For the flows shown in this section, it is assuming that
Relying Party is already registered to the OpenID Provider. A Discovery Endpoint
is not depicted. The End-User is intended to login to a predefined OP and Provider
Configuration is retrieved whenever it is required.

2.4.1 Authorization Code Flow

End-User User-Agent Relying Party OpenID Provider

Login (UL)

Login to OP (UL)

Redirect: Authorization Request (AR)

(AR) Authorization Request

Authorization and Consent UI (AUTH)

Auth UI

Auth

Authentication and Authorization (AUTH)

Redirect: Authentication Response (ARP)

Authentication Response (ARP)

Token Request (TR)

Token Response (TRP)

UserInfo Request (UR)

Userinfo Response (UR)

Figure 2.10: OpenID Connect Authorization Code Flow sequence diagram.

The Authorization Code Flow is intended for confidential RP clients, running on
server-side [29, Section 3.1]. Only the Authorization Code is revealed to the End-
User. Access Token and ID Token are known by RP and OP exclusively.
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For public clients, vulnerable to the Access Token Substitution attack, the extension
Authorization Code Flow with Proof Key for Code Exchange (PKCE) exists as a
mitigation [26]. This attack is feasible considering all client credentials are known by
an attacker, because they are shipped in a binary application or with a client-side web
application. In this scenario an attacker must be able to intercept the Authentication
Response and obtain the Authorization Code. To prevent this, a proof of possession
key is used, solely known by the initial honest client. Figure 2.10 illustrates the
communication between all parties for both variants.

User Login Usually an End-User can choose from a list with different "Login with
OpenID Provider" buttons. If only one provider is configured by the RP, it could
be just a login button or a link. With support of Issuer Discovery, regarding subsec-
tion 2.2.1, End-User can enter a well-known OP location. Afterwards, the browser
(User-Agent) sends this request to the RP.

Authentication Request The RP requests browser to redirect to selected OP as
explained in Section 2.2.4 and shown in Figure 2.5. Redirect request must contain
the previously registered redirect URI, the client_id, and all required user scopes.
For Authorization Code Flow, the response_type value must be set to code. An
optional state parameter can be added, to mitigate CSRF attacks against the
User-Agent. This must be bound to an End-User session, for example, a cookie [29,
Section 3.2.2.5]. The OP must store the issued code internally and add a reference
to End-User and RP.

With PKCE the additional parameter code_challenge and optional a code_chal-
lenge_method is issued to the Authentication Request. The method is used for the
Code Verifier transformation. Values are either plain (Plaintext) or S256 (SHA256).
It is recommended to register the client particularly for SHA256 and the OP must
solely allow this method. The code_verifier is generated as a cryptographical
random number. Subsequently, it is stored on client-side and transformed with the
chosen method. The OP must associate the Code Challenge and used method with
the later issued Authorization Code.

# Plain
code_challenge = code_verifier
# S256
code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

Listing 2.11: Pseudo-Code to generate a Code Challenge.

Auth The End-User it then required to login to the OP. OpenID Connect does not
specify this process and the illustrated steps vary per OP. Typically the End-User
logs in with credentials and afterwards accepts or denies the requested scopes on
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an optional consent page. If the user is already logged-in and client was previously
accepted, the OP can skip the Authentication process and send the Authentication
Response directly.

Authentication Response When OP has successfully validated the End-User login
attempt, the User-Agent receives another HTTP redirect response. The browser
sends the End-User back to referred callback, previously addressed with the redirect
URI in Authentication Request. RP receives the mandatory Authorization Code
as a query parameter. The optional state parameter can be validated to detect
a CSRF attack. In case of missing or mismatching state, the client must not
proceed.

Token Request To redeem an Authorization Code at the Token Endpoint, the RP
sends a Token Request. The grant_type parameter must be set to authorization
_code and the received Authorization Code must be included in code parameter. A
valid registered redirect URI location is required, where OP should send the Access
Token and ID Token afterwards. The RP uses client credentials to authenticate at
the Token Endpoint with methods described in Section 2.2.5.

The OP is obligated to check several security aspects [29, Section 3.1.3.2]. First,
it is essential that client credentials are valid. Second, a valid code was not used
previously and is issued to the requesting RP through an Authentication Response.
Third, the redirect URI must be identical to the URI used in Authentication Re-
quest.

With PKCE the RP sends an Authorization Code along with the Code Verifier to
the Token Endpoint. The OP must apply the transformation and verify the solution
regarding Listing 2.12.

# Plain
code_verifier == code_challenge
# S256
BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

Listing 2.12: Pseudo-Code to verify a Code Challenge.

Token Response The client receives an Access Token and an ID Token from the
Token Response. The client must validate the signature and claims in the ID Token
regarding Section 2.3.3.
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UserInfo The Relying Party is supposed to collect additional claims about the
End-User. Accordingly, these issued claims must correspond to the previously re-
quested scope. After issuing the Access Token to UserInfo Endpoint, a corresponding
UserInfo Response is received.

2.4.2 Implicit Flow

End-User User-Agent Relying Party OpenID Provider

Login (UL)

Login to OP (UL)

Redirect: Authorization Request (AR)

(AR) Authorization Request

Authorization and Consent UI (AUTH)

Auth UI

Auth

Authentication and Authorization (AUTH)

Redirect: Authentication Response (ARP)

Authentication Response (ARP)

UserInfo Request (UR)

Userinfo Response (UR)

Figure 2.13: OpenID Connect Implicit Flow sequence diagram.

The Implicit Flow is intended, for public clients, implemented in a scripting language
and executed in a browser. Relying Party depicted in Figure 2.13 runs in the User-
Agent. An End-User and the User-Agent have access to Access Token and ID Token.
In Implicit Flow all tokens are returned from the Authorization Endpoint [29, Section
3.2]. Token Endpoint is not used in this flow. It is recommended to use Authorization
Code Flow with PKCE instead of Implicit Flow [15].

User Login, Authentication and Authorization protocol steps are equal to Autho-
rization Code Flow 2.4.1. Other steps change as follows.

Authentication Request Regarding the Authorization Code Flow the following
parameters are changed in the Authentication Request (Listing 2.14). The param-
eter response_type is id_token or id_token token, as explained in Table 2.6.
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In addition, the nonce parameter is required and checked during ID Token valida-
tion.

GET /authorize?
response_type=id_token%20token
&client_id=s897dsafA
&redirect_uri=https%3A%2F%2Fclient.honest.org%2Fcallback
&scope=openid%20profile
&state=dasfSdasf532
&nonce=n-asdfWombd HTTP/1.1

Host: honest.com

Listing 2.14: Non-normative example for Authentication Request in Implicit Flow.

Authentication Response According to Listing 2.15 the ID Token and if requested
an Access Token is returned as a fragment component. The client is required to
validate the signature and claims in the ID Token. If an Access Token was requested,
the at_hash must be verified. The nonce in ID Token should be available and equal
to parameter in the Authentication Request.

HTTP/1.1 302 Found
Location: https://client.honest.org/callback#
access_token=SlAV32hkKG
&token_type=bearer
&id_token=eyJ0 ... NiJ9.eyJ1c ... I6IjIifX0.DeWt4Qu ... ZXso
&expires_in=3600
&state=dasfSdasf532

Listing 2.15: Non-normative example for Authentication Response in Implicit Flow.

UserInfo These protocol steps are equal to Authorization Code Flow 2.4.1, however
it is only available, with a retrieved Access Token.

2.4.3 Hybrid Flow

The Hybrid Flow is a mixture between Implicit Flow and Authorization Code Flow.
It is used in native applications or mobile applications. For example, a WebKit-
based web browser for the frontend and a bundled backend service. The frontend
application requires an ID Token to identify the user, as long as the token is not
expired. The backend service can try to load new content, when mobile connection
is available. In Figure 2.16 the horizontally dashed line between Authorization
Endpoint and Token Endpoint indicates, where a frontend service can transfer tokens
intended for the backend service. If the application is merely one client, no transfer
is required.
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End-User User-Agent Relying Party OpenID Provider

Login (UL)

Login to OP (UL)

Redirect: Authorization Request (AR)

(AR) Authorization Request

Authorization and Consent UI (AUTH)

Auth UI

Auth

Authentication and Authorization (AUTH)

Redirect: Authentication Response (ARP)

Authentication Response (ARP)

Token Request (TR)

Token Response (TRP)

UserInfo Request (UR)

Userinfo Response (UR)

Figure 2.16: OpenID Connect Hybrid Flow sequence diagram.

User Login, UserInfo, Authentication and Authorization protocol steps are equal to
Authorization Code Flow 2.4.1. Other steps change as follows.

Authentication Request Analogous to Implicit Flow a nonce is required. Regard-
ing Table 2.6 three combinations are available for response_type.

Authentication Response Regarding the requested response_type an Authoriza-
tion Code and at least one of Access Token or ID Token is returned from Au-
thorization Endpoint. For variants with ID Token, it is demanded that the client
validates its signature and claims. If an Access Token is requested, the at_hash
must be verified. An Authorization Code must be verified with c_hash. The nonce
in ID Token should be available and equal to parameter in the Authentication Re-
quest.
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In this chapter, we define our framework for the following security analysis. Starting
with introducing the attacker’s abilities and goals, we specify our security model.
Previously related efforts have revealed several well-known attack vectors and weak-
nesses. We gathered these attacks in Practical Offensive Evaluation of Single Sign-
On Services and considered them in manual analysis steps.

3.1 Attacker Capabilities and Goals

For the security analysis and the presented attacks in this chapter, we use the web
attacker model [1]. Thus, the attacker can deploy a malicious web service with a
valid TLS certificate to https://attacker.com. Attacker has full control over this
service without the ability to manipulate the network traffic. Hence, the malicious
web service can only send HTTP requests from an attacker-controlled network to
an honest server and answer with a HTTP response. A victim must visit the at-
tacker’s site with the browser. From this point, the attacker can call browser API
functionalities to load sites or open new windows. In addition, he can generate and
send cross-origin HTTP requests.

The attacker and victim in our OIDC lab environment can create new accounts on
every OP service. On the one side, an attacker can register his malicious RP to an
honest OP manually or with Dynamic Client Registration. On the other side, he
can manage to register an honest RP to his malicious OP by using the discovery
extension or offer his free OP service to administrators. Further he can try a URL
hijacking attack or takeover a forgotten sub-domain from a cloud service where
previously an honest OP was running.

After fulfilling these preconditions, an attacker can reach several goals. One goal is
to steal a valid token and redeem it at his own discretion. Therefore, an honest user
must be lured to use a service under attacker’s control. For example, this can be
accomplished by sending a malicious link to the victim or introducing a Cross-Site-
Scripting (XSS) attack and victim uses the malicious RP service to authenticate to
an honest OP. Hence, an attacker can steal the token and impersonate this user.
An attacker can try to login with his account to an honest OP. Afterwards by
using ID Token, he tampers data in the browser to bypass security checks on an
honest RP. This allows the attacker to impersonate any user. If the used digital
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signature, which protects an ID Token is bypassed or is not correctly validated this
ID Token can be abused. An attacker might use a known key set, for example,
from a malicious OP. Another goal is to bypass client authentication or to steal a
client secret from a web service. This allows an attacker to use an honest OP with
any malicious RP on behalf of the honest RP. Another attacker’s goal might be
executing arbitrary code or preparing an advanced attack to gain direct access into
an honest web service.

3.2 Common Web Vulnerabilities

The following basic attacks represent an overview of attack vectors in the context of
OpenID Connect. These can be applied or serve as a foundation for attacks in this
chapter. OWASP Top 10 [8] lists several of these attacks. This indicates that they
should be taken seriously.

Broken Authentication An attacker can directly try a brute force attack or a
dictionary attack against the OP to login with credentials from an End-User. The
other possibility is to steal an OIDC token or to forge a new token which an OP or
RP accept.

Man-in-the-Middle (MitM) This is an attack, where an attacker places himself
into the communication channel between two trusting parties. Implicit Flow and
Hybrid Flow are more vulnerable to this type of attack. For example, a mobile
application accesses a public WLAN Hotspot, and an attacker can manipulate the
ID Token, if it is not secured properly.

Cross-Site-Scripting (XSS) Is a web application vulnerability, which tries to exe-
cute an attacker script in the victim’s browser. Once executed, it steals data from
local browser storage or from cookies. Furthermore, an attacker can redirect an
End-User to a malicious website.

Local File Inclusion (LFI) An attacker tries to load a local file which is executed
by the web server. On the one side, this discloses information if the file content is
displayed. On the other side, it might execute commands or prepares a XSS attack.
A similar attack is called Remote File Inclusion (RFI), where the victim server loads
an external malicious resource.
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Denial of Service (DoS) This attack aims to produce a high amount of load on
server side and denies End-User from using a service. An attacker can try to generate
huge log files or reference large files which the victim server downloads. In addition,
cryptographic operations can also generate a high server load.

Server Side Request Forgery (SSRF) An attacker transforms an URL or a re-
source file which is indented for internal usage or communication between server.
An attacker gains direct access to internal resources or prepare an advanced attack.
In addition, he can perform requests towards background services that should not
be exposed externally.

3.3 Single-Phase Attacks on Relying Parties

The following explained attacks are executed with modifications in a single step.
One case is that developers did not adhere to recommendations in the specification,
or an attacker abuses parameters to change the RP internal code flow. Another
case is that the developers have overseen a flow or extension specific requirement
change. If RPs do not handle parameters or error paths correctly, these attacks
succeed.

3.3.1 Cross Side Request Forgery (CSRF)

The CSRF is an attack used to send malicious requests from an authenticated End-
User. An attacker obtains authorization to a protected resource without the consent
of the End-User [17].

Attack An attacker creates an account on behalf of the victim. Afterwards he
starts the Authentication Request and intercepts the Authentication Response. The
victim user must be lured to click on a callback link with the obtained Autho-
rization Code. Without a protection, the RP follow this link and redeems the
Authorization Code. Victim gains access to RP with an account owned by the
attacker.

Countermeasure The RP should use state parameter to link an Authentication
Request with the redirect URI. Therefore, the state parameter is bound to an
End-User session. If a wrong or missing state is returned in the Authentication
Response, the obtained tokens should not be used.
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3.3.2 Token Substitution (TS)

The Token Substitution (TS) attack aims to swap tokens from an account under
attacker’s control to the victim’s session. Tokens that are exposed in the front-
channel and available in the browser can be manipulated, easily. This is known as
the "cut and paste" attack [29, Section 16.11.].

Attack There are two variants for this attack.

Variant 1: An attacker eavesdrops on an Authorization Code or Access Token from
another session of a victim user. Thus, the attacker swaps the received token with
his session tokens. If the RP cannot verify this token, an attacker can access the
victim’s account functions.

Variant 2: An attacker can login to a malicious account and swaps his obtained
Access Token within the victim’s browser. The victim has access to the malicious
account without noticing it. For example, the End-User may upload confidential
files to the malicious account.

Countermeasure For Implicit Flow and Hybrid Flow the ID Token is signed. In
subsection 2.3.3 the at_hash is described, which prevents an Access Token substitu-
tion. For, Hybrid Flow the at_hash should be verified to prevent an Authorization
Code substitution. In addition, the RP should validate other identifiers, for example,
aud, iss, and sub.

3.3.3 ID Spoofing (IDS)

The ID Spoofing (IDS) attack targets identity related information [18, 19]. A ma-
licious OP tries to impersonate an End-User which is registered to another OP.
Regarding subsection 2.3.3, the combination of iss and sub is used to identify an
End-User.

Requirement RP is registered to honest and malicious OP.

Attack There are two variants for this attack.

Variant 1: With a malicious OP key, the attacker signs an ID Token with identifiers
of an End-User registered to honest OP.

Variant 2: An UserInfo is requested by the RP and malicious OP provides identifiers
of an End-User registered to honest OP. This variant bypass the signature check of
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an ID Token. If the RP overwrites ID Token information with data obtained from
UserInfo in JSON format, this attack succeeds.

Accordingly, how a RP identifies an End-User in the database, different attack sce-
narios are likely to use these variants. For example, in Listing 3.1 iss and sub from
an honest OP are issued in the UserInfo. Another example is to provide only iss
and additional claim information without a sub.

Besides the specified identifiers, the RP might use any additional claims from the
ID Token or UserInfo for End-User identification. The attack is successful, if the RP
accepts provided identifiers and the attacker gained access to the honest End-User
account.

1 {
2 "sub": "honest-op-user",
3 "iss": "https://honest-op",
4 "name": "Honest User",
5 "email": "user@honest.com",
6 "preferred_username": "evil-user-name"
7 }

Listing 3.1: IDS (sub+iss) with ID Token including sub and iss from honest OP.

Countermeasure A countermeasure is to strictly match the required iss and sub
claim from ID Token to identify an End-User. When an UserInfo is retrieved, the iss
and sub from ID Token must match inevitably. If the ID Token is signed, it should be
verified that the signature key matches the corresponding issuer from Provider Con-
figuration. Additional claims, for example, name and email should not be referenced
as replacement for a missing sub claim to identify an End-User.

3.3.4 Replay Attack (RA)

The Replay Attack (RA) is a well-known attack vector on freshness parameters from
a protocol. An attacker circumvents the time restrictions and reuses the same ID
Token multiple times [19]. For example, if the iss is not validated appropriately
(IDS), an attacker can replay a leaked ID Token with a malicious OP from another
honest OP.

Countermeasure For an ID Token, the OpenID Connect specification defines three
freshness claims. These are the exp and iat which are always required as explained
in subsection 2.3.3. For clock sync differences between RP and OP a few minutes
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fault-tolerance are appropriate. This time offset must be considered for past and
future.

The third claim is the nonce value, which must exactly match the nonce parameter
provided in the Authentication Request. Developers must be aware that an attacker
can exclude the nonce parameter in the Authentication Request. Thus, nonce in
ID Token should be used as indicator for the use of this freshness parameter. For
Implicit Flow and Hybrid Flow, the nonce is required. With a nonce, the one-time
use requirement against replay attacks can be solved.

3.3.5 Signature Manipulation (SM)

The Signature Manipulation (SM) attack targets signature validation of an ID To-
ken [3]. Tim McLean [20] has discovered that many libraries are allowing to by-
pass the Signature check. The called Unsecured JWT [12] grants an attacker to
use the none algorithm. If the library supports none algorithm or incorrectly val-
idates the signature, an attacker can manipulate the claims inside an ID Token.
Highest risk applies to Authorization Code Flow with PKCE, Hybrid Flow, and
Implicit Flow which exchange tokens via the front-channel or in an insecure public
network.

Attack In Listing 3.2, the attacker creates an ID Token with the none algorithm to
bypass the signature validation. If this attack succeeds, the attacker can impersonate
any End-User from each OP known to the RP.

1 {
2 "typ": "JWT",
3 "alg": "none"
4 }

Listing 3.2: SM attack with none algorithm in JWT header.

Countermeasure A RP service must detect an invalid signature, signed with an
unknown key. The none and any insecure cryptographic algorithm should be blocked
per default. They should solely be whitelisted explicitly [21].

3.3.6 Key Confusion (KC)

Key Confusion (KC) is a further attack to break the ID Token signature validation.
The attacker’s goal is to use a key of his choice to verify the ID Token [18]. This
attack is also known as Algorithm Substitution [3].
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Attack The KC attack considers two variants. To bypass the digital signatures or
using unexpected Message Authentication Codes (MACs).

Variant 1: Attacker includes an own key to the JOSE header. The JWS [11]
defines fields to add a public key directly JSON Web Key (jwk) or as reference
to a JWK Set URL (jku). Corresponding for X.509 public key certificates the
fields X.509 Certificate Chain (x5c) and X.509 URL (x5u) exists. For example, in
Listing 3.3 the attacker includes a jku and signs the ID Token with this key. If
the RP requests the referenced URL and uses it for verification, this attack suc-
ceeds.

1 {
2 "jku": "https://attacker-op/untrusted-key",
3 "kid": "lkb1aIINeOSs",
4 "typ": "JWT",
5 "alg": "RS256"
6 }

Listing 3.3: KC attack with untrusted key in jku inside JWT header.

Variant 2: Tim McLean [20] has investigated several libraries. He observed that
the implementations using same verification function for symmetric and asymmetric
operations as shown in Listing 3.4. An attacker can abuse this functionality by using
the OP’s public key as a shared key. The attacker can reference other keys with the
method from Variant 1.

# HMAC verification
verify(clientToken, serverHMACSecretKey)
# RSA verification
verify(clientToken, serverRSAPublicKey)

Listing 3.4: Same verification function call for RSA and HMAC.

Countermeasure Only keys and algorithms from Provider Configuration and ne-
gotiated during Registration should be used. The Header fields in the ID Token
should not use additional referenced key material for JWS or JWE [29]. RP should
verify that the referenced key belongs to the OP.

3.3.7 Token Recipient Confusion (TRC)

The ID Token is intended for a specific client. With a successful Token Recipient
Confusion (TRC) attack, an attacker reuses this ID Token for different clients [18,
24].
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Attack The attacker creates a malicious RP. A victim must be lured to authen-
ticate at the RP and the attacker reuses the obtained ID Token for a different
client.

Countermeasure The aud claim contains the client_id. A RP must validate that
this claim exists, and the client_id is correct. Since an OP is used for various RPs,
it is mandatory that a RP client verifies the recipient information [19].

3.4 Cross-Phase Attacks on Relying Parties

This section describes a more complex attack scenario. In a Cross-Phase attack,
several steps are required to start a successful attack. The following Malicious End-
point Attack (MEA) and IdP Confusion (IDPC) attack using specification flaws.
They abuse a missing connection between Authorization Endpoint and Authoriza-
tion Code redemption to the Token Endpoint. Therefore, these attacks cannot be
fixed without a protocol specification change. The other two Cross-Phase attacks
are implementation flaws.

3.4.1 Malicious Endpoint Attack (MEA)

The idea of a MEA is to confuse and enforce the RP to send its client credentials
together with a valid Authorization Code to an OP under attacker’s control [19].
Implicit Flow is not affected from this attack.

Requirement A successful attack requires support of Provider Configuration and
Dynamic Client Registration. With Issuer Discovery, it offers an even wider attack
surface.

Attack The following steps explain the attack in Figure 3.5.

Step 1: The victim must be registered to honest OP and is tricked to login with
alice@attack-op instead of alice@honest-op on the RP website.

Step 2: Regarding Listing 3.6, Registration Endpoint and Authorization Endpoint
from honest OP is referenced in 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠.

Step 3: RP starts the registration automatically. The attack-op is a new issuer for
the RP.

Step 4: RP redirects End-User to a trusted login page of the honest OP.
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Victim Relying Party Honest OP Malicious OP

1. alice@attacker-op

2. Provider Configuration

2. issuer, token-endp, reg-endp, auth-endp

3. Client Registration

4. Auth

code

5. code, client_id, client_secret

Figure 3.5: Malicious Endpoint Attack manipulates Provider Configuration.

Step 5: RP sends the Authorization Code with client_id and client_secret to the
Token Endpoint, which is owned by the malicious OP.

Step 6: The malicious OP redeems the Authorization Code together with client
credentials at the Token Endpoint of honest OP. Attacker impersonates
the victim.

1 "issuer": "https://attack-op/",
2 "jwks_uri": "https://attack-op/jwks",
3 "token_endpoint": "https://attack-op/token",
4 "authorization_endpoint": "https://honest-op/authorization",
5 "registration_endpoint": "https://honest-op/register",

Listing 3.6: Discovery metadata for a MEA.

Countermeasure The countermeasure for this attack is currently in discussion and
work in progress [30]. The base idea is to provide the RP information about received
Authorization Code in the Authentication Response. In Listing 3.7, one can see that
an additional issuer is provided in the Authentication Response. The RP should use
this information as a sanity check.
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HTTP/1.1 302 Found
Location: https://client.example.org/cb?

code=Qcb090450349sdafgAsDF-fdfsa34zdfdf5ksad890fGa8dsg
&state=4387f0asd8435jilhkjhlkjdsaf
&iss=https://honest-op

Listing 3.7: Concept to encounter a mix up attack with iss in Authentication
Response.

3.4.2 IdP Confusion (IDPC)

IDPC is an attack which is described in previous work [19]. It uses the missing
linkage between the issued Authorization Code from an honest OP and the Token
Endpoint where it is supposed to be redeemed. Implicit Flow is not affected from
this attack.

Requirement RP is registered at malicious and honest OP or it supports Issuer Dis-
covery. The client_id must be the same for both OPs.

Attack The following steps explain the attack in Figure 3.8.

Step 1: The victim End-User visits a website under attacker’s control or clicks on
a malicious link. This starts a login attempt to account alice@attacker-op
controlled by the attacker.

Step 2: If Provider Configuration is supported by RP, it retrieves metadata from
malicious OP.

Step 3: RP redirects to the Authorization Endpoint from the malicious OP.

Step 4: Malicious OP redirects the End-User again to the honest OP but replaces
nonce parameter.

Step 5: Victim End-User must login to his account at honest OP or is signed in
automatically through previous login.

Step 6: Honest OP response with a valid Authorization Code and state parameter
to the RP.

Step 7: With state parameter, RP expects that it communicates with the mali-
cious OP. RP redeems the Authorization Code together with client creden-
tials to the malicious Token Endpoint.

Step 8: Attacker can use the Authorization Code and client credentials to access
victim’s account functionalities at the honest OP.
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Victim Relying Party Honest OP Malicious OP

1. alice@attacker-op

2. Provider Configuration

2. issuer, token-endp, reg-endp, auth-endp

3. Redirect: Malicious OP

3. Authentication Request

4. Redirect: Honest OP

4. Authentication Request

5. Auth

5. Auth

6. Redirect: Authentication Response code, state

6. Authentication Response

7. Token Request: code, client_id, client_secret

Figure 3.8: IdP Confusion attack flow diagram.

Countermeasure The countermeasure is the same mitigation as proposed in sub-
section 3.4.1.

3.4.3 Session Overwriting (SO)

A web application requires storing some objects between subsequent requests. The
Session Overwriting (SO) targets the End-User session storage [24]. It overwrites ob-
jects stored in the browser session. The target is to manipulate the session Endpoint
metadata received from Provider Configuration. An attacker abuses the session stor-
age mechanism to redeem tokens at malicious OP instead of intended honest OP.
The attacker confuses the RP to use an ID Token signed with a malicious OP key
in the name of honest OP.

Requirement RP is registered at malicious and honest OP or RP supports Issuer
Discovery.
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Attack The SO attack considers two variants.

Variant 1: The following steps explain the SO attack in Figure 3.9.

Victim Relying Party Honest OP Malicious OP

1. alice@honest-op

1. Provider Configuration

1. Metadata

1 Redirect: Honest OP

1. Authentication Request

1. Auth

1. Auth

2. Redirect: Authentication Response code

3. alice@malicious-op

3. Provider Configuration

3. Metadata

5. Authentication Response

6. Token Request: code, client_id, client_secret

Figure 3.9: Session Overwriting attack flow diagram.

Step 1: The victim End-User visits a website under attacker’s control or clicks on
a malicious link. This starts a login attempt to account alice@honest-
op and stores the 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝐻𝑜𝑛𝑒𝑠𝑡 in the current session. The End-User
authenticates himself at the honest Authorization Endpoint.

Step 2: The attacker intercepts Authentication Response in the browser.

Step 3: A second OP discovery is started. This time with alice@malicious-op and
overwrites the current session with 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠.

Step 4: The attacker stops the Authentication Request to the malicious OP.
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Step 5: Attacker resumes the intercepted Authentication Response to the honest
OP.

Step 6: For Authorization Code Flow and Hybrid Flow, the Token Endpoint stored
in the session is overwritten. The RP sends Authorization Code together
with client credentials to the malicious OP. In Implicit Flow the UserInfo
Endpoint can be used in case RP requests further information and uses the
Access Token to access this data. For each case, the attacker gains access
to the victim End-User account.

Variant 2: This combines the Key Confusion attack with Session Overwriting. The
client_id must be the same for both OP. In Figure 3.10 the steps for Implicit Flow
are depicted.

Victim Relying Party Honest OP Malicious OP

1. alice@malicious-op

1. Provider Configuration

1. Metadata

1 Redirect: Malicious OP

1. Authentication Request

1. Auth

1. Auth

3. alice@honest-op

3. Provider Configuration

3. Metadata

4. Authentication Response: ID Token

Figure 3.10: Key Confusion with Session Overwriting attack flow diagram.

Step 1: The victim End-User visits a website under attacker’s control or clicks on
a malicious link. This starts a login attempt to account alice@malicious-op
and stores the 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 in the current session.

Step 2: The attacker stops the Authentication Response from malicious OP.
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Step 3: A second OP discovery is started for alice@honest-op to overwrite the ses-
sion with 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝐻𝑜𝑛𝑒𝑠𝑡.

Step 4: Attacker resumes the Authentication Response in step 2 with an ID Token
signed with the malicious key. The ID Token is issued with iss and sub
from the honest OP which are overwritten in the session through step 3. If
the RP has retrieved the key material in step 1 and bound it to the session,
this attack succeeds.

Countermeasure For mitigation the state parameter should be used. It should
be bound to the session and the OP. Other appropriate CSRF countermeasures can
mitigate these attacks, too. The strong authentication methods client_secret_jwt
and private_key_jwt can also prevent an attack.

3.4.4 Issuer Confusion (IC)

Issuer Confusion (IC) [19] aims to confuse the RP with an ID Token and a manip-
ulated Provider Configuration. Therefore, the attacker signs an ID Token while RP
assumes it has been issued by honest OP.

Requirement RP is registered at malicious and honest OP and support Issuer
Discovery.

Attack The victim starts login to alice@malicious-op. The malicious OP provides
in the discovery metadata the issuer parameter https://honest-op. Regarding the
flow, it proceeds all other steps. Finally, the malicious OP signs an ID Token with
iss claim for https://honest-op.

Countermeasure The RP must verify that the issuer parameter received in the
metadata matches the called URL in order to retrieve the metadata [29, Section
4.3].

3.5 Attacks on OpenID Provider

In this section we introduce seven attack vectors. These attacks abuse implemen-
tation flaws. Incorrect validation and verification steps are also a threat for Re-
lying Parties. The most critical step is the redirect URI verification. If it is not
handled correctly, the redirection can be abused to prepare several attack scenar-
ios.
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3.5.1 Open Redirector (OR)

This attack is well-known for various protocols and is described in the OAuth 2.0
framework specification [9, Section 10.15.]. The Open Redirector (OR) is using
a redirect URI parameter to redirect an End-User automatically to the specified
location without any validation. An attacker can abuse this for phishing attacks
or to redirect End-Users to a malicious website. Furthermore, if the redirection
is not validated by the OP, tokens can be leaked to a website under attacker’s
control.

Attack The attacker includes invalid scopes to the Authentication Request and a
redirect URI of attacker’s choice. This is demonstrated in Listing 3.11. Another
option is to abuse a wildcard redirection to honest RP into a location where an
attacker controls the site or tokens are displayed.

GET /authorize?
response_type=code
&scope=openid+Invalid+Scope
&client_id=s897dsafA
&redirect_uri=https%3A%2F%2Fevil.attacker.org%2Fcallback HTTP/1.1
Host: honest.com

Listing 3.11: Authentication Request with invalid scopes.

Countermeasure The OP should only automatically redirect to trusted redirect
URI [16]. The wildcard URI should be considered as less trusted. An automatically
redirection to untrusted should not be performed. The End-User may be informed if
a redirection to the provided URI is intended. In an error case, the OP must validate
the redirect URI. This mandatory check should not be skipped.

3.5.2 Redirect URI Manipulation (RUM)

The Redirect URI Manipulation (RUM) attack aims to lure a victim to login at
an honest RP client, with a manipulated redirect URI [9, Section 10.6.]. It uses
the fact that several OPs allow to register redirect URI with patterns instead
of strictly matching URI. Insufficient pattern matching and wrong URI decoding
enables the attacker to abuse the redirect URI. OP sends User-Agent with ob-
tained tokens depending on the flow and endpoint to an URI under attacker’s con-
trol [16].

In a mass evaluation, Lau et al. [31] have analyzed several OAuth implementations.
They determined that several implementations allow domain whitelisting, prefix
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matching, or arbitrary schemes. Together with classic unicode attacks on URI en-
coding and decoding summarized in a Unicode Security Guide [32] they have found
several flows. An attacker can try to use a redirect URI registered for other RP
clients.

# Over-consumption
https://attacker%ff@honest.com -> https://attackernest.com
https://attacker%ff.honest.com -> https://attackernest.com
# Scheme Manipulation
attacker.com://honest.com -> https://attacker.com://honest.com
# Append TLD
https://honest.evil-tld/callback/
https://honest.evil-tld.com/callback/
# Subdomain
https://evil-sub.honest.com/callback/
# Path
https://rp.honest.com/callback/additional-path
# Userinfo
https://rp.honest.com/callback:pass@rp.evil.com/callback -> rp.evil.com/callback
https://rp.honest.com:pass@rp.evil.com/callback/callback -> rp.evil.com/callback
# Parameter Pollution
redirect_uri=https://rp.honest.com/callback&redirect_uri=https://rp.attacker.com/callback

Listing 3.12: Overview of several RUM variants using different manipulations.

Attack There are the following two variants of this attack.

Variant 1: In a RUM on Authorization Code Flow, the attacker sends the victim
an email with the manipulated Authentication Request. Therefore, the attacker can
use a pattern shown in Listing 3.12. If an attacker manipulates the Token Request,
RUM can be applied also against the Token Endpoint.

Variant 2: RUM on Implicit Flow can be applied against the Authorization End-
point, as in Variant 1. In addition, a further attack can be utilized with the special
fragment handling. It assumes the registered URI pattern client.honest.com/cb?*.
If this callback supports a redirect_to as Open Redirector, an attacker can abuse it.
First, the victim follows the link shown in Listing 3.13.

GET /authorize?response_type=token&state=9ad67f13
&client_id=honest-id
&redirect_uri=https://rp.honest.com/cb?redirect_to=https://attacker.com/

Listing 3.13: RUM in Implicit Flow, for readability without HTTP encoding.

Second regarding Listing 3.14, the OP responses with the Open Redirector URI.
Finally, the RP redirects to the attacker’s site and can get the Access Token and ID
Token from the fragment.
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https://rp.honest.com/cb?
redirect_to%3Dhttps%3A%2F%2Fattacker.com%2Fcb
#access_token=a78a9sdf987asdR&id_token=eyJ0 ... NiJ9.eyJ1c ... I6IjIifX0.DeDt5Qu ... ZDso

Listing 3.14: Authentication Response with redirect_to.

Countermeasure The OP should only allow strict matching redirect URIs, and
wildcard redirects should be avoided. RP clients should not expose an OpenID
Provider at callback address [16]. The only exception can be port numbers required
for native apps which are using a localhost address [2].

3.5.3 Authorization Code Reuse and Substitution

This attack validates the one-time usage of the Authorization Code. It checks the
link between client and Authorization Code [29, Section 16.9, 16.11].

Authorization Code Reuse: The attacker reuses a previously obtained Authorization
Code. For example, this can be an Authorization Code from server logs or browser
history.

Authorization Code Substitution: Regarding TS attack the attacker swaps the Au-
thorization Code.

Countermeasure An Authorization Code must be used only once for a specific
client. In case of an error, the Authorization Code must be revoked. Previously
issued ID Token and Access Token can be revoked. This should be considered for
Hybrid Flow.

3.5.4 Client Authentication Bypass (CAB)

The Client Authentication Bypass (CAB) is a preparation to redeem an Authoriza-
tion Code at the Token Endpoint. If an attacker steals an Authorization Code, it is
required to present the client credentials an OP. This attack aims to bypass or down-
grade the authentication method. The attacker’s goal is to redeem the Authorization
Code with malicious RP.
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Requirement Malicious and honest RP are registered to the same OP.

Variant 1: The authentication methods client_secret_basic and client_secret
_post hold the same security property. An attacker issues invalid or missing values
for client_id and client_secret to both authentication methods.

Variant 2: If the JWT JOSE header is not properly secured, the attacker can start
the same bypass attack as described in subsection 3.3.5. For example, the attacker
applies algorithm none to bypass the signature validation.

Variant 3: In an Authentication Method Confusion (AMC) the attacker tries to use
another client authentication, which is less secure. The attacker redeems Authoriza-
tion Code with Basic Authentication instead of a JWT Authentication Method.

Countermeasure An OP should not allow to use authentication methods with
different security properties. OP should only allow the registered methods, and error
paths must be handled properly. It is recommended to use asymmetric methods for
client authentication [16].

3.5.5 Message Flow Confusion (MFC)

The response_type and the optional response_mode parameter exists for the Au-
thentication Request. An attacker manipulates these parameters for a Message Flow
Confusion (MFC) attack. The attacker obtains tokens not intended for the specific
flow or RP cannot handle the mode properly. This attack can reveal sensitive data
or bypass other security features. For instance, PKCE cannot be applied in an
enforced Implicit Flow.

Variant 1: An attacker uses other response_type values as negotiated during the
client registration. If it is not properly handled by the OP, an attacker changes from
Authorization Code Flow to Implicit Flow. Here, the Access Token and ID Token
are exposed in the Authentication Response.

Variant 2: The parameter response_mode is used to change the mode between
query, form_post and fragment. In Implicit Flow, the attacker uses query to
expose the tokens into query parameters. The attacker can directly read these
tokens in the browser history.

Attack The following variants can be combined to expose tokens in a channel under
the supervision of an attacker. To attack a RP registered with Authorization Code
Flow, the attacker creates a link with parameters in Listing 3.15.
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GET /authorize?
response_type=id_token%20token
&response_mode=query
&client_id=s897dsafA
&redirect_uri=https%3A%2F%2Fclient.honest.org%2Fcallback
&scope=openid%20profile HTTP/1.1
Host: honest.com

Listing 3.15: Authentication Request link preparation to change to Implicit Flow
and expose tokens as query parameters.

If this attack is successful, the OP responses with Listing 3.16. One can see query
(?) mode is used instead of fragment (#). The Access Token and ID Token are
provided instead of the Authorization Code.

HTTP/1.1 302 Found
Location: https://client.honest.org/callback?

token_type=bearer
&access_token=SlAV32hkKG
&id_token=eyJ0 ... NiJ9.eyJ1c ... I6IjIifX0.DeXT4Qu ... ZXso
&expires_in=3600

Listing 3.16: Successful MFC attack with ID Token and Access Token in query
parameter.

Countermeasure An OP should allow solely one flow per client instance. A client
registered for Authorization Code Flow cannot request a response_type other than
code. The parameter response_mode=query is not allowed for Implicit Flow [22].
Access Token and ID Token must not pass in a URI query [16]. The form_post can
be used alternatively.

3.5.6 PKCE Downgrade Attack (PDA)

The PKCE is an additional security feature, introduced in subsection 2.4.1. PKCE
Downgrade Attack (PDA) can remove this feature or allow the attacker to use
the simpler Plaintext method. An attacker manipulates the flags code_challenge
and code_challenge_method in the Authentication Request [16]. Both parame-
ters are available in the front-channel with purpose to signal that PKCE is sup-
posed to be used. For mobile application which moved from Implicit Flow to
Authorization Code Flow with PKCE this means no additional security is pro-
vided.
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Attack The attacker removes code_challenge from Authentication Request. In
case, OP does not validate that code_verifier is issued in Token Request this at-
tack succeeds. If this is not possible, the attacker can change code_challenge_method
to Plaintext and store the code_challenge. Afterwards the attacker intercepts the
Token Request of honest RP or being faster in redeeming the Authorization Code.
With a malicious RP, the attacker can redeem the Authorization Code and issues
the stored Code Challenge as Code Verifier.

Countermeasure The OP must detect a missing code_challenge parameter in the
Authentication Request, if a code_verifier is supplied in the Token Request [16].
The Code Challenge should be bound to the issued Authorization Code. As a pro-
tection against eavedroppers, code_challenge_method should not allow downgrade
to Plaintext mode [26].

3.5.7 Sub Claim Spoofing (SCS)

The attack Sub Claim Spoofing (SCS) abuses optional claims parameter in the
Authentication Request. It aims to pass additional claims identifying an End-User
to the requested ID Token. If an OP is not handling the sub claim correctly, an
attacker can impersonate an arbitrary End-User [24].

Attack The attacker requests in the claims parameter sub of a victim shown in
Listing 3.17. An attacker includes the sub as an array with a malicious and honest
user to bypass the validation. Other claims might be also used for this attack to
overwrite claims in the ID Token.

1 {
2 "userinfo":
3 {
4 "given_name": {"essential": true},
5 "nickname": null,
6 "email": {"essential": true},
7 "email_verified": {"essential": true},
8 },
9 "id_token":

10 {
11 "sub": "value": "Victims-Sub"
12 }
13 }

Listing 3.17: SCS example with victim sub in claims request.
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Countermeasure Misunderstood claim members must be ignored. The OP should
not add additional claims to the ID Token without verification that the claim is
valid in this request scope [29, Section 5.5].





4 Lab Environment

For the security analysis, several RP and OP services should run in a secured lab
environment. A containerization technology offers the opportunity to isolate each
service. It also reduces issues with different build dependency requirements. Due to
current popularity Docker is used for OS-level virtualization. The docker containers
provides reproducible results and a maintainable test environment for the following
security analysis. Docker is well documented, stable, and examples are available for
several RP and OP services.

The created lab framework must serve several preconditions. It must provide a possi-
bility to execute manual security analysis and automatic analysis with PrOfESSOS.
The docker server runs either on a developer machine or on a server in a data cen-
ter. Services inside the containers must be reachable without a complicated client
setup for each lab user. Different service configuration and target versions should
run in the lab environment. This is archived with build and run-time environment
variables. In addition, it should be possible to reset every service to an initial state,
to ensure there are no errors from previous tests.

The following sections explain the lab structure and the purpose of each compo-
nent.

4.1 Selection of OpenID Connect Implementations

We have selected OpenID Certified implementations, which claims to support Im-
plicit Flow, Hybrid Flow, or both flows. This reduces the amount of valid target
implementations to the scope of this thesis. It provides an up-to-date overview about
certified implementations that delivers a higher trust relationship.

Another limitation is that the services must run On-Premise and without a license
fee. Several OP implementations offer a Software as a Service platform and cannot
be integrated into a lab environment.

The most RP and OP services can be deployed on Linux based operation systems.
Therefore, Windows exclusive implementations are out of scope to reduce initial lab
complexity.
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4.1.1 Selected Relying Parties

The listed certified RPs [6] providing libraries or example implementations. We
selected the RPs in Table 4.1, which fulfills the previously defined selection criteria.
For local development and testing, we used Okta as a SSO provider service with
OIDC support. This gives the required stability and reduced the overhead to test
the implementations.

Flow

Name Language Version
Discovery /

Code Implicit HybridDynamic
Registration

angular-auth-oidc-client Angular 10.0.15 no / no yesa yes no

angular-oauth2-oidc Angular 9.2.2 no / no yesa yes no

express-openid-client Java- 1.0.1 no / no yes yes yes
(node openid-client) Script (3.14.1) (yes / yes) (yes) (yes) (yes)

MITREid Connect Java 1.3.1 yes / yes yes no no

mod_auth_openidc C 2.4.2.1 no / yes yes yes yes

phpOIDC PHP rev166 yes / yes yes yes yes

pyoidc Python 1.1.2 no / yes yes yes yes

OidcRP Python 0.6.10 no / yes yes yes yes

Table 4.1: Overview about selected Relying Parties.
aAuthorization Code Flow with PKCE is supported.

In particular, both angular libraries offer documentation to create a web applica-
tion. The developers still work on a first release with full Authorization Code Flow
and PKCE support. They are not certification ready, yet. Programmers already
recommend using this flow in the future, instead of insecure Implicit Flow. The
client is configured in both implementations during compile time and limited to one
OP.

The node oidc-provider implementation cannot be used directly. An application de-
veloper must write the security related checks. Therefore, we decided to use express-
openid-client as a Middleware, that is based on node oidc-provider. The downside of
this decision is the missing support of Issuer Discovery and Dynamic Client Registra-
tion. The service provides client configuration in a static built-in configuration file.
We configured the client to use Implicit Flow (ID Token).

Apache server module mod auth openidc can be installed without issues. It provides
user claims in the header information after a successful login. We implemented a cus-
tom minimal PHP page to retrieve and display this data.
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The pyoidc provided example implementation is outdated. It cannot be used in its
current state. Instead, we use a self-written flask example, with a dependency mod-
ule Flask-pyoidc which is based on pyoidc. A static configuration for different OPs
is possible. The Dynamic Client Registration in this flask module has a bug in the
current version. It requires a workaround to support Dynamic Client Registration
in the flask module implementation. The redirect URI registered during registra-
tion phase is inherited from the Provider Configuration response. Hence, there is no
validation anymore. This change creates a security flaw which must be considered
in the security analysis. Another bug occurs during the client registration. The
client always registers with Authorization Code Flow. Subsequently, the intended
flow must be corrected on server side.

Developers of OidcRP provide a running client sample. Implicit Flow and Hybrid
Flow are both not supported. The developers partially implemented it. An essential
part for fragment parsing and different token handling is not implemented. Conse-
quently, the client is solely configured for Authorization Code Flow.

The phpOIDC client implementation runs out-of-the-box. If an OP supports Issuer
Discovery, it can be tested with this implementation. The client can be registered
and used with all flows.

MITREid Connect client is a reference implementation to test PrOfESSOS. It does
only support Authorization Code Flow. In addition, the client supports Issuer Dis-
covery and Dynamic Client Registration. We use this stable client to test the other
OPs.

4.1.2 Selected OpenID Providers

An OP service requires implemented user and client management in order to carry
out a comprehensive security analysis. In most cases this demands a database or at
least several configuration files. A service implementation should provide this among
the required OIDC features. Through the requirements and that they are often act-
ing in the background for normal users, there are more full featured implementations
available than library only implementations.

Nine implementations meet the requirements. Among them, five services can run
in the lab environment with no time-consuming adaptions. The MITREid Connect
server considered as reference implementation to test PrOfESSOS is included. Gluu
Server and OIDC OP Overlay for Shibboleth IdP plugin are not included, due to
complex configuration requirements. SimpleIdentityServer is deprecated and the
new fork is currently not certified. The new client cannot be compiled anymore with
a Linux based docker container. Documentation mentions a Windows VM in the
Azure Cloud. Although pyoidc OP is not included. The example server is outdated
and is not running in the current major version.
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All listed implementations in Table 4.2 supports Provider Configuration and Autho-
rization Code Flow with PKCE.

Flow

Name Language Version Dynamic Client Code Implicit HybridRegistration

IdentityServer4 C# 3.1.3 no yes yes yes

Gravitee.io Java 3.0.2 yes yes yes yes
Access Management

Keycloak Java 10.0.2 yes yes yes yes

MITREid Connect Java 1.3.3 yes yes no no

node oidc-provider Java Script 6.17.3 yes yes yes yes

phpOIDC PHP rev166 yes yes yes yes

Table 4.2: Overview about selected OpenID Providers.

IdentityServer4 offers a lightweight framework to create an OP service. It provides
example implementations alongside the source code. Clients and users are stored di-
rectly in source files and creates an In-Memory-Database. Implicit Flow and Hybrid
Flow can be configured. The required functionality is not included in the example
implementation.

The full featured production ready OP platforms Gravitee.io Access Management
and Keycloak are shipped as docker images. Both use databases to store persistent
data about users and clients. They offer an administrative dashboard to configure
allowed flows and security specific options. These configurations can be enrolled for
every client or as a template for newly registered clients if Dynamic Client Regis-
tration is allowed.

Node oidc-provider offers an example OP server. User accounts are configured in
the source code. A real password check is currently not implemented into this
server. It simply checks whether a user exists, but a provided password is not
validated.

Finally, the phpOIDC server is an example implementation. We configure it to allow
client registrations and added pre-defined users in a MySQL database. Initial server
settings are configured in a PHP include file.

4.2 Docker Test-Environment

The OP implementations are relevant for the structure of our docker lab environ-
ment. Production ready containers offer load balancing and are distributed in sev-



4.2 Docker Test-Environment 51

eral sub services. The Gluu Server, OIDC OP Overlay for Shibboleth IdP plugin,
and Gravitee.io Access Management server are such OP services. In the Gravi-
tee.io nginx reverse proxy configuration in Listing A.1, one can see that it involves
three web services. To interact with this server, it is required to add DNS entries
in the local host file or DNS server. These entries must match the reverse proxy
settings. Both DNS setting actions require administrative privileges. Configura-
tion of further DNS entries are limited to one lab server. In order to run different
configurations on several servers, the DNS names requires to be changed in every
configuration file. A security aspect must be considered. With the lab environment,
potentially insecure configured applications can run in the institution or company’s
network.

4.2.1 Network Topology and Configuration

SERVER

PROFnet

RPnet OPnet

MITMProxy
Proxy: SERVER:8080

WebProxy: SERVER:8081
MITMScript: SERVER:8042

PrOfESSOS
FQDN: *.professos.profnet

API: SERVER:8888
MGMT: SERVER:9990

DEBUG: SERVER:8787
LAB

FQDN: lab.profnet

Relying Parties
FQDN: *.rpnet

OpenID Provider
FQDN: *.opnet

Figure 4.3: Schematic docker-compose overview.

We created an encapsulated environment to simulate a complete OpenID Connect
network. Therefore, a docker-compose file defines three main networks depicted in
Figure 4.3.
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First network is PROFnet, intending to provide all non OIDC services like PrOfES-
SOS and the lab landing page. Web services running in this network can expose
ports to the server through a bridged network interface. The network intefaces for
the second RPnet and third OPnet are configured as internal networks. With these
internal network interfaces, RPs and OPs are completely separated. The MitMProxy
service acts as a proxy between all three networks, as explained in subsection 4.2.4.
It is the preferred gateway to interact with the lab as an external user. As a re-
quirement, the browser must be configured to use a web proxy. For example, the
Firefox plugin FoxyProxy can be installed and parameterized as shown in Figure 4.4.
Subsequently, all three networks communicate via this proxy and a user can access
all web services with a web browser.

Figure 4.4: FoxyProxy browser plugin configuration for MitMProxy.

These measures reduce the initial setup overhead for all users. A similar configu-
ration can be used in a data center and for a development machine. A restricted
server access can be realized through a VPN gateway and additional firewall port
rules.
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4.2.2 Service Integration

All services are gathered in a single docker-compose.yml file. The docker-compose
allows to control which services is supposed to run. Without specifying a service,
the complete lab starts.

$> # start complete lab
$> docker-compose up -d
$> # start only mitmproxy, professos and mitreid-server
$> docker-compose up -d mitmproxy professos mitreid-server mitreid-client

Listing 4.5: Commands to start lab with docker-compose.

If a working client or server is provided, an exact version can be referenced. This is
configured by argument BRANCH. Alternatively, without a version tag, the revision
HASH can be used. Another option is to set the docker image version for specific
images. These images can be retrieved via docker hub or any other docker reg-
istry.

1 version: "3.6"
2
3 services:
4 rp-example-client:
5 build:
6 context: ./rp/rp-example-client
7 args:
8 ISSUER: ${HONEST_OP_HOST}
9 BRANCH: master

10 HASH: 7f4819b7107b069b50bb1b2f2ff2acb5e296c2d9
11 CONTROLLER_URL: ${CONTROLLER_HOST}
12 CLIENT_HOST: ${UNIQUE_CLIENT_HOST}
13 depends_on:
14 - certs
15 volumes:
16 - certs:/certs:ro
17 env_file:
18 - .proxy_env
19 environment:
20 CA_DIR: ${CA_DIR}
21 CA_CERT: ${CA_CERT}
22 VIRTUAL_HOST: ${UNIQUE_CLIENT_HOST}
23 networks:
24 - rpnet

Listing 4.6: Example structure of a docker-compose file.

Another crucial step is shown in Listing 4.6. The SSL certificate required for the
communication is generated automatically. A certs service runs in the background
and listens on the docker socket. The environment variable VIRTUAL_HOST is the
indicator to create new certificates. The self-generated Root-CA file from the certs
volume is installed into every service. To use this proxy as user without self-signed
warnings, it is recommended to install the Root-CA into local browser store. Per
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default, MitMProxy is enabled with the environment file .proxy_env in every service.
If a service cannot handle proxy settings or the feature is not demanded, it is possible
to remove the file. It is solely required to attach the opposite party network to allow
direct communication.

We tried to deliver our provided Dockerfiles in a similar generic structure, as shown
in Listing A.2. Every service provides its own reverse proxy and is configured to use
the Root-CA file. On the one side, this grants the flexibility to start certain services
or change the network configuration as previously described. On the other side, it
simplifies the integration of further implementations. The build and run steps are
in most cases the same for each programming language.

To test different configurations, it is possible to change the configuration files and
build the lab again. Another option is to set up different container configurations
with environment variables. In Listing 4.7 this option is demonstrated. With the
ISSUER environment variable, the used OP can be changed. Through the build argu-
ment, the Dockerfile selects a respective configuration file.

1 express-openid-client:
2 build:
3 context: rp/express-openid-client
4 args:
5 CONTROLLER_URL: ${CONTROLLER_HOST}
6 CLIENT_HOST: ${EXPRESS_OPENID_CLIENT_HOST}
7
8 express-openid-client-prof:
9 build:

10 context: rp/express-openid-client
11 args:
12 ISSUER: ${EVIL_OP_HOST}
13 CONTROLLER_URL: ${CONTROLLER_HOST}
14 CLIENT_HOST: ${EXPRESS_OPENID_CLIENT_PROF_HOST}

Listing 4.7: Express openid client configured for two different OPs.

4.2.3 Practical Offensive Evaluation of Single Sign-On Services

PrOfESSOS is an Evaluation as a Service (EaaS) security tool [19]. It offers a web
interface to start the evaluation of a targeted RP or OP. For tests with RPs, it
provides an honest OP and an attacker OP. To test an OP, PrOfESSOS starts two
RPs analogously. With a selenium script, user interactions are simulated to trigger a
login attempt. The created OP or RP instances are configured per test case through
a compiled-in test plan.

The lab environment provides the opportunity to test and improve PrOfESSOS.
Through the different OP and RP implementations, authentication methods, and
flow variants, it assists to identify edge cases which are rarely tested. For debugging
and hot-swapping of PrOfESSOS it is possible to expose the required ports 9990 and
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8787 (s.a. Figure 4.3) to a development machine. Most PrOfESSOS changes are
related to non-specification compliant service implementations. These are required
fields or parameters which are not set by applications. The others are optional fields
and parameter which are expected to be set. We have assessed that some fallback
mechanisms need to be added for these cases. Another mandatory change was to
support the proxy settings to use MitMProxy.

During tests with PrOfESSOS and RP services, we have discovered that the following
three libraries require an available route to the configured OP metadata endpoint.
The pyoidc implementation requests the Provider Configuration on app start. Both
angular applications require the information, while the browser loads the respective
content. Automatic tests for PrOfESSOS are configured to check the consent flag
first. Afterwards, it loads the login page and starts the simulation OPs for a specific
test. This does not work for the three mentioned RP web applications. Therefore, as
an enhancement, we implemented the API call expose. A test specific OP simulation
is loaded through the REST API call and the Provider Configuration is provided.
Eventually, an automatic test can be started without an issue. With this improve-
ment, it is possible to manually test a loaded Single-Phase attack. Therefore, custom
test cases are included in the test plans.

4.2.4 Man-in-the-Middle Proxy

We use the MitMProxy as a default gateway for users and to connect all ser-
vices. Primarily it is intended to use this proxy for debugging and analytical
purposes. The Mitmweb package allows to display and decode every web traf-
fic exchanged between all connected networks and the browser. User interactions
in front-channel and communication between services in back-channel can be in-
spected, modified, and intercepted. The web interface is accessible on server port
8081.

Through the possibility to intercept and modify the traffic, it is possible to fix
minor handling issues without being forced to alter service implementations. MitM-
Proxy provides a python API as scripting interface. We added a script (List-
ing B.1) to change requests and responses. This script allows to perform manual
tests with support of PrOfESSOS. This enhancement script for PrOfESSOS is a
TCP server which is loaded by MitMProxy and listens on port 8042. It is con-
trolled with a client included in the following described Command-line Interface
(CLI) tool.

4.2.5 Command-line Interface Tool

The REST API interface of PrOfESSOS provides additional configuration options.
For this purpose, we created a python based CLI tool. It can store configuration
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file used to configure PrOfESSOS via REST API. This configuration file defines a
target page and a selenium script to login and display the profile page. It provides
the same JSON format as the Web-UI and can be used interchangeably. One can
see, the base structure in Listing 4.8 for an RP. The CLI replaces the placeholder
CHANGE_TEST_ID in case of a dynamic test id. In the Web-UI it must be replaced
manually.

1 {
2 "UrlClientTarget": "https://target-url/",
3 "InputFieldName": "identifier",
4 "SeleniumScript": "",
5 "FinalValidUrl": "https://target-url",
6 "HonestUserNeedle": "{sub=honest-op-test-subject, iss=https://

honest-idp.professos/CHANGE_TEST_ID}",
7 "EvilUserNeedle": "{sub=evil-op-test-subject, iss=https://attack-

idp.professos/CHANGE_TEST_ID}",
8 "ProfileUrl": "https://target-url/profile"
9 }

Listing 4.8: Example test configuration for RP required by PrOfESSOS.

The CLI has additional logic to alter the REST API control flow and to set additional
settings. It is implemented to store optional configurations per project. A static test
id can be set. This is required when a RP or an OP cannot handle a unique dynamic
id. For example, the mod auth openidc supports Dynamic Client Registration. This
client requires storing the metadata from a pre-configured OP in the Apache2 plugin
directory. With this limitation, the Dynamic Client Registration can be used if the
test id is static.

Before a test starts, the pre_expose switch in Listing 4.9 can expose the Provider
Configuration. The comma separated list skip_tests allows to disable specific test
steps.

1 {
2 "test_id": "yourStaticTestId",
3 "skip_tests": "2,3,5",
4 "discovery": false,
5 "dynamic": true,
6 "pre_expose": false
7 }

Listing 4.9: Optional settings file for command-line interface.
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For all these stored settings, automated tests for all services can be executed. A full
test is started with these commands:

$ ./cli.py
$> load rp mitreid-client
$> full_test

After all tests are accomplished, a HTML report is generated. The report contains
all findings, a description, and detailed step-by-step information, including screen-
shots.

Instead of a full test run, a single test run can be prepared or executed. This
is essential for manual penetration tests. A specific RP test can be prepared in
PrOfESSOS via the expose mechanism. Afterwards, the honest OP and attack
OP can be used directly with the RP. Hence, a RP can be debugged and tested
directly from a browser, with the limitation that only front-channel communication
can be changed. Being aware which test is loaded, a MitMProxy script can create
permutations of an attack. The client library and scripts to control the MitMProxy
server are delivered as a part of this CLI tool. Command line steps to start semi-
automated test with a report:

$ ./cli.py
$> load op server
$> create
$> learn
$> run_pyscript pentest/server-redirect.py
$> run 48
$> export
$> report

It must be considered, that PrOfESSOS itself is unaware of these manipulations. For
instance, if a redirect URI is manipulated with a MitMProxy script, the PrOfESSOS
report contains the original URI.
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Motivated by specification violations, missing examples, and documentation gaps
encountered during integration into the lab environment; we identified various secu-
rity flaws. These flaws are described in this chapter. The MitMProxy allowed us to
read and verify front and back-channel communication. A check of any PrOfESSOS
steps with manual test scripts becomes redundant. The new PrOfESSOS feature, to
expose an OP configured for a specific test, supported us to perform comprehensive
steps directly in the browser. The MitMProxy scripting interface, introduced in sec-
tion 5.3, shows how automated tests with PrOfESSOS can be extended seamlessly
by manual test steps.

5.1 Evaluation of Relying Parties

Despite the OpenID Certification of the used implementations, we discovered im-
plementation flaws. Table 5.1 shows that five out of eight implementations were
vulnerable against the attacks. We revealed two potential critical vulnerabilities,
with Signature Manipulation and Key Confusion. These implementation flaws al-
low to take over every registered account at a RP. In the node client and both
angular implementations, we could not detect any security issue. However, configu-
ration is limited to one OP and these clients neither support, Issuer Discovery nor
Dynamic Client Registration.

As expected, all five RPs were vulnerable against the Cross-Phase Attack IdP Con-
fusion. In addition, the Malicious Endpoint Attack turned out as supposed for
MITREid Connect and phpOIDC, which supports Issuer Discovery. The discovery
feature is not supported by mod auth openidc. Therefore, it is solely vulnerable, if an
administrator has explicitly added the attackers OP as trusted source.

No implementation was vulnerable against the Single-Phase attacks, Cross Side Re-
quest Forgery and Token Substitution. The Cross-Phase attacks, Session Overwrit-
ing and Issuer Confusion could also not be applied to any of them.

The IDS attack against MITREid Connect, mod auth openidc, and phpOIDC could
be applied partially. All provided clients used the sub and iss from ID Token to
lookup for an account. We could solely influence displayed name and email address
with the manipulated UserInfo Endpoint. There is a risk, if an unaware application
developer uses the email address or other claims instead of sub to create a database



60 5 Security Analysis

Flaw MITREid mod auth phpOIDC pyoidc OidcRPConnect openidc implicit / code

ID Spoofing Userinfo
3 3 7 3/ 3 3(sub+iss)

ID Spoofing Userinfo
7 7 7 3/ 3 3(name+username+email)

Key Confusion
3 3 7 3/ 3 3jku Spoofing

Key Confusion
3 3 7 3/ 3 3jku Spoofing [untrusted,tusted]

Key Confusion
3 3 7 3/ 3 3jku Spoofing [trusted,untusted]

IdP Confusion 7 7 7 3/ 7 7

Malicious Endpoint Attack 7 7 7 3 3

Replay Attack
3 3 3 7/7 7id_token.iat: 1 day in future

Replay Attack
3 3 3 7/7 7id_token.iat: 1 year in future

Replay Attack
3 3 3 7/ 3 3id_token.nonce: invalid value

Replay Attack
3 3 3 7/ 3 3id_token.nonce: excluded

Signature Manipulation
3 3 3 3/7 3header.alg = none & invalid sig.

Signature Manipulation
3 3 3 3/7 3header.alg = none & no sig.

Token Recipient Confusion
3 3 3 7/7 3id_token.aud: invalid value

Token Recipient Confusion
3 3 3 7/7 3id_token.aud: otherOP.aud

3: Attack failed/Secure; 7: Attack successful/Insecure

Table 5.1: Discovered vulnerabilities in Relying Party implementations.

query. An attacker can abuse this. An email address might be a known factor,
where a unique random sub is hard to predict.

The phpOIDC was vulnerable against a KC attack. This allowed us to inject a jku
in the JOSE header and the signature is accepted. We could see in MitMProxy
that the implementation retrieved this key from the referenced URL. We found the
corresponding lines in the source code. There was no hint or comment that it was
intended for debugging only.
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We determined a different behavior in the pyoidc implementation as represented
in Table 5.1. With a closer look inside the sources, we located a variable which
is used to add some time to compensate a clock skew. It appears programmers
forgot to set an appropriate time. This variable was set to zero and a conditional
branch skipped the iat validation. The Signature Manipulation vulnerability in
Authorization Code Flow is not generally forbidden by the OIDC specification. It is
valid to set the alg to none for this flow. Recommendation was to let the application
developer decide to allow this behavior explicitly, due to different use-cases and
security requirements. Within the later responsible disclosure process the pyoidc
developers informed us that this not validated nonce and TRC was an issue from
our used Middleware. The flask module did not call a provided ID Token verification
method.

In the source code of OidcRP, we noticed that developers considered the past to
validate iat. Any future value was not checked.

5.2 Evaluation of OpenID Provider

Starting with default configurations in Table 5.2, we encountered implementation
flaws and misbehavior in five out of six selected providers. The attacks Sub Claim
Spoofing, Open Redirector, Authorization Code Reuse and Substitution cannot be
observed.

The findings regarding Authentication Method Confusion required a closer inves-
tigation. All three affected implementations handled the authentication correct;
regardless RP is configured for only one method. This potentially is a functionality
for interoperability and fault tolerance towards not full specification conform RP im-
plementations. If both basic authentication methods are implemented and handled
correctly, it is not a security related issue. With manual tests, in Section 5.3.4, we en-
sured that no downgrade to less secure variants are possible.

Per default, Gravitee.io Access Management allows wildcard URIs. After enabling
redirect URI strict matching in the administration console, these RUM vulnerabil-
ities were mitigated. It is preferable that this option is enabled per default and
categorized in a danger zone. Developers added hints in documentation entries,
regarding the vulnerabilities of non-strict defined URIs.

The MITREid Connect server checks if a Code Challenge is included in the Authen-
tication Request. If this is true in the Token Response, then it validates the Code
Verifier. Therefore, it was vulnerable to the PKCE attack without a Code Chal-
lenge. During the code review, we discovered that it logs a wrong Code Challenge
Method, but it throws no exception. We tested it with MitMProxy and we could
bypass the PKCE. In addition, we observed a special error page during RUM and
validated it manually in subsection 5.3.3.
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Flaw Identity Gravitee.io Keycloak MITREid node phpOIDC
Server4 AM Connect oidc

Authentication Method
3 3 7 7 7 3Confusion (Basic)

Authentication Method
3 3 7 7 7 3Confusion (Post)

Redirect URI Validation
3 7 3 3 3 3(AR) - Path

Redirect URI Validation
3 7 3 3 3 3(AR) - Userinfo C

Redirect URI Validation
3 7 3 3 3 3(AR) - Userinfo D

Redirect URI Validation
3 3 3 3 7 3(TR) - Exclude URI

Message Flow Confusion
3 3 3 3 3 7Response Type

Message Flow Confusion
3 3 3 3 3 7Response Mode

PKCE Downgrade
3 3 3 7 3 3(AR) Exclude Challenge

PKCE Downgrade
3 3 3 7 3 3(AR) Invalid Method

3: Attack failed/Secure; 7: Attack successful/Insecure

Table 5.2: Discovered vulnerabilities in OpenID Provider implementations.

The node oidc-provider RUM with excluded URI in the Token Request is considered
being a special use-case. The developer confirmed that the single registered redirect
URI could be used in this case. With more than one registered URIs the excluded
URI is detected as a fault.

In a first run, phpOIDC showed up a PKCE vulnerability. It was an issue of PrOfES-
SOS, which not detected a disabled PKCE support. In the phpOIDC configuration
we discovered a variable to enable PKCE. After enabling it no PKCE related vul-
nerabilities were discovered. The Message Flow Confusion vulnerabilities should
be considered by the developers. Both parameters can be set in front-channel and
might introduce risks to unaware RP implementations.
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5.3 Manual Test Results

Besides the programming language independent tests offered by PrOfESSOS, we
have carried out additional manual security evaluations. Our focus was to eval-
uate observations we made during tests with PrOfESSOS. On the one side, to
verify the results, and on the other, to add some programming language specific
tests.

5.3.1 Gravitee.io Access Management RUM Verification

There were two interesting aspects, which we verified regarding the Gravitee.io Ac-
cess Management and the RUM vulnerability. First aspect was to verify, if the
issued Authorization Code was revoked after a redirect URI was detected. This
was required because we could not ensure that the same code path was used.
For example, an exception could be raised which skipped the revocation. Second
aspect to check, if the Authorization Code could be used with the manipulated
URI.

#1 Check revoked code PrOfESSOS validates, if it is possible to redeem the Au-
thorization Code with a Token Request and a correct registered URI. The Token Re-
sponse (Listing 5.3) consequently returned an error 400.

400

Cache-Control no-store
Content-Type application/json; charset=UTF-8
Pragma no-cache

{
"error_description": "Redirect URI mismatch.",
"error": "invalid_grant"

}

Listing 5.3: PrOfESSOS redeems Authorization Code with correct URI.

To ensure the Authorization Code was revoked correctly, a curl command could be
used. The curl command was issued by setting the web proxy accordingly.

export https_proxy=https://localhost:8080/

Afterwards, for RUM Path validation the curl command in Listing 5.4 was used.
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curl -X POST -d "code=yoAXWs5M7P81Sxk7yXfYEGEExVdDeQndKnPX84tFXjE&redirect_uri=https%3A%2F%2
Frp.professos%2Fwa9L9IlAB3Y%2Fcallback%2Fiivsyqm5ist2&grant_type=authorization_code" \

-H "X-Protocol-Scheme: https" \
-H "X-Protocol-Port: -1" \
-H "Authorization: Basic dmVYUUItSjJiTkNVVXVvMUN2cH..." \
-H "Content-Type: application/x-www-form-urlencoded; charset=UTF-8" \
-H "X-Prof-Sender: HONEST-RP" \
https://gravitee/am/profnet/oauth/token

{
"error" : "invalid_grant",
"error_description" : "The authorization code yoAXWs5M7P81Sxk7yXfYEGEExVdDeQndKnPX84tFXjE is

invalid."
}

Listing 5.4: Check revoked Authorization Code after RUM detection.

#2 Redeem code We received an error in the Token Response, as previously
pointed out in Listing 5.3. For a countercheck we considered the MitMProxy. We
added the familiar Token Endpoint address in the Web-UI as URI that was supposed
to be intercepted.

Figure 5.5: MitMProxy intercepted Token Request.

Afterwards, we triggered the test in PrOfESSOS. The intercepted Post Method in
Figure 5.5 was modified. Therefore, we appended path "jyvxo1w7q5f" to the redirect
URI as depicted in Figure 5.6. Finally, we received the response Figure 5.7 with a
successful Authorization Code redemption. We obtained an Access Token and an
ID Token. With these steps, we validated that our attack was successful. Therefore,
an additional test in PrOfESSOS become obsolete.
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Figure 5.6: MitMProxy modified Token Request.

Figure 5.7: Successful RUM Token Response.

5.3.2 JWKS Spoofing against mod auth openidc

The idea of a JWKS spoofing attack is to determine how many trusts an RP
developer give to data, which is retrieved via back-channel communication. For
example, a malicious OP can try to manipulate a key set to execute arbitrary
code via SSRF. In addition, if JWKS size is not limited, it might be exploited
to start a DoS attack. Drawback of this manual test is, that PrOfESSOS is lim-
ited to the old JWKS. The functionality can be retained by adding additional sets.
In this test, mod auth openidc detected an error and thus disabled login to the
OP.
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1 #!/usr/bin/env python3
2 from lib.attacks import *
3 from lib.client import MITMClient
4
5 if __name__ == "__main__":
6 client = MITMClient()
7 client.send(ClearCommand())
8
9 jwks = JWKSSpoof()

10 jwks.uri = "https://attack-idp.professos/modauthopenidc/jwks"
11
12 # Test, if null is handled correctly. Jansson is used as JSON backend
13 # Following message is displayed: \u0000 is not allowed without JSON_ALLOW_NUL error msg

in apache2/errors
14 # full jwk set is written to apache2 error log
15 jwks.keys[0]["n"] = "\0<?php echo ’Hello’ ?>"
16
17 keys = jwks.keys
18 client.send(jwks)

Listing 5.8: Script to test mod auth openidc.

In Listing 5.8, we checked the handling of special character Null in mod auth
openidc. Therefore, we replaced the original modulus n parameter with a Null
character and an additional code. This added code could be interpreted by PHP.
After visiting the login page, this JWKS was retrieved with a curl easy function in
mod auth openidc. The OP was not accessible anymore. An Apache2 server error
was written to the log files, similar to Listing 5.9. It was obvious that the Null
character was handled by Jansson as JSON backend. In addition, the malicious key
set was written without escape characters to error log. Previous tests revealed we
may write 4 KiB data into a JWKS.

1 oidc_util_decode_json_object: JSON parsing returned an error: \\u0000
is not allowed without JSON_ALLOW_NUL (

2 {
3 "keys": [
4 {
5 "alg": "RS256",
6 "e": "AQAB",
7 "kid": "professos",
8 "kty": "RSA",
9 "n": "\\u0000<?php echo ’Hello’ ?>",

10 "use": "sig",
11 "x5c": [ "MIIDQTCCAimgAwIBAgIBATAN..." ]
12 }
13 ]
14 }), referer: https://mod-auth-openidc/protected

Listing 5.9: Apache2 error log while parsing Null in mod auth openidc.
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An attack can be utilized, if the Apache2 error log is not protected correctly through
file permissions. For example, with a well-known PHP Path Traversal attack, this
code might be executed.

Regarding this issue, our recommendation was to suppress the JWKS dump.

5.3.3 Query Parameter Manipulations

During tests with PrOfESSOS, we investigated a special error page in MITREid
Connect server. It was displayed only when the redirect URI partially did not match
a registered URI. As shown in Figure 5.10 the redirect_uri query parameter was
displayed with a correct escaped XSS attack.

Figure 5.10: Manual XSS attack fails on MITREid Connect server.

This redirect URI manipulation could be altered in the browser or with a MitMProxy
script. We prepared the depicted XSS with the script in Listing 5.11. It requires a
valid URI, the query key and value which should be replaced. Afterwards, PrOfES-
SOS test was executed from the CLI tool.

1 #!/usr/bin/env python3
2 from lib.attacks import *
3 from lib.client import MITMClient
4
5 if __name__ == "__main__":
6 client = MITMClient()
7 # cleanup previous mitm proxy hooks
8 client.send(ClearCommand())
9 # replace redirect_uri with a XSS check

10 # mitreid-server escapes special characters before displaying it
11 cmd = ReplaceCommand()
12 cmd.uri = "mitreid-server/oidc-server/authorize"
13 cmd.replaceKeyVal("redirect_uri", ’<script>alert("Hello!");</script>’)
14
15 client.send(cmd)

Listing 5.11: Script to test MITREid Connect server against a XSS attack.
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This kind of manipulation grants to test further special characters or implicit type
conversions. For example, a Boolean value can be passed to a freshness parame-
ter.

5.3.4 JSON Post Request Manipulations

For the evaluation of Authentication Method Confusion in Section 5.2, it was re-
quired to add a manipulation option for JSON Post requests. Direct integration into
PrOfESSOS would be our preferred approach in the future. This demands additional
time and routines are supposed to maintain full functionality.

The script in Listing 5.12 was implemented for a fast validation. It is necessary to
find out the Registration Endpoint URI from Provider Configuration. The client
authentication method in token_endpoint_auth_method was replaced accordingly.
We manipulated registration with PrOfESSOS. Generally, PrOfESSOS was not
aware of this and tried to authenticate with one of these basic methods at next
test execution. This was the intention of our test. If a downgrade to less secure
variants is feasible, PrOfESSOS can execute a complete test. Otherwise, an authen-
tication method error is displayed.

1 #!/usr/bin/env python3
2 from lib.attacks import *
3 from lib.client import MITMClient
4
5 if __name__ == "__main__":
6 client = MITMClient()
7 # cleanup previous mitm proxy hooks
8 client.send(ClearCommand())
9 # prepare attack to replace values in json post requests

10 cmd = ReplacePostJsonCommand()
11
12 # Set Registration Endpoint URI
13 #cmd.uri = "keycloak/auth/realms/master/clients-registrations/openid-connect"
14 cmd.uri = "node-oidc-provider/reg"
15 #cmd.uri = "mitreid-server/oidc-server/register"
16
17 # Change client authentication method
18 #cmd.replaceKeyVal("token_endpoint_auth_method", ’Invalid’)
19 #cmd.replaceKeyVal("token_endpoint_auth_method", ’none’)
20 #cmd.replaceKeyVal("token_endpoint_auth_method", ’private_key_jwt’)
21 cmd.replaceKeyVal("token_endpoint_auth_method", ’client_secret_jwt’)
22 #cmd.replaceKeyVal("token_endpoint_auth_method", "NoNe")
23
24 client.send(cmd)

Listing 5.12: Script to validate OP authentication methods.

Regarding the OpenID Connect specified known methods, it is possible to test ad-
ditional invalid methods.
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We disclosed the vulnerabilities responsible to the maintainers. All vulnerable imple-
mentations are open-source projects. They are hosted on Github. Except phpOIDC
which is hosted on Bitbucket. The main challenge in this responsible disclosure
process is to find the correct email addresses.

MITREid Connect provides a distribution group and on a closer look it is linked with
a public mail archive. We decided to write an email directly to an explicit named
maintainer. For all other libraries and services, we searched in git commits or on
their profiles to find an email address. After we determined that we have found the
right maintainer and email address, we submitted the report with recommendations.
Most developers have responded within a day.

Name Vulnerability Reported Fixed CVE

MITREid Connect PDA, IDS 3 F

mod auth openidc IDS, JWKS Spoofing 3 3

node oidc-provider RUM 3 7

OidcRP RA 3 F

phpOIDC MFC, IDS, KC 3 F

pyoidc RA, SM, TRC 3 3 CVE-2020-26244

3: Reached/Solved; 7: Rejected; F: Triaged

Table 6.1: Responsible disclosure status overview.

The pyoidc developers have fixed the reported vulnerabilities in consultation with
the flask-pyoidc developers. With the Github Security Advisory feature, the devel-
opers created a CVE-2020-26244 and informed all related projects. The mod auth
openidc created a bug fix which is part of new release version 2.4.5. The node oidc-
provider developer explained that they are aware of the RUM issue. This special
case for only one registered redirect URI is allowed. They keep the current im-
plementation for interoperability and fault-tolerance with RPs which are using this
functionality.

All other projects maintainer understands the vulnerabilities and will be working
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on a patch. The projects in Table 6.1 are therefore marked with a triage sta-
tus.



7 Conclusion and Future Work

This thesis contributed to security analysis of real-life OpenID Connect implemen-
tations. We have analyzed OpenID Connect Certified Relying Parties and OpenID
Providers with support of Implicit Flow and Hybrid Flow. Therefore, we introduced
the required SSO protocol framework knowledge for OAuth 2.0 and OpenID Con-
nect. With our security framework, we gave a state-of-the-art overview about known
attack vectors and the capabilities of a web-attacker.

We developed a maintainable docker lab environment. It provides an extensible
and stable test platform and ensures comprehensive test operations. We have in-
tegrated eight RP libraries and six OP services together with PrOfESSOS and
MitMProxy. During the integration, we observed several minor non-specification
conform behaviors. Developers are not providing required parameters, or consider
optional parameters being required. They focus most on RP examples and doc-
umentation related to Authorization Code Flow. Implicit Flow and Hybrid Flow
demanded more attention, to understand which development steps are required to
use them. Partially, it was necessary to write minor patches that we could test these
flows.

With MitMProxy, we could analyze and debug the protocol flow. This helped us
to improve PrOfESSOS and verify the security test implementations. Together,
they offer a comprehensive and fast way to perform security investigations within
the lab environment. Developers and security researchers could have an out-of-
the-box experience, after adding a new implementation. With the CLI tool and
MitMProxy scripts, we have introduced an enhancement for PrOfESSOS. This allows
manual and semi-automated security tests without reconfiguration of any RP or OP
implementation. As an advantage, Relying Parties can be tested against a preferred
test manually in the browser. PrOfESSOS provides this through an exposed attacker
OP.

Finally, we analyzed the implementations and revealed several vulnerabilities. Five
out of eight RPs have implementation flaws in six different attack types carried out
with PrOfESSOS. We found one additional flaw during manual test analysis. OPs
services appeared fewer flaws. Solely two out of six implementations were vulnerable
against PrOfESSOS attacks. Gravitee.io Access Management in standard configu-
rations revealed further weaknesses. We discovered a vulnerability in MITREid
Connect server during code review and verified it with a MitMProxy changed PrO-
fESSOS test. In general, we have observed no common security hotspots other than



the specification flaws. We reported all vulnerabilities in a responsible disclosure
process.

Future Work might focus on extending the lab environment. A wider range of
implementations should be considered. For example, with Authorization Code Flow
and PKCE a newer extension is available, which is currently in development and
designed to replace the Implicit Flow. Regarding the Relying Parties it would be
beneficial if implementer validate the supported Code Challenge Methods metadata
entry as an indicator that PKCE is supported. In case developers are not paying
attention to this entry and foresee default values instead, it might be possible that
an OP is used without PKCE support. If this remains unnoticed, the extension
provides no more security than Implicit Flow.

The existing libraries should be tested in different configurations. With pyoidc we
already proved that libraries could behave differently. This behavior is not limited
to flows and response types. The implementations could be also configured with
other authentication methods, response modes, or any valid configuration which
could change the internal code flow.

We should add more flexibility to PrOfESSOS. First, an interface to change de-
fault values. On the one side, PrOfESSOS should detect non-specification con-
form settings with the defaults. On the other side, we need the capabilities to
test the implementation in various configurations. Second, we should implement
an interface for dynamic test configuration instead of compiled-in test plan. It is
expected that these added features grant the flexibility to create language specific
test cases.

The MitMProxy can be improved by adding more generic scripts for manipula-
tions and concrete scripts for Single-Phase attacks. It is conceivable to use scripts
to manipulate communication between honest RP and OP. This will add addi-
tional test variations. It should be also considered to add further SSO test suites.
To have different test scenarios and ways of verifying test results against various
tools.
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A Configuration Files

1 http {
2 upstream gravitee-management {
3 server gravitee-management:8093;
4 }
5
6 upstream gravitee-gateway {
7 server gravitee-gateway:8092;
8 }
9

10 upstream gravitee-webui {
11 server gravitee-webui:80;
12 }
13
14 server {
15 listen 80;
16 server_name SERVER_HOST;
17 return 301 https://SERVER_HOST$request_uri;
18 }
19
20 server {
21 listen 443 ssl http2;
22
23 server_name SERVER_HOST;
24
25 ssl_certificate /certs/SERVER_HOST/SERVER_HOST.crt;
26 ssl_certificate_key /certs/SERVER_HOST/SERVER_HOST.key;
27
28 location /am/ui/ {
29 proxy_pass http://gravitee-webui/;
30 proxy_set_header Host $host;
31 proxy_set_header X-Real-IP $remote_addr;
32 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
33 proxy_set_header X-Forwarded-Host $server_name;
34 proxy_set_header X-Forwarded-Proto $scheme;
35 sub_filter ’<base href="/"’ ’<base href="/am/ui/"’;
36 sub_filter_once on;
37 }
38
39 location /am/management/ {
40 proxy_pass http://gravitee-management/management/;
41 proxy_redirect https://$host:$server_port/am/ui/ /am/ui/;
42 proxy_redirect https://$host:$server_port/management/ /am/management/;
43 proxy_cookie_path /management /am/management;
44 proxy_set_header Host $host;
45 proxy_set_header X-Real-IP $remote_addr;
46 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
47 proxy_set_header X-Forwarded-Host $server_name;
48 proxy_set_header X-Forwarded-Proto $scheme;
49 proxy_set_header X-Forwarded-Prefix /am/management;



50 }
51
52 location /am/ {
53 proxy_pass http://gravitee-gateway/;
54 proxy_set_header Host $host;
55 proxy_set_header X-Real-IP $remote_addr;
56 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
57 proxy_set_header X-Forwarded-Host $server_name;
58 proxy_set_header X-Forwarded-Prefix /am;
59 proxy_set_header X-Forwarded-Proto $scheme;
60 }
61 }
62 }

Listing A.1: Gravitee.io nginx configuration

1 FROM buildimage AS builder
2
3 ARG ISSUER
4 ARG CLIENT_HOST
5 ARG BRANCH
6 ARG HASH
7
8 RUN checkout
9 RUN buildsteps

10
11 ################################################################################
12 # Image
13 ################################################################################
14 FROM nginx:1.17.10-alpine
15
16 RUN apk update \
17 && apk add ca-certificates \
18 && rm -rf /var/cache/apk/*
19
20 COPY --from=builder /app/dist/client /usr/share/nginx/html
21
22 ARG CONTROLLER_URL
23 ARG CLIENT_HOST
24
25 ARG CA_DIR="/certs"
26 ARG CA_CERT="oidc-ca.crt"
27 VOLUME ["$CA_DIR"]
28
29 COPY config/default.conf /etc/nginx/conf.d/default.conf
30 RUN sed -i "s#CLIENT_HOST#$CLIENT_HOST#g" /etc/nginx/conf.d/default.conf
31
32 RUN echo "https://$CONTROLLER_URL" > /usr/share/nginx/html/.professos
33
34 EXPOSE 80
35 EXPOSE 443
36
37 COPY docker-entrypoint.sh /docker-entrypoint.sh
38
39 CMD ["/docker-entrypoint.sh"]

Listing A.2: Generic Dockerfile example



B Source Code

1 from mitmproxy import ctx, http
2 import base64
3 import json
4 import threading
5 import socketserver
6
7 from urllib.parse import urlparse, quote
8
9

10 class CMDDef:
11 TYPE_CLEAR = "clear"
12 TYPE_REQUEST = "request"
13
14 QUERY_SEARCH_REPLACE = "querySearchReplace"
15 POST_JSON_SEARCH_REPLACE = "postJsonSearchReplace"
16 JWKS_SPOOFING = "jwksSpoofing"
17
18
19 class Intercept:
20 def __init__(self, search, replace):
21 self.search = base64.b64decode(search).decode(’ascii’)
22 self.replace = base64.b64decode(replace).decode(’ascii’)
23
24
25 class InterceptReplaceCommand:
26 def __init__(self, uri, keyVal):
27 self.type = CMDDef.TYPE_REQUEST
28 self.action = CMDDef.QUERY_SEARCH_REPLACE
29 self.uri = uri
30 self.keyVal = keyVal
31
32 def replace(self, requestUri):
33 parse = urlparse(requestUri)
34
35 # Check if url same
36 if self.uri != parse.netloc+parse.path:
37 return None
38
39 querys = parse.query.split("&")
40 new_query = []
41 for query in querys:
42 key, value = query.split(’=’)
43 print(self.keyVal)
44 if key in self.keyVal:
45 print(key)
46 value = self.keyVal.get(key)
47 query = key + ’=’ + quote(value)
48 new_query.append(query)
49
50 new_query = "&".join(new_query)



51 return parse._replace(query=new_query).geturl()
52
53
54 class InterceptPostJsonCommand:
55 def __init__(self, uri, keyVal):
56 self.type = CMDDef.TYPE_REQUEST
57 self.action = CMDDef.POST_JSON_SEARCH_REPLACE
58 self.uri = uri
59 self.keyVal = keyVal
60
61 def check(self, requestUri):
62 parse = urlparse(requestUri)
63 if self.uri != parse.netloc+parse.path:
64 return False
65 return True
66
67 def replace(self, content):
68 data = json.loads(content)
69 for key, value in self.keyVal.items():
70 data[key] = value
71 return json.dumps(data).encode(’utf-8’)
72
73
74 class InterceptJWKSCommand:
75 def __init__(self, uri, keys):
76 self.type = CMDDef.TYPE_REQUEST
77 self.action = CMDDef.JWKS_SPOOFING
78 self.uri = uri
79 self.keys = keys
80
81
82 class ThreadedTCPRequestHandler(socketserver.StreamRequestHandler):
83
84 def handle(self):
85 data = str(self.rfile.readline(), ’ascii’) # recv until finish \n
86 cmd = json.loads(data)
87 if cmd.get("type") == CMDDef.TYPE_CLEAR:
88 self.server.controller.clear()
89 elif cmd.get("type") == CMDDef.TYPE_REQUEST:
90 self.server.controller.requestInterceptor = self.request_selection(cmd)
91 elif cmd.get("type") == ’response’:
92 intercept = Intercept(cmd.get(’search’), cmd.get(’replace’))
93 self.server.controller.responseInterceptor = intercept
94
95 response = bytes("OK", ’ascii’)
96 self.request.sendall(response)
97
98 def request_selection(self, cmd):
99 intercept = None

100 if cmd.get("action") == CMDDef.QUERY_SEARCH_REPLACE:
101 intercept = InterceptReplaceCommand(cmd.get(’uri’), cmd.get(’keyVal’))
102 elif cmd.get("action") == CMDDef.POST_JSON_SEARCH_REPLACE:
103 intercept = InterceptPostJsonCommand(cmd.get(’uri’), cmd.get(’keyVal’))
104 elif cmd.get("action") == CMDDef.JWKS_SPOOFING:
105 intercept = InterceptJWKSCommand(cmd.get(’uri’), cmd.get(’keys’))
106 return intercept
107
108
109 class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer):
110 allow_reuse_address = True
111
112 def __init__(self, host_port_tuple, streamhandler, controller):



113 super().__init__(host_port_tuple, streamhandler)
114 self.controller = controller
115
116
117 class Controller(object):
118 def __init__(self):
119 self.__requestInterceptor = []
120 self.__responseInterceptor = []
121
122 def clear(self):
123 self.__requestInterceptor.clear()
124 self.__responseInterceptor.clear()
125
126 @property
127 def requestInterceptor(self):
128 return self.__requestInterceptor
129
130 @requestInterceptor.setter
131 def requestInterceptor(self, value):
132 self.__requestInterceptor.append(value)
133
134 @property
135 def responseInterceptor(self):
136 return self.__responseInterceptor
137
138 @responseInterceptor.setter
139 def responseInterceptor(self, value):
140 self.__responseInterceptor.append(value)
141
142
143 class ProfessosEnhancer(object):
144
145 def __init__(self) -> None:
146 ctx.log.info("Init Server")
147 self.controller = Controller()
148 self.server = None
149
150 def running(self):
151 if self.server is not None:
152 ctx.log.info("Server is already running")
153 return
154 HOST, PORT = "0.0.0.0", 8042
155 self.server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler, self.

controller)
156 ip, port = self.server.server_address
157
158 server_thread = threading.Thread(target=self.server.serve_forever)
159 server_thread.daemon = True
160 server_thread.start()
161 ctx.log.info("Enhancer listens on {}:{}".format(ip,port))
162
163 def request(self, flow: http.HTTPFlow) -> None:
164 for intercept in self.controller.requestInterceptor:
165 if intercept.action == CMDDef.QUERY_SEARCH_REPLACE:
166 replaceUrl = intercept.replace(flow.request.pretty_url)
167 if replaceUrl:
168 flow.request.url = replaceUrl
169 ctx.log.info("Request Replaced: {}".format(flow.request.pretty_url))
170 elif intercept.action == CMDDef.POST_JSON_SEARCH_REPLACE:
171 if intercept.check(flow.request.pretty_url):
172 content = intercept.replace(flow.request.content)
173 if content:



174 flow.request.content = content
175 ctx.log.info("Request Replaced: {}".format(flow.request.pretty_url))
176 elif intercept.action == CMDDef.JWKS_SPOOFING:
177 #ctx.log.info("Intercept URI: {} -> {}".format(flow.request.pretty_url,

intercept.uri))
178 if flow.request.pretty_url == intercept.uri:
179 ctx.log.info("{}".format({"keys": intercept.keys}))
180
181 keys = {"keys": intercept.keys}
182 header = {
183 "Access-Control-Allow-Origin": "*",
184 "Access-Control-Allow-Credentials": "true",
185 "Access-Control-Allow-Methods": "*",
186 "Access-Control-Allow-Headers": "origin, content-type, accept,

authorization",
187 "Content-Type": "application/json;charset=UTF-8",
188 }
189
190 flow.response = http.HTTPResponse.make(
191 200,
192 json.dumps(keys, indent=4, ensure_ascii=False).encode(’utf-8’),
193 header
194 )
195
196 def response(self, flow: http.HTTPFlow) -> None:
197 for intercept in self.controller.responseInterceptor:
198 ctx.log.info("{}".format(intercept.search))
199 if flow.request.pretty_url == intercept.search:
200 #flow.response = http.HTTPResponse.make(status, content, header)
201 pass
202
203 def done(self):
204 if self.server is not None:
205 self.server.shutdown()
206 self.server = None
207 ctx.log.info("Finish")
208
209
210 addons = [ProfessosEnhancer()]

Listing B.1: Mitmproxy script to enhance PrOfESSOS
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